1
|
Koenig C, Fratoni AJ, Abouelhassan Y, Gluck JA, Nicolau DP, Kuti JL. Cefiderocol pharmacokinetics in critically-ill patients receiving extra-corporeal membrane oxygenation (ECMO). Int J Antimicrob Agents 2025; 65:107465. [PMID: 39971141 DOI: 10.1016/j.ijantimicag.2025.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/18/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVE Critical illness and organ support such as extracorporeal membrane oxygenation (ECMO) may influence antimicrobial pharmacokinetics. This study investigated cefiderocol pharmacokinetics in critically-ill patients receiving ECMO to understand if standard dosing achieves optimal exposure. METHODS Cefiderocol was prescribed according to approved package insert recommendations based on creatinine clearance (CL). Blood sampling was performed at steady-state. Protein binding was determined by ultrafiltration. Concentrations were fitted using the non-parametric adaptive grid algorithm in Pmetrics for R. The fT > MIC for each patient was assessed at MICs of 4, 8, and 16 mg/L. Total AUC24h was calculated to evaluate comparative exposure to non-ECMO patients. RESULTS Five patients receiving 1.5 g q8h to 2 g q6h dosing regimens were enrolled. Three patients received venous-arterial and two veno-venous ECMO (mean flow rate of 3.9 [range: 2.7-4.9] L/min). A two-compartment model fitted the data best with mean ± standard deviation estimates for CL, volume of the central compartment (V), K12, and K21 of 2.3 ± 0.5 L/h, 4.8 ± 2.3 L, 5.1 ± 2.8 h-1, and 3.9 ± 3.3 h-1, respectively. Mean protein binding was 41% (range: 31%-50%). Prescribed dosing regimens achieved 100% fT > MIC up to 16 mg/L for all patients, with a total steady-state AUC24h of 2501 (range: 1631-3276) mg/L·h. CONCLUSIONS These are the first data to describe cefiderocol pharmacokinetics in critically-ill patients undergoing ECMO. The currently labelled dosing recommendations based on creatinine CL in these patients were well tolerated and achieved 100% fT > MIC against susceptible bacteria and AUC exposures similar to values in non-ECMO patients.
Collapse
Affiliation(s)
- Christina Koenig
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA; Department of Intensive Care Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Andrew J Fratoni
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Yasmeen Abouelhassan
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Jason A Gluck
- Heart and Vascular Institute, Hartford Hospital, Hartford, Connecticut, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA.
| |
Collapse
|
2
|
Yang Y, Han K, Li J, Zhang T, Zhu Z, Su L, Han Z, Xu C, Lu Y, Pan L, Yang T. A clinical data-driven machine learning approach for predicting the effectiveness of piperacillin-tazobactam in treating lower respiratory tract infections. BMC Pulm Med 2025; 25:123. [PMID: 40097977 PMCID: PMC11912699 DOI: 10.1186/s12890-025-03580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND In hospitalized patients, inadequate antibiotic dosage leading to bacterial resistance and increased antimicrobial use intensity due to overexposure to antibiotics are common problems. In the present study, we constructed a machine learning model based on patients' clinical information to predict the clinical effectiveness of Piperacillin-tazobactam (TZP) (4:1) in treating bacterial lower respiratory tract infections (LRTIs), to assist clinicians in making better clinical decisions. METHODS We collected data from patients diagnosed with LRTIs or equivalent diagnoses admitted to the Department of Pulmonary and Critical Care Medicine at Shanghai Pudong Hospital, Shanghai, between January 1, 2021, and July 31, 2023. A total of 26 relevant clinical features were extracted from this cohort. Following data preprocessing, we trained four models: Logistic Regression, Random Forest, Support Vector Machine, and Gaussian Naive Bayes. The dataset was split into training and test sets using a 7:3 ratio. The top-performing models, as determined by Receiver Operating Characteristic (ROC)-Area Under the Curve (AUC) on the independent test set, were subsequently ensembled. Ensemble model (EL) performance was evaluated using bootstrap resampling on the training set and ROC-AUC, recall, accuracy, precision, F1-score, and log loss on an independent test set. The optimal model was then deployed as a web application for clinical outcome prediction. RESULTS A total of 1,314 patients primarily treated with TZP as initial empiric antibiotic therapy were enrolled in the analysis. The success group comprised 995 patients (75.7%), while the failure group consisted of 319 patients (24.3%). We constructed an ensemble learning model based on the Logistic Regression, Support Vector Machine and Random Forest models, which showed better overall performance. The EL model demonstrated robust performance on an independent test set, exhibiting a ROC-AUC of 0.69, a recall of 0.69, an accuracy of 0.64, a precision of 0.40, a F1-score of 0.50, and a log loss of 0.66. A corresponding web application was then developed and made available at http://106.12.146.54:1020/ . CONCLUSIONS In this study, we successfully developed and validated an EL model that effectively predicts the clinical effectiveness of TZP (4:1) in treating bacterial LRTIs. The model achieved a balanced performance across key evaluation metrics, demonstrating the model's potential utility in clinical decision-making. The web-based application makes this model readily accessible to clinicians, potentially helping optimize antibiotic dosing decisions and reduce both inadequate treatment and overexposure. While promising, future studies with larger datasets and prospective validation are needed to further improve the model's performance and validate its clinical utility. This work represents a step forward in using machine learning to support antimicrobial stewardship and personalized antibiotic therapy.
Collapse
Affiliation(s)
- Yemeng Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Kun Han
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Jiatao Li
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Tao Zhang
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhijing Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Ling Su
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhaoyong Han
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chunyan Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yi Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China.
- Institute of Magnetic Resonance and Molecular Imaging in Medicine, East China Normal University, Shanghai, 200241, China.
| | - Tao Yang
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| |
Collapse
|
3
|
Shime N, Nakada TA, Yatabe T, Yamakawa K, Aoki Y, Inoue S, Iba T, Ogura H, Kawai Y, Kawaguchi A, Kawasaki T, Kondo Y, Sakuraya M, Taito S, Doi K, Hashimoto H, Hara Y, Fukuda T, Matsushima A, Egi M, Kushimoto S, Oami T, Kikutani K, Kotani Y, Aikawa G, Aoki M, Akatsuka M, Asai H, Abe T, Amemiya Y, Ishizawa R, Ishihara T, Ishimaru T, Itosu Y, Inoue H, Imahase H, Imura H, Iwasaki N, Ushio N, Uchida M, Uchi M, Umegaki T, Umemura Y, Endo A, Oi M, Ouchi A, Osawa I, Oshima Y, Ota K, Ohno T, Okada Y, Okano H, Ogawa Y, Kashiura M, Kasugai D, Kano KI, Kamidani R, Kawauchi A, Kawakami S, Kawakami D, Kawamura Y, Kandori K, Kishihara Y, Kimura S, Kubo K, Kuribara T, Koami H, Koba S, Sato T, Sato R, Sawada Y, Shida H, Shimada T, Shimizu M, Shimizu K, Shiraishi T, Shinkai T, Tampo A, Sugiura G, Sugimoto K, Sugimoto H, Suhara T, Sekino M, Sonota K, Taito M, Takahashi N, Takeshita J, Takeda C, Tatsuno J, Tanaka A, Tani M, Tanikawa A, Chen H, Tsuchida T, Tsutsumi Y, Tsunemitsu T, Deguchi R, Tetsuhara K, Terayama T, Togami Y, Totoki T, Tomoda Y, Nakao S, Nagasawa H, Nakatani Y, Nakanishi N, Nishioka N, Nishikimi M, Noguchi S, Nonami S, Nomura O, Hashimoto K, Hatakeyama J, Hamai Y, Hikone M, Hisamune R, Hirose T, Fuke R, Fujii R, Fujie N, Fujinaga J, Fujinami Y, Fujiwara S, Funakoshi H, Homma K, Makino Y, Matsuura H, Matsuoka A, Matsuoka T, Matsumura Y, Mizuno A, Miyamoto S, Miyoshi Y, Murata S, Murata T, Yakushiji H, Yasuo S, Yamada K, Yamada H, Yamamoto R, Yamamoto R, Yumoto T, Yoshida Y, Yoshihiro S, Yoshimura S, Yoshimura J, Yonekura H, Wakabayashi Y, Wada T, Watanabe S, Ijiri A, Ugata K, Uda S, Onodera R, Takahashi M, Nakajima S, Honda J, Matsumoto T. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2024. J Intensive Care 2025; 13:15. [PMID: 40087807 PMCID: PMC11907869 DOI: 10.1186/s40560-025-00776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/21/2025] [Indexed: 03/17/2025] Open
Abstract
The 2024 revised edition of the Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock (J-SSCG 2024) is published by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine. This is the fourth revision since the first edition was published in 2012. The purpose of the guidelines is to assist healthcare providers in making appropriate decisions in the treatment of sepsis and septic shock, leading to improved patient outcomes. We aimed to create guidelines that are easy to understand and use for physicians who recognize sepsis and provide initial management, specialized physicians who take over the treatment, and multidisciplinary healthcare providers, including nurses, physical therapists, clinical engineers, and pharmacists. The J-SSCG 2024 covers the following nine areas: diagnosis of sepsis and source control, antimicrobial therapy, initial resuscitation, blood purification, disseminated intravascular coagulation, adjunctive therapy, post-intensive care syndrome, patient and family care, and pediatrics. In these areas, we extracted 78 important clinical issues. The GRADE (Grading of Recommendations Assessment, Development and Evaluation) method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members. As a result, 42 GRADE-based recommendations, 7 good practice statements, and 22 information-to-background questions were created as responses to clinical questions. We also described 12 future research questions.
Collapse
Affiliation(s)
- Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomoaki Yatabe
- Emergency Department, Nishichita General Hospital, Tokai, Japan
| | - Kazuma Yamakawa
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Yoshitaka Aoki
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shigeaki Inoue
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University, Tokyo, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yusuke Kawai
- Department of Nursing, Fujita Health University Hospital, Toyoake, Japan
| | - Atsushi Kawaguchi
- Division of Pediatric Critical Care, Department of Pediatrics, School of Medicine, St. Marianna University, Kawasaki, Japan
| | - Tatsuya Kawasaki
- Department of Pediatric Critical Care, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Yutaka Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University, Urayasu Hospital, Urayasu, Japan
| | - Masaaki Sakuraya
- Department of Emergency and Intensive Care Medicine, JA Hiroshima General Hospital, Hatsukaichi, Japan
| | - Shunsuke Taito
- Division of Rehabilitation, Department of Clinical Practice and Support, Hiroshima University Hospital, Hiroshima, Japan
| | - Kent Doi
- Department of Emergency and Critical Care Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Hashimoto
- Department of Infectious Diseases, Hitachi Medical Education and Research Center University of Tsukuba Hospital, Hitachi, Japan
| | - Yoshitaka Hara
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tatsuma Fukuda
- Department of Emergency and Critical Care Medicine, Toranomon Hospital, Tokyo, Japan
| | - Asako Matsushima
- Department of Emergency and Critical Care, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Moritoki Egi
- Department of Anesthesia and Intensive Care, Kyoto University Hospital, Kyoto, Japan
| | - Shigeki Kushimoto
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takehiko Oami
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuya Kikutani
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yuki Kotani
- Department of Intensive Care Medicine Kameda Medical Center, Kamogawa, Japan
| | - Gen Aikawa
- Department of Adult Health Nursing, College of Nursing, Ibaraki Christian University, Hitachi, Japan
| | - Makoto Aoki
- Division of Traumatology, National Defense Medical College Research Institute, Tokorozawa, Japan
| | - Masayuki Akatsuka
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hideki Asai
- Department of Emergency and Critical Care Medicine, Nara Medical University, Nara, Japan
| | - Toshikazu Abe
- Department of Emergency and Critical Care Medicine, Tsukuba Memorial Hospital, Tsukuba, Japan
| | - Yu Amemiya
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Ryo Ishizawa
- Department of Critical Care and Emergency Medicine, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Tadashi Ishihara
- Department of Emergency and Critical Care Medicine, Juntendo University, Urayasu Hospital, Urayasu, Japan
| | - Tadayoshi Ishimaru
- Department of Emergency Medicine, Chiba Kaihin Municipal Hospital, Chiba, Japan
| | - Yusuke Itosu
- Department of Anesthesiology, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroyasu Inoue
- Division of Physical Therapy, Department of Rehabilitation, Showa University School of Nursing and Rehabilitation Sciences, Yokohama, Japan
| | - Hisashi Imahase
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Haruki Imura
- Department of Infectious Diseases, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Naoya Iwasaki
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Noritaka Ushio
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Masatoshi Uchida
- Department of Emergency and Critical Care Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Michiko Uchi
- National Hospital Organization Ibarakihigashi National Hospital, Naka-Gun, Japan
| | - Takeshi Umegaki
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan
| | - Yutaka Umemura
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Akira Endo
- Department of Acute Critical Care Medicine, Tsuchiura Kyodo General Hospital, Tsuchiura, Japan
| | - Marina Oi
- Department of Emergency and Critical Care Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akira Ouchi
- Department of Adult Health Nursing, College of Nursing, Ibaraki Christian University, Hitachi, Japan
| | - Itsuki Osawa
- Department of Emergency and Critical Care Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Kohei Ota
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takanori Ohno
- Department of Emergency and Crical Care Medicine, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Yohei Okada
- Department of Preventive Services, Kyoto University, Kyoto, Japan
| | - Hiromu Okano
- Department of Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Yoshihito Ogawa
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Masahiro Kashiura
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Daisuke Kasugai
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken-Ichi Kano
- Department of Emergency Medicine, Fukui Prefectural Hospital, Fukui, Japan
| | - Ryo Kamidani
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Kawauchi
- Department of Critical Care and Emergency Medicine, Japanese Red Cross Maebashi Hospital, Maebashi, Japan
| | - Sadatoshi Kawakami
- Department of Anesthesiology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Daisuke Kawakami
- Department of Intensive Care Medicine, Aso Iizuka Hospital, Iizuka, Japan
| | - Yusuke Kawamura
- Department of Rehabilitation, Showa General Hospital, Tokyo, Japan
| | - Kenji Kandori
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Society Kyoto Daini Hospital , Kyoto, Japan
| | - Yuki Kishihara
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Sho Kimura
- Department of Pediatric Critical Care Medicine, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Kenji Kubo
- Department of Emergency Medicine, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
- Department of Infectious Diseases, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Tomoki Kuribara
- Department of Acute and Critical Care Nursing, School of Nursing, Sapporo City University, Sapporo, Japan
| | - Hiroyuki Koami
- Department of Emergency and Critical Care Medicine, Saga University, Saga, Japan
| | - Shigeru Koba
- Department of Critical Care Medicine, Nerima Hikarigaoka Hospital, Nerima, Japan
| | - Takehito Sato
- Department of Anesthesiology, Nagoya University Hospital, Nagoya, Japan
| | - Ren Sato
- Department of Nursing, Tokyo Medical University Hospital, Shinjuku, Japan
| | - Yusuke Sawada
- Department of Emergency Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Haruka Shida
- Data Science, Medical Division, AstraZeneca K.K, Osaka, Japan
| | - Tadanaga Shimada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Motohiro Shimizu
- Department of Intensive Care Medicine, Ryokusen-Kai Yonemori Hospital, Kagoshima, Japan
| | | | | | - Toru Shinkai
- The Advanced Emergency and Critical Care Center, Mie University Hospital, Tsu, Japan
| | - Akihito Tampo
- Department of Emergency Medicine, Asahiakwa Medical University, Asahikawa, Japan
| | - Gaku Sugiura
- Department of Critical Care and Emergency Medicine, Japanese Red Cross Maebashi Hospital, Maebashi, Japan
| | - Kensuke Sugimoto
- Department of Anesthesiology and Intensive Care, Gunma University, Maebashi, Japan
| | - Hiroshi Sugimoto
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Tomohiro Suhara
- Department of Anesthesiology, Keio University School of Medicine, Shinjuku, Japan
| | - Motohiro Sekino
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kenji Sonota
- Department of Intensive Care Medicine, Miyagi Children's Hospital, Sendai, Japan
| | - Mahoko Taito
- Department of Nursing, Hiroshima University Hospital, Hiroshima, Japan
| | - Nozomi Takahashi
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jun Takeshita
- Department of Anesthesiology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Chikashi Takeda
- Department of Anesthesia and Intensive Care, Kyoto University Hospital, Kyoto, Japan
| | - Junko Tatsuno
- Department of Nursing, Kokura Memorial Hospital, Kitakyushu, Japan
| | - Aiko Tanaka
- Department of Intensive Care, University of Fukui Hospital, Fukui, Japan
| | - Masanori Tani
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Atsushi Tanikawa
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hao Chen
- Department of Pulmonary, Yokohama City University Hospital, Yokohama, Japan
| | - Takumi Tsuchida
- Department of Anesthesiology, Hokkaido University Hospital, Sapporo, Japan
| | - Yusuke Tsutsumi
- Department of Emergency Medicine, National Hospital Organization Mito Medical Center, Ibaragi, Japan
| | | | - Ryo Deguchi
- Department of Traumatology and Critical Care Medicine, Osaka Metropolitan University Hospital, Osaka, Japan
| | - Kenichi Tetsuhara
- Department of Critical Care Medicine, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Takero Terayama
- Department of Emergency Self-Defense, Forces Central Hospital, Tokyo, Japan
| | - Yuki Togami
- Department of Acute Medicine & Critical Care Medical Center, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Takaaki Totoki
- Department of Anesthesiology, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yoshinori Tomoda
- Laboratory of Clinical Pharmacokinetics, Research and Education Center for Clinical Pharmacy, Kitasato University School of Pharmacy, Tokyo, Japan
| | - Shunichiro Nakao
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroki Nagasawa
- Department of Acute Critical Care Medicine, Shizuoka Hospital Juntendo University, Shizuoka, Japan
| | | | - Nobuto Nakanishi
- Department of Disaster and Emergency Medicine, Kobe University, Kobe, Japan
| | - Norihiro Nishioka
- Department of Emergency and Crical Care Medicine, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Mitsuaki Nishikimi
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Satoko Noguchi
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Suguru Nonami
- Department of Emergency and Critical Care Medicine, Kyoto Katsura Hospital, Kyoto, Japan
| | - Osamu Nomura
- Medical Education Development Center, Gifu University, Gifu, Japan
| | - Katsuhiko Hashimoto
- Department of Emergency and Intensive Care Medicine, Fukushima Medical University, Fukushima, Japan
| | - Junji Hatakeyama
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Yasutaka Hamai
- Department of Preventive Services, Kyoto University, Kyoto, Japan
| | - Mayu Hikone
- Department of Emergency Medicine, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Ryo Hisamune
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Tomoya Hirose
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryota Fuke
- Department of Internal Medicine, IMS Meirikai Sendai General Hospital, Sendai, Japan
| | - Ryo Fujii
- Emergency Department, Ageo Central General Hospital, Ageo, Japan
| | - Naoki Fujie
- Department of Pharmacy, Osaka Psychiatric Medical Center, Hirakata, Japan
| | - Jun Fujinaga
- Emergency and Critical Care Center, Kurashiki Central Hospital, Kurashiki, Japan
| | - Yoshihisa Fujinami
- Department of Emergency Medicine, Kakogawa Central City Hospital, Kakogawa, Japan
| | - Sho Fujiwara
- Department of Emergency Medicine, Tokyo Hikifune Hospital, Tokyo, Japan
- Department of Infectious Diseases, Tokyo Hikifune Hospital, Tokyo, Japan
| | - Hiraku Funakoshi
- Department of Emergency and Critical Care Medicine, Tokyobay Urayasu Ichikawa Medical Center, Urayasu, Japan
| | - Koichiro Homma
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku, Japan
| | - Yuto Makino
- Department of Preventive Services, Kyoto University, Kyoto, Japan
| | - Hiroshi Matsuura
- Osaka Prefectural Nakakawachi Emergency and Critical Care Center, Higashiosaka, Japan
| | - Ayaka Matsuoka
- Department of Emergency and Critical Care Medicine, Saga University, Saga, Japan
| | - Tadashi Matsuoka
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku, Japan
| | - Yosuke Matsumura
- Department of Intensive Care, Chiba Emergency and Psychiatric Medical Center, Chiba, Japan
| | - Akito Mizuno
- Department of Anesthesia and Intensive Care, Kyoto University Hospital, Kyoto, Japan
| | - Sohma Miyamoto
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Chuo-Ku, Japan
| | - Yukari Miyoshi
- Department of Emergency and Critical Care Medicine, Juntendo University, Urayasu Hospital, Urayasu, Japan
| | - Satoshi Murata
- Division of Emergency Medicine, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Teppei Murata
- Department of Cardiology Miyazaki Prefectural, Nobeoka Hospital, Nobeoka, Japan
| | | | | | - Kohei Yamada
- Department of Traumatology and Critical Care Medicine, National Defense Medical College Hospital, Saitama, Japan
| | - Hiroyuki Yamada
- Department of Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Yamamoto
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku, Japan
| | - Ryohei Yamamoto
- Center for Innovative Research for Communities and Clinical Excellence (CIRC2LE), Fukushima Medical University, Fukushima, Japan
| | - Tetsuya Yumoto
- Department of Emergency, Critical Care and Disaster Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuji Yoshida
- Department of Anesthesia and Intensive Care, Kyoto University Hospital, Kyoto, Japan
| | - Shodai Yoshihiro
- Department of Pharmaceutical Services, Hiroshima University Hospital, Hiroshima, Japan
| | - Satoshi Yoshimura
- Department of Emergency Medicine, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - Jumpei Yoshimura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Yonekura
- Department of Anesthesiology and Pain Medicine, Fujita Health University Bantane Hospital, Nagoya, Japan
| | - Yuki Wakabayashi
- Department of Nursing, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takeshi Wada
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichi Watanabe
- Department of Physical Therapy, Faculty of Rehabilitation Gifu, University of Health Science, Gifu, Japan
| | - Atsuhiro Ijiri
- Department of Traumatology and Critical Care Medicine, National Defense Medical College Hospital, Saitama, Japan
| | - Kei Ugata
- Department of Intensive Care Medicine, Matsue Red Cross Hospital, Matsue, Japan
| | - Shuji Uda
- Department of Anesthesia and Intensive Care, Kyoto University Hospital, Kyoto, Japan
| | - Ryuta Onodera
- Department of Preventive Services, Kyoto University, Kyoto, Japan
| | - Masaki Takahashi
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Nakajima
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junta Honda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsuguhiro Matsumoto
- Department of Anesthesia and Intensive Care, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
4
|
Destache CJ, Isern R, Kenny D, El-Herte R, Plambeck R, Palmer C, Inouye BS, Wong M, North EJ, Sotelo MR, Velagapudi M. Impact of Extracorporeal Membrane Oxygenation (ECMO) on Serum Concentrations of Cefepime. Antibiotics (Basel) 2024; 13:1024. [PMID: 39596718 PMCID: PMC11591452 DOI: 10.3390/antibiotics13111024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
ECMO is becoming widely used as a life-saving measure for critically ill patients. However, there is limited data on pharmacokinetics and the dosing of beta-lactam antibiotics in ECMO. In this study, we evaluated the serum concentrations of cefepime in patients on ECMO to determine the impact of ECMO circuitry and to guide therapeutic dosing. Methods: Patients 19 years or older admitted to the ICU, treated with ECMO and beta-lactam antibiotics for presumed or documented infection, were enrolled. Three blood samples (peak, midpoint, trough) were obtained before ECMO (pre-ECMO) and during ECMO (intra-ECMO) at a steady state. Results: Eight patients met inclusion criteria; six received cefepime. All patients were male. Average ± SD age was 45.8 ± 14.7. Four patients received ECMO for severe SARS-CoV-2 infection, and one each for Pneumocystis pneumonia and influenza A infection. Mean ± SD APACHE II and SOFA scores prior to ECMO were 24.6 ± 7.1 and 11.0 ± 3.9, respectively. All but one of the patients received venovenous (VV) ECMO. Cefepime 1 g every 6 h intravenously over 2 min was administered to all patients before and during ECMO. Cefepime concentrations were fit to non-compartment analysis (NCA) and area under the serum concentration-time curve averaged ± SE 211.9 ± 29.6 pre-ECMO and 329.6 ± 32.3 mg*h/L intra-ECMO, p = 0.023. No patients displayed signs of cefepime neurotoxicity. Patients received ECMO for 43.1± 30 days. All patients expired. Cefepime dosed at 1 g every 6 h intravenously appears to achieve therapeutic levels for critically ill patients on ECMO.
Collapse
Affiliation(s)
| | - Raul Isern
- School of Medicine, Creighton University, Omaha, NE 68178, USA (M.V.)
| | - Dorothy Kenny
- School of Medicine, Creighton University, Omaha, NE 68178, USA (M.V.)
| | - Rima El-Herte
- School of Medicine, Creighton University, Omaha, NE 68178, USA (M.V.)
| | - Robert Plambeck
- School of Medicine, Creighton University, Omaha, NE 68178, USA (M.V.)
| | - Catherine Palmer
- School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Brent S. Inouye
- School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Maura Wong
- School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA
| | - E. Jeffrey North
- School of Pharmacy & Health Professions, Creighton University, Omaha, NE 68178, USA
| | | | - Manasa Velagapudi
- School of Medicine, Creighton University, Omaha, NE 68178, USA (M.V.)
| |
Collapse
|
5
|
Kim M, Mahmood M, Estes LL, Wilson JW, Martin NJ, Marcus JE, Mittal A, O'Connell CR, Shah A. A narrative review on antimicrobial dosing in adult critically ill patients on extracorporeal membrane oxygenation. Crit Care 2024; 28:326. [PMID: 39367501 PMCID: PMC11453026 DOI: 10.1186/s13054-024-05101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/14/2024] [Indexed: 10/06/2024] Open
Abstract
The optimal dosing strategy of antimicrobial agents in critically ill patients receiving extracorporeal membrane oxygenation (ECMO) is unknown. We conducted comprehensive review of existing literature on effect of ECMO on pharmacokinetics and pharmacodynamics of antimicrobials, including antibacterials, antifungals, and antivirals that are commonly used in critically ill patients. We aim to provide practical guidance to clinicians on empiric dosing strategy for these patients. Finally, we discuss importance of therapeutic drug monitoring, limitations of current literature, and future research directions.
Collapse
Affiliation(s)
- Myeongji Kim
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Maryam Mahmood
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lynn L Estes
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - John W Wilson
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Joseph E Marcus
- Department of Medicine, Brooke Army Medical Center, Joint Base San Antonio-Fort Sam Houston, Fort Sam Houston, TX, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ankit Mittal
- Department of Infectious Diseases, AIG Hospitals, Hyderabad, India
| | | | - Aditya Shah
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Zhao Y, Wang H, Cheng Y, Zhang J, Zhao L. Factors Influencing Successful Weaning From Venoarterial Extracorporeal Membrane Oxygenation: A Systematic Review. J Cardiothorac Vasc Anesth 2024; 38:2446-2458. [PMID: 38969612 DOI: 10.1053/j.jvca.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/01/2024] [Accepted: 05/11/2024] [Indexed: 07/07/2024]
Abstract
With advancements in extracorporeal life support (ECLS) technologies, venoarterial extracorporeal membrane oxygenation (VA-ECMO) has emerged as a crucial cardiopulmonary support mechanism. This review explores the significance of VA-ECMO system configuration, cannulation strategies, and timing of initiation. Through an analysis of medication management strategies, complication management, and comprehensive preweaning assessments, it aims to establish a multidimensional evaluation framework to assist clinicians in making informed decisions regarding weaning from VA-ECMO, thereby ensuring the safe and effective transition of patients.
Collapse
Affiliation(s)
- Yanlong Zhao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Heru Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yihao Cheng
- Department of Cardiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jifeng Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Lei Zhao
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
7
|
Roger C. Understanding antimicrobial pharmacokinetics in critically ill patients to optimize antimicrobial therapy: A narrative review. JOURNAL OF INTENSIVE MEDICINE 2024; 4:287-298. [PMID: 39035618 PMCID: PMC11258509 DOI: 10.1016/j.jointm.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 07/23/2024]
Abstract
Effective treatment of sepsis not only demands prompt administration of appropriate antimicrobials but also requires precise dosing to enhance the likelihood of patient survival. Adequate dosing refers to the administration of doses that yield therapeutic drug concentrations at the infection site. This ensures a favorable clinical and microbiological response while avoiding antibiotic-related toxicity. Therapeutic drug monitoring (TDM) is the recommended approach for attaining these goals. However, TDM is not universally available in all intensive care units (ICUs) and for all antimicrobial agents. In the absence of TDM, healthcare practitioners need to rely on several factors to make informed dosing decisions. These include the patient's clinical condition, causative pathogen, impact of organ dysfunction (requiring extracorporeal therapies), and physicochemical properties of the antimicrobials. In this context, the pharmacokinetics of antimicrobials vary considerably between different critically ill patients and within the same patient over the course of ICU stay. This variability underscores the need for individualized dosing. This review aimed to describe the main pathophysiological changes observed in critically ill patients and their impact on antimicrobial drug dosing decisions. It also aimed to provide essential practical recommendations that may aid clinicians in optimizing antimicrobial therapy among critically ill patients.
Collapse
Affiliation(s)
- Claire Roger
- Department of Anesthesiology and Intensive Care, Pain and Emergency Medicine, Nîmes-Caremeau University Hospital, Nîmes, France
- UR UM 103 IMAGINE (Initial Management and prévention of orGan failures IN critically ill patiEnts), Faculty of Medicine, Montpellier University, Montpellier, France
| |
Collapse
|
8
|
Vazquez-Colon Z, Marcus JE, Levy E, Shah A, MacLaren G, Peek G. Infectious diseases and infection control prevention strategies in adult and pediatric population on ECMO. Perfusion 2024:2676591241249612. [PMID: 38860785 DOI: 10.1177/02676591241249612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
As survival after ECMO improves and use of ECMO support increases in both pediatric and adult population, there is a need to focus on both the morbidities and complications associated with ECMO and how to manage and prevent them. Infectious complications during ECMO often have a significant clinical impact, resulting in increased morbidity or mortality irrespective of the underlying etiology necessitating cardiorespiratory support. In this review article, we discuss the prevention, management, challenges, and differences of infectious complications in adult and pediatric patients receiving ECMO support.
Collapse
Affiliation(s)
- Zasha Vazquez-Colon
- Congenital Heart Center, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Joseph E Marcus
- Infectious Diseases Services, Department of Medicine, Brooke Army Medical Center, Joint Base San Antonio, Fort Sam Houston, TX, USA
- Department of Medicine, Uniformed Services University, Bethesda, MD
| | - Emily Levy
- Divisions of Pediatric Infectious Diseases and Pediatric Critical Care Medicine, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Aditya Shah
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| | - Graeme MacLaren
- Cardiothoracic Intensive Care Unit, National University Hospital, Singapore
- Antimicrobial Stewardship Program, Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore
| | - Giles Peek
- Congenital Heart Center, Departments of Surgery and Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Zheng L, Alshaer MH, Peloquin C, Venugopalan V, Alnuaimat HM, Converse M. Cefepime pharmacokinetics in adult extracorporeal membrane oxygenation patients. Pulm Pharmacol Ther 2024; 84:102271. [PMID: 38008397 DOI: 10.1016/j.pupt.2023.102271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/25/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND The impact of extracorporeal membrane oxygenation (ECMO) on the pharmacokinetics/dynamics (PK/PD) of beta-lactam antibiotics have not been well studied in general, but cefepime specifically has the least amount of data. We aimed to investigate whether ECMO alters the PK of cefepime in adult intensive care unit (ICU) patients. METHODS This single-center, retrospective case-control study evaluated cefepime therapeutic drug monitoring (TDM) results from ECMO patients that were matched 1:1 with TDM results in non-ECMO patients for drug regimen and renal function. The primary outcome was the difference in PK/PD of cefepime in ECMO compared with non-ECMO ICU patients. Secondary outcomes included hospital length of stay, treatment failure, superinfection, bacterial resistance, and survival to discharge. RESULTS Eighty-two patients were included with 44 matched cefepime concentrations in each group. ECMO patients had higher free maximum concentrations (fCmax) (p = 0.003), lower free minimum concentration (fCmin)/1x minimum inhibitory concentration (MIC) ratios (p = 0.040), and lower attainment of free Cmin/4x MIC (p = 0.010). There were no differences between the groups for free Cmin, time above 1xMIC or 4x MIC, and pharmacokinetic parameters (ke, half-life, and Vd). Of those who survived to discharge, hospital length of stay was longer in the ECMO group (p < 0.001). Patients on ECMO were more likely to experience treatment failure (p = 0.036). The incidence of bacterial resistance, superinfection, or survival were similar among the groups. CONCLUSION These data suggest that more aggressive empiric dosing may be warranted in patients on ECMO. Therapeutic drug monitoring and future prospective studies would provide more evidence to guide decision making regarding dose adjustments.
Collapse
Affiliation(s)
- Lily Zheng
- Department of Pharmacy Services, University of Florida Health Jacksonville North, 15255 Max Leggett Pkwy, Jacksonville, FL, USA.
| | - Mohammad H Alshaer
- Pharmacotherapy & Translational Research, University of Florida College of Pharmacy, Medical Science Bldg Rm P4 05, 1600 SW Archer Rd., Gainesville, FL, USA
| | - Charles Peloquin
- Pharmacotherapy & Translational Research, University of Florida College of Pharmacy, Medical Science Bldg Rm P4 05, 1600 SW Archer Rd., Gainesville, FL, USA
| | - Veena Venugopalan
- Pharmacotherapy & Translational Research, University of Florida College of Pharmacy, Medical Science Bldg Rm P4 05, 1600 SW Archer Rd., Gainesville, FL, USA
| | - Hassan M Alnuaimat
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida College of Medicine, 1505 SW Archer Road, Gainesville, FL, USA
| | - Maureen Converse
- Department of Pharmacy, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, USA
| |
Collapse
|
10
|
You X, Dai Q, Hu J, Yu M, Wang X, Weng B, Cheng L, Sun F. Therapeutic drug monitoring of imipenem/cilastatin and meropenem in critically ill adult patients. J Glob Antimicrob Resist 2024; 36:252-259. [PMID: 38272210 DOI: 10.1016/j.jgar.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVES To investigate the factors influencing imipenem/cilastatin (IMI) and meropenem (MEM) concentrations in critically ill adult patients and the role of these concentrations in the clinical outcome. METHODS Plasma trough concentrations of IMI and MEM were detected by high-performance liquid chromatography. A target value of 100%-time above MIC was used for the drugs. RESULTS A total of 186 patients were included, with 87 receiving IMI and 99 receiving MEM. The percentages of patients reaching the target IMI and MEM concentrations were 44.8% and 38.4%, respectively. The proportions of patients infected with drug-resistant bacteria were 57.5% and 69.7% in the IMI group and MEM group, respectively. In the multivariate analysis, the risk factors for an IMI concentration that did not reach the target were infection with drug-resistant bacteria, and those for MEM were infection with drug-resistant bacteria, estimated glomerular filtration rate, and diabetes mellitus. A total of 47.1% of patients had good outcomes in the IMI cohort, and 38.1% of patients had good outcomes in the MEM cohort. The duration of mechanical ventilation and IMI concentration were associated with ICU stay in patients in the IMI cohort, while MEM concentration and severe pneumonia affected the clinical outcome of patients in the MEM cohort. CONCLUSION Infection with drug-resistant bacteria is an important factor influencing whether IMI and MEM concentrations reach the target. Furthermore, IMI and MEM concentrations are associated with the clinical outcome, and elevated doses of IMI and MEM should be given to patients who are infected with drug-resistant bacteria.
Collapse
Affiliation(s)
- Xi You
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Qing Dai
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Mingjie Yu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaowen Wang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Bangbi Weng
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Cheng
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China.
| | - Fengjun Sun
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
11
|
Castro DM, Granton J, Fan E. Ceftobiprole and Cefiderocol for Patients on Extracorporeal Membrane Oxygenation: The Role of Therapeutic Drug Monitoring. Curr Drug Metab 2024; 25:542-546. [PMID: 39350410 DOI: 10.2174/0113892002331260240919055056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Limited data exist on therapeutic ranges for newer antimicrobials in the critically ill, with few pharmacokinetic studies including patients undergoing renal replacement therapy or extracorporeal membrane oxygenation (ECMO). CASE REPRESENTATION These interventions can potentially alter the pharmacokinetic profile of antibiotics, resulting in therapeutic failures, antimicrobial resistance, or increased toxicity. In this report, we present two ECMO patients treated with cefiderocol and ceftobiprole, where therapeutic drug monitoring (TDM) aided in the successful treatment of severe infections. Antibiotic trough concentrations in both cases were consistent with previously reported therapeutic levels in critically ill and ECMO patients, meeting minimal inhibitory concentrations recommended by the European Committee on Antimicrobial Susceptibility Testing for the respective pathogens. CONCLUSION Treatment might be suboptimal if doses are not adjusted based on physicochemical properties and extracorporeal support. In an era marked by highly resistant pathogens, these cases highlight the importance of timely access to real-time TDM for optimizing and individualizing antimicrobial treatment.
Collapse
Affiliation(s)
- Diana Morales Castro
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, University of Toronto, Toronto, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - John Granton
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, University of Toronto, Toronto, Canada
- Department of Critical Care, University Health Network, University of Toronto, Toronto, Canada
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, University of Toronto, Toronto, Canada
- Department of Critical Care, University Health Network, University of Toronto, Toronto, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Zhang H, Xu Y, Huang X, Yang S, Li R, Wu Y, Zou X, Yu Y, Shang Y. Extracorporeal membrane oxygenation in adult patients with sepsis and septic shock: Why, how, when, and for whom. JOURNAL OF INTENSIVE MEDICINE 2024; 4:62-72. [PMID: 38263962 PMCID: PMC10800772 DOI: 10.1016/j.jointm.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 01/25/2024]
Abstract
Sepsis and septic shock remain the leading causes of death in intensive care units. Some patients with sepsis fail to respond to routine treatment and rapidly progress to refractory respiratory and circulatory failure, necessitating extracorporeal membrane oxygenation (ECMO). However, the role of ECMO in adult patients with sepsis has not been fully established. According to existing studies, ECMO may be a viable salvage therapy in carefully selected adult patients with sepsis. The choice of venovenous, venoarterial, or hybrid ECMO modes is primarily determined by the patient's oxygenation and hemodynamics (distributive shock with preserved cardiac output, septic cardiomyopathy (left, right, or biventricular heart failure), or right ventricular failure caused by acute respiratory distress syndrome). Veno-venous ECMO can be used in patients with sepsis and severe acute respiratory distress syndrome when conventional mechanical ventilation fails, and early application of veno-arterial ECMO in patients with sepsis-induced refractory cardiogenic shock may be critical in improving their chances of survival. When ECMO is indicated, the choice of an appropriate mode and determination of the optimal timing of initiation and weaning are critical, particularly in an experienced ECMO center. Furthermore, some special issues, such as ECMO flow, anticoagulation, and antibiotic therapy, should be noted during the management of ECMO support.
Collapse
Affiliation(s)
- Hongling Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Department of Intensive Care Unit, Affiliated Lu'an Hospital, Anhui Medical University, Lu'an, Anhui, 237000, China
| | - Youdong Xu
- Department of Intensive Care Unit, Affiliated Lu'an Hospital, Anhui Medical University, Lu'an, Anhui, 237000, China
| | - Xin Huang
- Department of Intensive Care Unit, Affiliated Lu'an Hospital, Anhui Medical University, Lu'an, Anhui, 237000, China
| | - Shunyin Yang
- Department of Intensive Care Unit, Affiliated Lu'an Hospital, Anhui Medical University, Lu'an, Anhui, 237000, China
| | - Ruiting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yongran Wu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xiaojing Zou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
13
|
Honeycutt CC, McDaniel CG, McKnite A, Hunt JP, Whelan A, Green DJ, Watt KM. Meropenem extraction by ex vivo extracorporeal life support circuits. THE JOURNAL OF EXTRA-CORPOREAL TECHNOLOGY 2023; 55:159-166. [PMID: 38099629 PMCID: PMC10723574 DOI: 10.1051/ject/2023035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/28/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Meropenem is a broad-spectrum carbapenem-type antibiotic commonly used to treat critically ill patients infected with extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. As many of these patients require extracorporeal membrane oxygenation (ECMO) and/or continuous renal replacement therapy (CRRT), it is important to understand how these extracorporeal life support circuits impact meropenem pharmacokinetics. Based on the physicochemical properties of meropenem, it is expected that ECMO circuits will minimally extract meropenem, while CRRT circuits will rapidly clear meropenem. The present study seeks to determine the extraction of meropenem from ex vivo ECMO and CRRT circuits and elucidate the contribution of different ECMO circuit components to extraction. METHODS Standard doses of meropenem were administered to three different configurations (n = 3 per configuration) of blood-primed ex vivo ECMO circuits and serial sampling was conducted over 24 h. Similarly, standard doses of meropenem were administered to CRRT circuits (n = 4) and serial sampling was conducted over 4 h. Meropenem was administered to separate tubes primed with circuit blood to serve as controls to account for drug degradation. Meropenem concentrations were quantified, and percent recovery was calculated for each sample. RESULTS Meropenem was cleared at a similar rate in ECMO circuits of different configurations (n = 3) and controls (n = 6), with mean (standard deviation) recovery at 24 h of 15.6% (12.9) in Complete circuits, 37.9% (8.3) in Oxygenator circuits, 47.1% (8.2) in Pump circuits, and 20.6% (20.6) in controls. In CRRT circuits (n = 4) meropenem was cleared rapidly compared with controls (n = 6) with a mean recovery at 2 h of 2.36% (1.44) in circuits and 93.0% (7.1) in controls. CONCLUSION Meropenem is rapidly cleared by hemodiafiltration during CRRT. There is minimal adsorption of meropenem to ECMO circuit components; however, meropenem undergoes significant degradation and/or plasma metabolism at physiological conditions. These ex vivo findings will advise pharmacists and physicians on the appropriate dosing of meropenem.
Collapse
Affiliation(s)
| | | | - Autumn McKnite
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy Salt Lake City Utah USA
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah Medical Center Salt Lake City Utah USA
| | - J. Porter Hunt
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah Medical Center Salt Lake City Utah USA
| | - Aviva Whelan
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah Medical Center Salt Lake City Utah USA
- Division of Critical Care, Department of Pediatrics, University of Utah Medical Center Salt Lake City Utah USA
| | - Danielle J. Green
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah Medical Center Salt Lake City Utah USA
- Division of Critical Care, Department of Pediatrics, University of Utah Medical Center Salt Lake City Utah USA
| | - Kevin M. Watt
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah Medical Center Salt Lake City Utah USA
- Division of Critical Care, Department of Pediatrics, University of Utah Medical Center Salt Lake City Utah USA
| |
Collapse
|
14
|
Barreto EF, Chang J, Rule AD, Mara KC, Meade LA, Paul J, Jannetto PJ, Athreya AP, Scheetz MH. Impact of Various Estimated Glomerular Filtration Rate Equations on the Pharmacokinetics of Meropenem in Critically Ill Adults. Crit Care Explor 2023; 5:e1011. [PMID: 38107538 PMCID: PMC10723891 DOI: 10.1097/cce.0000000000001011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
IMPORTANCE Meropenem dosing is typically guided by creatinine-based estimated glomerular filtration rate (eGFR), but creatinine is a suboptimal GFR marker in the critically ill. OBJECTIVES This study aimed to develop and qualify a population pharmacokinetic model for meropenem in critically ill adults and to determine which eGFR equation based on creatinine, cystatin C, or both biomarkers best improves model performance. DESIGN SETTING AND PARTICIPANTS This single-center study evaluated adults hospitalized in an ICU who received IV meropenem from 2018 to 2022. Patients were excluded if they had acute kidney injury, were on kidney replacement therapy, or were treated with extracorporeal membrane oxygenation. Two cohorts were used for population pharmacokinetic modeling: a richly sampled development cohort (n = 19) and an opportunistically sampled qualification cohort (n = 32). MAIN OUTCOMES AND MEASURES A nonlinear mixed-effects model was developed using parametric methods to estimate meropenem serum concentrations. RESULTS The best-fit structural model in the richly sampled development cohort was a two-compartment model with first-order elimination. The final model included time-dependent weight normalized to a 70-kg adult as a covariate for volume of distribution (Vd) and time-dependent eGFR for clearance. Among the eGFR equations evaluated, eGFR based on creatinine and cystatin C expressed in mL/min best-predicted meropenem clearance. The mean (se) Vd in the final model was 18.2 (3.5) liters and clearance was 11.5 (1.3) L/hr. Using the development cohort as the Bayesian prior, the opportunistically sampled cohort demonstrated good accuracy and low bias. CONCLUSIONS AND RELEVANCE Contemporary eGFR equations that use both creatinine and cystatin C improved meropenem population pharmacokinetic model performance compared with creatinine-only or cystatin C-only eGFR equations in adult critically ill patients.
Collapse
Affiliation(s)
| | - Jack Chang
- Department of Pharmacy Practice, Chicago College of Pharmacy, Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, IL
- Department of Pharmacy, Northwestern Medicine, Chicago, IL
| | - Andrew D Rule
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
- Division of Epidemiology, Mayo Clinic, Rochester, MN
| | - Kristin C Mara
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN
| | - Laurie A Meade
- Anesthesia Clinical Research Unit, Mayo Clinic, Rochester, MN
| | - Johar Paul
- Anesthesia Clinical Research Unit, Mayo Clinic, Rochester, MN
| | - Paul J Jannetto
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Arjun P Athreya
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Marc H Scheetz
- Department of Pharmacy Practice, Chicago College of Pharmacy, Pharmacometrics Center of Excellence, Midwestern University, Downers Grove, IL
- Department of Pharmacy, Northwestern Medicine, Chicago, IL
| |
Collapse
|
15
|
Telles JP, Morales R, Yamada CH, Marins TA, D'Amaro Juodinis V, Sztajnbok J, Silva M, Bassetti BR, Albiero J, Tuon FF. Optimization of Antimicrobial Stewardship Programs Using Therapeutic Drug Monitoring and Pharmacokinetics-Pharmacodynamics Protocols: A Cost-Benefit Review. Ther Drug Monit 2023; 45:200-208. [PMID: 36622029 DOI: 10.1097/ftd.0000000000001067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/08/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE Antimicrobial stewardship programs are important for reducing antimicrobial resistance because they can readjust antibiotic prescriptions to local guidelines, switch intravenous to oral administration, and reduce hospitalization times. Pharmacokinetics-pharmacodynamics (PK-PD) empirically based prescriptions and therapeutic drug monitoring (TDM) programs are essential for antimicrobial stewardship, but there is a need to fit protocols according to cost benefits. The cost benefits can be demonstrated by reducing toxicity and hospital stay, decreasing the amount of drug used per day, and preventing relapses in infection. Our aim was to review the data available on whether PK-PD empirically based prescriptions and TDM could improve the cost benefits of an antimicrobial stewardship program to decrease global hospital expenditures. METHODS A narrative review based on PubMed search with the relevant studies of vancomycin, aminoglycosides, beta-lactams, and voriconazole. RESULTS TDM protocols demonstrated important cost benefit for patients treated with vancomycin, aminoglycosides, and voriconazole mainly due to reduce toxicities and decreasing the hospital length of stay. In addition, PK-PD strategies that used infusion modifications to meropenem, piperacillin-tazobactam, ceftazidime, and cefepime, such as extended or continuous infusion, demonstrated important cost benefits, mainly due to reducing daily drug needs and lengths of hospital stays. CONCLUSIONS TDM protocols and PK-PD empirically based prescriptions improve the cost-benefits and decrease the global hospital expenditures.
Collapse
Affiliation(s)
- João Paulo Telles
- - AC Camargo Cancer Center, Infectious Diseases Department, São Paulo
- - Laboratory of Emerging Infectious Diseases, Pontifical Catholic University of Paraná, Curitiba
| | - Ronaldo Morales
- - Clinical Pharmacokinetics Center, School of Pharmaceutical Sciences, University of São Paulo
- - Pediatric Intensive Care Unit, Department of Pediatrics, Hospital Sírio-Libanês. São Paulo
| | - Carolina Hikari Yamada
- - Laboratory of Emerging Infectious Diseases, Pontifical Catholic University of Paraná, Curitiba
- - Hospital Universitário Evangélico Mackenzie, Department of Infectious Diseases, Curitiba
| | - Tatiana A Marins
- - Hospital Israelita Albert Einstein, Department of Clinical Pharmacy, São Paulo
| | | | - Jaques Sztajnbok
- - Instituto de Infectologia Emílio Ribas, São Paulo
- - Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (ICr/HC-FMUSP)
| | - Moacyr Silva
- - Hospital Israelita Albert Einstein, Department of Infection Prevention and Control, São Paulo
| | - Bil Randerson Bassetti
- - Hospital Santa Rita de Cássia, Department of Infectious Disease and Infection Control, Vitória ; and
| | - James Albiero
- - Universidade Estadual de Maringá, Pharmacy Department, Programa de Pós-Graduação em Assistência Farmacêutica, Maringá, Brazil
| | - Felipe Francisco Tuon
- - Laboratory of Emerging Infectious Diseases, Pontifical Catholic University of Paraná, Curitiba
| |
Collapse
|
16
|
Shekar K, Abdul-Aziz MH, Cheng V, Burrows F, Buscher H, Cho YJ, Corley A, Diehl A, Gilder E, Jakob SM, Kim HS, Levkovich BJ, Lim SY, McGuinness S, Parke R, Pellegrino V, Que YA, Reynolds C, Rudham S, Wallis SC, Welch SA, Zacharias D, Fraser JF, Roberts JA. Antimicrobial Exposures in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation. Am J Respir Crit Care Med 2023; 207:704-720. [PMID: 36215036 DOI: 10.1164/rccm.202207-1393oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Data suggest that altered antimicrobial concentrations are likely during extracorporeal membrane oxygenation (ECMO). Objectives: The primary aim of this analysis was to describe the pharmacokinetics (PKs) of antimicrobials in critically ill adult patients receiving ECMO. Our secondary aim was to determine whether current antimicrobial dosing regimens achieve effective and safe exposure. Methods: This study was a prospective, open-labeled, PK study in six ICUs in Australia, New Zealand, South Korea, and Switzerland. Serial blood samples were collected over a single dosing interval during ECMO for 11 antimicrobials. PK parameters were estimated using noncompartmental methods. Adequacy of antimicrobial dosing regimens were evaluated using predefined concentration exposures associated with maximal clinical outcomes and minimal toxicity risks. Measurements and Main Results: We included 993 blood samples from 85 patients. The mean age was 44.7 ± 14.4 years, and 61.2% were male. Thirty-eight patients (44.7%) were receiving renal replacement therapy during the first PK sampling. Large variations (coefficient of variation of ⩾30%) in antimicrobial concentrations were seen leading to more than fivefold variations in all PK parameters across all study antimicrobials. Overall, 70 (56.5%) concentration profiles achieved the predefined target concentration and exposure range. Target attainment rates were not significantly different between modes of ECMO and renal replacement therapy. Poor target attainment was observed across the most frequently used antimicrobials for ECMO recipients, including for oseltamivir (33.3%), piperacillin (44.4%), and vancomycin (27.3%). Conclusions: Antimicrobial PKs were highly variable in critically ill patients receiving ECMO, leading to poor target attainment rates. Clinical trial registered with the Australian New Zealand Clinical Trials Registry (ACTRN12612000559819).
Collapse
Affiliation(s)
- Kiran Shekar
- Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Mohd H Abdul-Aziz
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Vesa Cheng
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Hergen Buscher
- Department of Intensive Care Medicine, St Vincent's Hospital, Sydney, New South Wales, Australia
- St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Amanda Corley
- Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- School of Nursing and Midwifery, Griffith University, Nathan, Queensland, Australia
| | - Arne Diehl
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
- School of Public Health and Preventive Medicine and
| | - Eileen Gilder
- Experiential Development and Graduate Education and Centre for Medicines Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Stephan M Jakob
- Cardiothoracic and Vascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
| | - Hyung-Sook Kim
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bianca J Levkovich
- Department of Pharmacy, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sung Yoon Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Shay McGuinness
- School of Nursing, The University of Auckland, Auckland, New Zealand
| | - Rachael Parke
- Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; and
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Vincent Pellegrino
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
- School of Public Health and Preventive Medicine and
| | - Yok-Ai Que
- Cardiothoracic and Vascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
| | - Claire Reynolds
- Department of Intensive Care Medicine, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Sam Rudham
- Department of Intensive Care Medicine, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Steven C Wallis
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | | | - David Zacharias
- Cardiothoracic and Vascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
| | - John F Fraser
- Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; and
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| |
Collapse
|
17
|
Peitz GJ, Murry DJ. The Influence of Extracorporeal Membrane Oxygenation on Antibiotic Pharmacokinetics. Antibiotics (Basel) 2023; 12:500. [PMID: 36978367 PMCID: PMC10044059 DOI: 10.3390/antibiotics12030500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is becoming increasingly utilized to support critically ill patients who experience life-threatening cardiac or pulmonary compromise. The provision of this intervention poses challenges related to its complications and the optimization of medication therapy. ECMO's mechanical circulatory support is facilitated via various devices and equipment that have been shown to sequester lipophilic- and protein-bound medications, including anti-infectives. Since infectious outcomes are dependent on achieving specific anti-infectives' pharmacodynamic targets, the understanding of these medications' pharmacokinetic parameters in the setting of ECMO is important to clinicians. This narrative, non-systematic review evaluated the findings of the most recent and robust pharmacokinetic analyses for commonly utilized anti-infectives in the setting of ECMO. The data from available literature indicates that anti-infective pharmacokinetic parameters are similar to those observed in other non-ECMO critically ill populations, but considerable variability in the findings was observed between patients, thus prompting further evaluation of therapeutic drug monitoring in this complex population.
Collapse
Affiliation(s)
- Gregory J. Peitz
- Nebraska Medicine, Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daryl J. Murry
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice and Science, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
18
|
Kang S, Yang S, Hahn J, Jang JY, Min KL, Wi J, Chang MJ. Dose Optimization of Meropenem in Patients on Veno-Arterial Extracorporeal Membrane Oxygenation in Critically Ill Cardiac Patients: Pharmacokinetic/Pharmacodynamic Modeling. J Clin Med 2022; 11:jcm11226621. [PMID: 36431106 PMCID: PMC9693387 DOI: 10.3390/jcm11226621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Background: Our objective was to determine an optimal dosage regimen of meropenem in patients receiving veno-arterial extracorporeal membrane oxygenation (V-A ECMO) by developing a pharmacokinetic/pharmacodynamic (PK/PD) model. Methods: This was a prospective cohort study. Blood samples were collected during ECMO (ECMO-ON) and after ECMO (ECMO-OFF). The population pharmacokinetic model was developed using nonlinear mixed-effects modeling. A Monte Carlo simulation was used (n = 10,000) to assess the probability of target attainment. Results: Thirteen adult patients on ECMO receiving meropenem were included. Meropenem pharmacokinetics was best fitted by a two-compartment model. The final pharmacokinetic model was: CL (L/h) = 3.79 × 0.44CRRT, central volume of distribution (L) = 2.4, peripheral volume of distribution (L) = 8.56, and intercompartmental clearance (L/h) = 21.3. According to the simulation results, if more aggressive treatment is needed (100% fT > MIC target), dose increment or extended infusion is recommended. Conclusions: We established a population pharmacokinetic model for meropenem in patients receiving V-A ECMO and revealed that it is not necessary to adjust the dosage depending on V-A ECMO. Instead, more aggressive treatment is needed than that of standard treatment, and higher dosage is required without continuous renal replacement therapy (CRRT). Also, extended infusion could lead to better target attainment, and we could provide updated nomograms of the meropenem dosage regimen.
Collapse
Affiliation(s)
- Soyoung Kang
- Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea
| | - Seungwon Yang
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
- Department of Regulatory Science, College of Pharmacy, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Jongsung Hahn
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Korea
| | - June Young Jang
- Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University, Incheon 21983, Korea
| | - Kyoung Lok Min
- Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University, Incheon 21983, Korea
| | - Jin Wi
- Division of Cardiology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Korea
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: or (J.W.); (M.J.C.); Tel.: +82-32-460-3663 (J.W.); +82-32-749-4517 (M.J.C.); Fax: +82-32-749-4105 (M.J.C.)
| | - Min Jung Chang
- Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon 21983, Korea
- Correspondence: or (J.W.); (M.J.C.); Tel.: +82-32-460-3663 (J.W.); +82-32-749-4517 (M.J.C.); Fax: +82-32-749-4105 (M.J.C.)
| |
Collapse
|
19
|
Patel JS, Kooda K, Igneri LA. A Narrative Review of the Impact of Extracorporeal Membrane Oxygenation on the Pharmacokinetics and Pharmacodynamics of Critical Care Therapies. Ann Pharmacother 2022; 57:706-726. [PMID: 36250355 DOI: 10.1177/10600280221126438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: Extracorporeal membrane oxygenation (ECMO) utilization is increasing on a global scale, and despite technological advances, minimal standardized approaches to pharmacotherapeutic management exist. This objective was to create a comprehensive review for medication dosing in ECMO based on the most current evidence. Data Sources: A literature search of PubMed was performed for all pertinent articles prior to 2022. The following search terms were utilized: ECMO, pharmacokinetics, pharmacodynamics, sedation, analgesia, antiepileptic, anticoagulation, antimicrobial, antifungal, nutrition. Retrospective cohort studies, case-control studies, case series, case reports, and ex vivo investigations were reviewed. Study Selection and Data Extraction: PubMed (1975 through July 2022) was the database used in the literature search. Non-English studies were excluded. Search terms included both drug class categories, specific drug names, ECMO, and pharmacokinetics. Data Synthesis: Medications with high protein binding (>70%) and high lipophilicity (logP > 2) are associated with circuit sequestration and the potential need for dose adjustment. Volume of distribution changes with ECMO may also impact dosing requirements of common critical care medications. Lighter sedation targets and analgosedation may help reduce sedative and analgesia requirements, whereas higher antiepileptic dosing is recommended. Vancomycin is minimally affected by the ECMO circuit and recommendations for dosing in critically ill adults are reasonable. Anticoagulation remains challenging as optimal aPTT goals have not been established. Relevance to Patient Care and Clinical Practice: This review describes the anticipated impacts of ECMO circuitry on sedatives, analgesics, anticoagulation, antiepileptics, antimicrobials, antifungals, and nutrition support and provides recommendations for drug therapy management. Conclusions: Medication pharmacokinetic/pharmacodynamic parameters should be considered when determining the potential impact of the ECMO circuit on attainment of therapeutic effect and target serum drug concentrations, and should guide therapy choices and/or dose adjustments when data are not available.
Collapse
Affiliation(s)
| | - Kirstin Kooda
- Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
20
|
Zou D, Ji M, Du T, Wang Q, Zhang H, Yu H, Hou N. The application of antimicrobials in VAP patients requiring ECMO supportive treatment. Front Pharmacol 2022; 13:918175. [PMID: 36210821 PMCID: PMC9538395 DOI: 10.3389/fphar.2022.918175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Dongna Zou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mei Ji
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tingting Du
- Department of Pharmacy, Jinan Second People's Hospital, Jinan, China
| | - Qian Wang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Haiwen Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hengcai Yu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ning Hou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Ning Hou,
| |
Collapse
|
21
|
Tiseo G, Brigante G, Giacobbe DR, Maraolo AE, Gona F, Falcone M, Giannella M, Grossi P, Pea F, Rossolini GM, Sanguinetti M, Sarti M, Scarparo C, Tumbarello M, Venditti M, Viale P, Bassetti M, Luzzaro F, Menichetti F, Stefani S, Tinelli M. Diagnosis and management of infections caused by multidrug-resistant bacteria: guideline endorsed by the Italian Society of Infection and Tropical Diseases (SIMIT), the Italian Society of Anti-Infective Therapy (SITA), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Association of Clinical Microbiologists (AMCLI) and the Italian Society of Microbiology (SIM). Int J Antimicrob Agents 2022; 60:106611. [PMID: 35697179 DOI: 10.1016/j.ijantimicag.2022.106611] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 02/08/2023]
Abstract
Management of patients with infections caused by multidrug-resistant organisms is challenging and requires a multidisciplinary approach to achieve successful clinical outcomes. The aim of this paper is to provide recommendations for the diagnosis and optimal management of these infections, with a focus on targeted antibiotic therapy. The document was produced by a panel of experts nominated by the five endorsing Italian societies, namely the Italian Association of Clinical Microbiologists (AMCLI), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Society of Microbiology (SIM), the Italian Society of Infectious and Tropical Diseases (SIMIT) and the Italian Society of Anti-Infective Therapy (SITA). Population, Intervention, Comparison and Outcomes (PICO) questions about microbiological diagnosis, pharmacological strategies and targeted antibiotic therapy were addressed for the following pathogens: carbapenem-resistant Enterobacterales; carbapenem-resistant Pseudomonas aeruginosa; carbapenem-resistant Acinetobacter baumannii; and methicillin-resistant Staphylococcus aureus. A systematic review of the literature published from January 2011 to November 2020 was guided by the PICO strategy. As data from randomised controlled trials (RCTs) were expected to be limited, observational studies were also reviewed. The certainty of evidence was classified using the GRADE approach. Recommendations were classified as strong or conditional. Detailed recommendations were formulated for each pathogen. The majority of available RCTs have serious risk of bias, and many observational studies have several limitations, including small sample size, retrospective design and presence of confounders. Thus, some recommendations are based on low or very-low certainty of evidence. Importantly, these recommendations should be continually updated to reflect emerging evidence from clinical studies and real-world experience.
Collapse
Affiliation(s)
- Giusy Tiseo
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Gioconda Brigante
- Clinical Pathology Laboratory, ASST Valle Olona, Busto Arsizio, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Floriana Gona
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Maddalena Giannella
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paolo Grossi
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; SSD Clinical Pharmacology, Department for Integrated Infectious Risk Management, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy, and Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Maurizio Sanguinetti
- Microbiology Unit, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Università Cattolica del Sacro Cuore, Largo 'A. Gemelli', Rome, Italy
| | - Mario Sarti
- Clinical Microbiology Laboratory, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudio Scarparo
- Clinical Microbiology Laboratory, Angel's Hospital, AULSS3 Serenissima, Mestre, Venice, Italy
| | - Mario Tumbarello
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Mario Venditti
- Policlinico 'Umberto I', Department of Public Health and Infectious Diseases, 'Sapienza' University of Rome, Rome, Italy
| | - Pierluigi Viale
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Luzzaro
- Clinical Microbiology and Virology Unit, A. Manzoni Hospital, Lecco, Italy
| | - Francesco Menichetti
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy.
| | - Stefania Stefani
- Medical Molecular Microbiology and Antibiotic Resistance Laboratory (MMARLab), Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Marco Tinelli
- Infectious Diseases Consultation Service, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
22
|
Gomez F, Veita J, Laudanski K. Antibiotics and ECMO in the Adult Population-Persistent Challenges and Practical Guides. Antibiotics (Basel) 2022; 11:338. [PMID: 35326801 PMCID: PMC8944696 DOI: 10.3390/antibiotics11030338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is an emerging treatment modality associated with a high frequency of antibiotic use. However, several covariables emerge during ECMO implementation, potentially jeopardizing the success of antimicrobial therapy. These variables include but are not limited to: the increased volume of distribution, altered clearance, and adsorption into circuit components, in addition to complex interactions of antibiotics in critical care illness. Furthermore, ECMO complicates the assessment of antibiotic effectiveness as fever, or other signs may not be easily detected, the immunogenicity of the circuit affects procalcitonin levels and other inflammatory markers while disrupting the immune system. We provided a review of pharmacokinetics and pharmacodynamics during ECMO, emphasizing practical application and review of patient-, illness-, and ECMO hardware-related factors.
Collapse
Affiliation(s)
- Francisco Gomez
- Department of Neurology, University of Missouri, Columbia, MO 65021, USA;
| | - Jesyree Veita
- Society for Healthcare Innovation, Philadelphia, PA 19146, USA;
| | - Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19146, USA
- Leonard Davis Institute for HealthCare Economics, University of Pennsylvania, Philadelphia, PA 19146, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19146, USA
| |
Collapse
|
23
|
Gorham J, Taccone FS, Hites M. Ensuring target concentrations of antibiotics in critically ill patients through dose adjustment. Expert Opin Drug Metab Toxicol 2022; 18:177-187. [PMID: 35311440 DOI: 10.1080/17425255.2022.2056012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Antibiotics are commonly prescribed in critical care, and given the large variability of pharmacokinetic (PK) parameters in these patients, drug PK frequently varies during therapy with the risk of either treatment failure or toxicity. Therefore, adequate antibiotic dosing in critically ill patients is very important. AREAS COVERED This review provides an overview of the basic principles of PK and pharmacodynamics of antibiotics and the main patient and pathogen characteristics that may affect the dosage of antibiotics and different approaches to adjust doses. EXPERT OPINION Dose adjustment should be done for aminoglycosides and glycopeptides based on daily drug concentration monitoring. For glycopeptides, in particular vancomycin, the residual concentration (Cres) should be assessed daily. For beta-lactam antibiotics, a loading dose should be administered, followed by three different possible approaches, as TDM is rarely available in most centers: 1) antibiotic regimens should be adapted according to renal function and other risk factors; 2) nomograms or software can be used to calculate daily dosing; 3) TDM should be performed 24-48 h after the initiation of treatment; however, the results are required within 24 hours to appropriately adjust dosage regimens. Drug dosing should be reduced or increased according to the TDM results.
Collapse
Affiliation(s)
- Julie Gorham
- Department of intensive care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of intensive care, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Maya Hites
- Clinic of Infectious diseases, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
24
|
Advances in clinical antibiotic testing. Adv Clin Chem 2022; 110:73-116. [DOI: 10.1016/bs.acc.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Kim YK, Kim HS, Park S, Kim HI, Lee SH, Lee DH. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1353-1364. [PMID: 35224630 PMCID: PMC9047688 DOI: 10.1093/jac/dkac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/05/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yong Kyun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Hyoung Soo Kim
- Department of Thoracic and Cardiovascular Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Sunghoon Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Hwan-il Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Sun Hee Lee
- Department of Thoracic and Cardiovascular Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Dong-Hwan Lee
- Department of Clinical Pharmacology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
- Corresponding author. E-mail:
| |
Collapse
|
26
|
Population Pharmacokinetics and Dosing Optimization of Piperacillin-Tazobactam in Critically Ill Patients on Extracorporeal Membrane Oxygenation and the Influence of Concomitant Renal Replacement Therapy. Microbiol Spectr 2021; 9:e0063321. [PMID: 34937189 PMCID: PMC8694146 DOI: 10.1128/spectrum.00633-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Critical illness and extracorporeal circulation, such as extracorporeal membrane oxygenation (ECMO) and continuous renal replacement therapy (CRRT), may alter the pharmacokinetics of piperacillin-tazobactam. We aimed to develop a population pharmacokinetic model of piperacillin-tazobactam in critically ill patients during ECMO or CRRT and investigate the optimal dosage regimen needed to achieve ≥90% of patients attaining the piperacillin pharmacodynamic target of 100% of dosage time above MIC of 16 mg/L. This prospective observational study included 26 ECMO patients, of which 13 patients received continuous venovenous hemodiafiltration (CVVHDF). A population pharmacokinetic model was developed using nonlinear mixed-effects models, and Monte Carlo simulations were performed to evaluate creatinine clearance (CrCL) and infusion method in relation to the probability of target attainment (PTA) in four patient groups according to combination of ECMO and CVVHDF. A total of 244 plasma samples were collected. In a two-compartment model, clearance decreased during ECMO and CVVHDF contributed to an increase in the volume of distribution. The range of PTA reduction as CrCL increased was greater in the order of intermittent bolus, extended infusion, and continuous infusion method. Continuous infusion should be considered in critically ill patients with CrCL of ≥60 mL/min, and at least 12, 16, and 20 g/day was required for CrCL of <40, 40 to 60, and 60 to 90 mL/min, respectively, regardless of ECMO or CVVHDF. In patients with CrCL of ≥90 mL/min, even a continuous infusion of 24 g/day was insufficient to achieve adequate PTA. Therefore, further research on permissible high continuous infusion dose focused on the risk of toxicity is required. (This trial has been registered at ClinicalTrials.gov under registration no. NCT02581280, December 1, 2014.) IMPORTANCE To the best of our knowledge, this is the first large prospective pharmacokinetic/pharmacodynamic (PK/PD) study of piperacillin-tazobactam in ECMO patients. We used piperacillin-tazobactam plasma concentration data from four different cases (concomitant use of ECMO and CVVHDF, receiving ECMO only, weaned from ECMO and receiving CVVHDF, and weaned from ECMO and not receiving CVVHDF) to provide preliminary insights into the incremental effects of critical illness, ECMO, and CVVHDF on PK. Our analysis revealed that volume of distribution increased in patients on CVVHDF and clearance decreased during ECMO and as creatinine clearance was reduced. When targeting 100% fT>MIC (16 mg/L, clinical breakpoint for Pseudomonas aeruginosa), continuous infusions would have achieved the highest percentage of target attainment compared to intermittent bolus or extended infusion if the total daily dose was the same. Continuous infusion should be considered in critically ill patients with creatinine clearance of ≥60 mL/min, regardless of ECMO or CVVHDF.
Collapse
|
27
|
Zhang Y, Hu H, Zhang Q, Ou Q, Zhou H, Sha T, Zeng Z, Wu J, Lu J, Chen Z. Effects of ex vivo Extracorporeal Membrane Oxygenation Circuits on Sequestration of Antimicrobial Agents. Front Med (Lausanne) 2021; 8:748769. [PMID: 34926498 PMCID: PMC8671752 DOI: 10.3389/fmed.2021.748769] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Objectives: Our ex vivo study was designed to determine the sequestration of teicoplanin, tigecycline, micafungin, meropenem, polymyxin B, caspofungin, cefoperazone sulbactam, and voriconazole in extracorporeal membrane oxygenation (ECMO) circuits. Methods: Simulated closed-loop ECMO circuits were prepared using 2 types of blood-primed ECMO. After the circulation was stabilized, the study drugs were injected into the circuit. Blood samples were collected at 2, 5, 15, 30 min, 1, 3, 6, 12, and 24 h after injection. Drug concentrations were measured by high-performance liquid chromatography-tandem mass spectrometry. Control groups were stored at 4°C after 3, 6, 12, and 24 h immersing in a water bath at 37°C to observe spontaneous drug degradation. Results: Twenty-six samples were analyzed. The average drug recoveries from the ECMO circuits and control groups at 24 h relative to baseline were 67 and 89% for teicoplanin, 100 and 145% for tigecycline, 67 and 99% for micafungin, 45 and 75% for meropenem, 62 and 60% for polymyxin B, 83 and 85% for caspofungin, 79 and 98% for cefoperazone, 75 and 87% for sulbactam, and 60 and 101% for voriconazole, respectively. Simple linear regression showed no significant correlation between lipophilicity (r2 = 0.008, P = 0.225) or the protein binding rate (r2 = 0.168, P = 0.479) of drugs and the extent of drug loss in the ECMO circuits. Conclusions: In the two ECMO circuits, meropenem and voriconazole were significantly lost, cefoperazone was slightly lost, while tigecycline and caspofungin were not lost. Drugs with high lipophilicity were lost more in the Maquet circuit than in the Sorin circuit. This study needs more in vivo studies with larger samples for further confirmation, and it suggests that therapeutic drug concentration monitoring should be strongly considered during ECMO.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbin Hu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Zhang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Ou
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huayou Zhou
- Department of Blood Transfusion, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tong Sha
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingrui Lu
- Department of Mass Spectrometry, The Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Mazzeffi MA, Rao VK, Dodd-O J, Del Rio JM, Hernandez A, Chung M, Bardia A, Bauer RM, Meltzer JS, Satyapriya S, Rector R, Ramsay JG, Gutsche J. Intraoperative Management of Adult Patients on Extracorporeal Membrane Oxygenation: An Expert Consensus Statement From the Society of Cardiovascular Anesthesiologists-Part II, Intraoperative Management and Troubleshooting. Anesth Analg 2021; 133:1478-1493. [PMID: 34559091 DOI: 10.1213/ane.0000000000005733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the second part of the Society of Cardiovascular Anesthesiologists Extracorporeal Membrane Oxygenation (ECMO) working group expert consensus statement, venoarterial (VA) and venovenous (VV) ECMO management and troubleshooting in the operating room are discussed. Expert consensus statements are provided about intraoperative monitoring, anesthetic drug dosing, and management of intraoperative problems in VA and VV ECMO patients.
Collapse
Affiliation(s)
- Michael A Mazzeffi
- From the Department of Anesthesiology and Critical Care Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Vidya K Rao
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alton, California
| | - Jeffrey Dodd-O
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jose Mauricio Del Rio
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mabel Chung
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard University School of Medicine, Boston, Massachusetts
| | - Amit Bardia
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut
| | - Rebecca M Bauer
- Department of Anesthesiology, University of Massachusetts School of Medicine, Worcester, Massachusetts
| | - Joseph S Meltzer
- Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles School of Medicine, Los Angeles, California
| | - Sree Satyapriya
- Department of Anesthesiology, Ohio State University School of Medicine, Columbus, Ohio
| | - Raymond Rector
- Department of Surgery, Division of Cardiothoracic Surgery, University of Maryland Medical Center, Baltimore, Maryland
| | - James G Ramsay
- Department of Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, California
| | - Jacob Gutsche
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Mazzeffi MA, Rao VK, Dodd-O J, Del Rio JM, Hernandez A, Chung M, Bardia A, Bauer RM, Meltzer JS, Satyapriya S, Rector R, Ramsay JG, Gutsche J. Intraoperative Management of Adult Patients on Extracorporeal Membrane Oxygenation: an Expert Consensus Statement From the Society of Cardiovascular Anesthesiologists- Part II, Intraoperative Management and Troubleshooting. J Cardiothorac Vasc Anesth 2021; 35:3513-3527. [PMID: 34774253 DOI: 10.1053/j.jvca.2021.07.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michael A Mazzeffi
- Department of Anesthesiology and Critical Care Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia.
| | - Vidya K Rao
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alton, California
| | - Jeffrey Dodd-O
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jose Mauricio Del Rio
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mabel Chung
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard University School of Medicine, Boston, Massachusetts
| | - Amit Bardia
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut
| | - Rebecca M Bauer
- Department of Anesthesiology, University of Massachusetts School of Medicine, Worcester, Massachusetts
| | - Joseph S Meltzer
- Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles School of Medicine, Los Angeles, California
| | - Sree Satyapriya
- Department of Anesthesiology, Ohio State University School of Medicine, Columbus, Ohio
| | - Raymond Rector
- Department of Surgery, Division of Cardiothoracic Surgery, University of Maryland Medical Center, Baltimore, Maryland
| | - James G Ramsay
- Department of Anesthesia and Perioperative Care, University of California San Francisco School of Medicine, San Francisco, California
| | - Jacob Gutsche
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Polain A, Gorham J, Romeo I, Belliato M, Peluso L, Partipilo F, Njimi H, Brasseur A, Jacobs F, Creteur J, Hites M, Taccone FS. Prediction of Insufficient Beta-Lactam Concentrations in Extracorporeal Membranous Oxygenation Patients. Microorganisms 2021; 9:2219. [PMID: 34835344 PMCID: PMC8625763 DOI: 10.3390/microorganisms9112219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The aim of this study was to identify predictors of insufficient beta-lactam concentrations in patients undergoing extracorporeal membrane oxygenation (ECMO). METHODS Retrospective analysis of all patients receiving ECMO support and treated with ceftazidime or cefepime (CEF), piperacillin/tazobactam (TZP), or meropenem (MEM). Trough drug concentrations (Cmin) were measured before the subsequent dose, according to the decision of the attending physician. Insufficient drug concentrations were identified if Cmin was below the clinical breakpoint of Pseudomonas aeruginosa. RESULTS A total of 222 Cmin (CEF, n = 41; TZP, n = 85; MEM, n = 96) from 110 patients were included; insufficient concentrations were observed in 26 (12%) antibiotic assessments; 21 (81%) of those occurred during MEM therapy. Insufficient Cmin were associated with a shorter time from initiation of antibiotics to measurement, a lower single dose of antibiotic, a higher creatinine clearance (CrCL), lower sequential organ failure assessment (SOFA) scores, and less use of continuous renal replacement therapy (CRRT) when compared to others. CONCLUSIONS Insufficient broad-spectrum beta-lactam concentrations were observed in 12% of drug measurement during ECMO therapy. Higher than recommended drug regimens could be considered in the very early phase of therapy and in those patients with augmented renal clearance and with less severe organ dysfunction.
Collapse
Affiliation(s)
- Amandine Polain
- Deparment of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (A.P.); (J.G.); (I.R.); (L.P.); (H.N.); (A.B.); (J.C.)
| | - Julie Gorham
- Deparment of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (A.P.); (J.G.); (I.R.); (L.P.); (H.N.); (A.B.); (J.C.)
| | - Immacolata Romeo
- Deparment of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (A.P.); (J.G.); (I.R.); (L.P.); (H.N.); (A.B.); (J.C.)
- UOC Anestesia e Rianimazione 2 Cardiopolmonare, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Mirko Belliato
- UOC Anestesia e Rianimazione 2 Cardiopolmonare, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Lorenzo Peluso
- Deparment of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (A.P.); (J.G.); (I.R.); (L.P.); (H.N.); (A.B.); (J.C.)
| | | | - Hassane Njimi
- Deparment of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (A.P.); (J.G.); (I.R.); (L.P.); (H.N.); (A.B.); (J.C.)
| | - Alexandre Brasseur
- Deparment of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (A.P.); (J.G.); (I.R.); (L.P.); (H.N.); (A.B.); (J.C.)
| | - Frederique Jacobs
- Clinic of Infectious Diseases, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (F.J.); (M.H.)
| | - Jacques Creteur
- Deparment of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (A.P.); (J.G.); (I.R.); (L.P.); (H.N.); (A.B.); (J.C.)
| | - Maya Hites
- Clinic of Infectious Diseases, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (F.J.); (M.H.)
| | - Fabio Silvio Taccone
- Deparment of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (A.P.); (J.G.); (I.R.); (L.P.); (H.N.); (A.B.); (J.C.)
| |
Collapse
|
31
|
Population Pharmacokinetics of Piperacillin and Tazobactam in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation: an ASAP ECMO Study. Antimicrob Agents Chemother 2021; 65:e0143821. [PMID: 34460303 DOI: 10.1128/aac.01438-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Our study aimed to describe the population pharmacokinetics (PK) of piperacillin and tazobactam in patients on extracorporeal membrane oxygenation (ECMO), with and without renal replacement therapy (RRT). We also aimed to use dosing simulations to identify the optimal dosing strategy for these patient groups. Serial piperacillin and tazobactam plasma concentrations were measured with data analyzed using a population PK approach that included staged testing of patient and treatment covariates. Dosing simulations were conducted to identify the optimal dosing strategy that achieved piperacillin target exposures of 50% and 100% fraction of time free drug concentration is above MIC (%fT>MIC) and toxic exposures of greater than 360 mg/liter. The tazobactam target of percentage of time free concentrations of >2 mg/liter was also assessed. Twenty-seven patients were enrolled, of which 14 patients were receiving concurrent RRT. Piperacillin and tazobactam were both adequately described by two-compartment models, with body mass index, creatinine clearance, and RRT as significant predictors of PK. There were no substantial differences between observed PK parameters and published parameters from non-ECMO patients. Based on dosing simulations, a 4.5-g every 6 hours regimen administered over 4 hours achieves high probabilities of efficacy at a piperacillin MIC of 16 mg/liter while exposing patients to a <3% probability of toxic concentrations. In patients receiving ECMO and RRT, a frequency reduction to every 12 hours dosing lowers the probability of toxic concentrations, although this remains at 7 to 9%. In ECMO patients, piperacillin and tazobactam should be dosed in line with standard recommendations for the critically ill.
Collapse
|
32
|
Cheng V, Abdul-Aziz MH, Roberts JA. Applying Antimicrobial Pharmacokinetic Principles for Complex Patients: Critically Ill Adult Patients Receiving Extracorporeal Membrane Oxygenation and Renal Replacement Therapy. Curr Infect Dis Rep 2021. [DOI: 10.1007/s11908-021-00757-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Fillâtre P, Lemaitre F, Nesseler N, Schmidt M, Besset S, Launey Y, Maamar A, Daufresne P, Flecher E, Le Tulzo Y, Tadie JM, Tattevin P. Impact of extracorporeal membrane oxygenation (ECMO) support on piperacillin exposure in septic patients: a case-control study. J Antimicrob Chemother 2021; 76:1242-1249. [PMID: 33569597 DOI: 10.1093/jac/dkab031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES To describe the impact of extracorporeal membrane oxygenation (ECMO) devices on piperacillin exposure in ICU patients. METHODS This observational, prospective, multicentre, case-control study was performed in the ICUs of two tertiary care hospitals in France. ECMO patients with sepsis treated with piperacillin/tazobactam were enrolled. Control patients were matched according to SOFA score and creatinine clearance. The pharmacokinetics of piperacillin were described based on a population pharmacokinetic model, calculating the proportion of time the piperacillin plasma concentration was above 64 mg/L (i.e. 4× MIC breakpoint for Pseudomonas aeruginosa). RESULTS Forty-two patients were included. Median (IQR) age was 60 years (49-66), SOFA score was 11 (9-14) and creatinine clearance was 47 mL/min (5-95). There was no significant difference in the proportion of time piperacillin concentrations were ≥64 mg/L in patients treated with ECMO and controls during the first administration (P = 0.184) or at steady state (P = 0.309). Following the first administration, 36/42 (86%) patients had trough piperacillin concentrations <64 mg/L. Trough concentrations at steady state were similar in patients with ECMO and controls (P = 0.535). Creatinine clearance ≥40 mL/min was independently associated with piperacillin trough concentration <64 mg/L at steady state [OR = 4.3 (95% CI 1.1-17.7), P = 0.043], while ECMO support was not [OR = 0.5 (95% CI 0.1-2.1), P = 0.378]. CONCLUSIONS ECMO support has no impact on piperacillin exposure. ICU patients with sepsis are frequently underexposed to piperacillin, which suggests that therapeutic drug monitoring should be strongly recommended for severe infections.
Collapse
Affiliation(s)
- P Fillâtre
- St Brieuc Hospital, Réanimation Polyvalente, F-22000 St Brieuc, France
| | - F Lemaitre
- Univ Rennes, Rennes University Hospital, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - N Nesseler
- Rennes University Hospital, Service de Réanimation de Chirurgie Cardiothoracique et de Chirurgie Vasculaire, F-35000 Rennes, France.,Univ Rennes, Inra, Inserm, Institut NUMECAN - UMR_A 1341, UMR_S 1241, CIC 1414, F35000 Rennes, France
| | - M Schmidt
- Sorbonne Université, Institute of Cardiometabolism and Nutrition, APHP, Pitié-Salpêtrière Hospital, Medical Intensive Care Unit, Paris, France
| | - S Besset
- Louis Mourier Hospital, Médecine Intensive-Réanimation, AP-HP, F92700 Colombes, France
| | - Y Launey
- Univ Rennes, Inra, Inserm, Institut NUMECAN - UMR_A 1341, UMR_S 1241, CIC 1414, F35000 Rennes, France.,Rennes University Hospital, Surgical Critical Care Unit, Department of Anaesthesia, Critical Care and Perioperative Medicine, F-35033 Rennes, France
| | - A Maamar
- Rennes University Hospital, Infectious Diseases and Intensive Care Unit, F-35033 Rennes, France.,Univ Rennes, Faculté de Médecine, Biosit, F-35043 Rennes, France.,Univ Rennes, Inserm-CIC-1414, IFR 140, F-35033 Rennes, France
| | - P Daufresne
- Rennes University Hospital, Haematology Unit, F-35033 Rennes, France
| | - E Flecher
- Rennes University Hospital, Department of Thoracic and Cardiovascular Surgery, F-35033 Rennes, France.,Univ Rennes, Inserm U1099, Signal and Image Treatment Laboratory (LTSI), F-35033 Rennes, France
| | - Y Le Tulzo
- Rennes University Hospital, Infectious Diseases and Intensive Care Unit, F-35033 Rennes, France.,Univ Rennes, Faculté de Médecine, Biosit, F-35043 Rennes, France.,Univ Rennes, Inserm-CIC-1414, IFR 140, F-35033 Rennes, France
| | - J M Tadie
- Rennes University Hospital, Infectious Diseases and Intensive Care Unit, F-35033 Rennes, France.,Univ Rennes, Faculté de Médecine, Biosit, F-35043 Rennes, France.,Univ Rennes, Inserm-CIC-1414, IFR 140, F-35033 Rennes, France
| | - P Tattevin
- Rennes University Hospital, Infectious Diseases and Intensive Care Unit, F-35033 Rennes, France.,Univ Rennes, Faculté de Médecine, Biosit, F-35043 Rennes, France.,Univ Rennes, Inserm-CIC-1414, IFR 140, F-35033 Rennes, France
| |
Collapse
|
34
|
Duceppe MA, Kanji S, Do AT, Ruo N, Cavayas YA, Albert M, Robert-Halabi M, Zavalkoff S, Dupont P, Samoukovic G, Williamson DR. Pharmacokinetics of Commonly Used Antimicrobials in Critically Ill Adults During Extracorporeal Membrane Oxygenation: A Systematic Review. Drugs 2021; 81:1307-1329. [PMID: 34224115 DOI: 10.1007/s40265-021-01557-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Adequate dosing of antimicrobials is critical to properly treat infections and limit development of resistance and adverse effects. Limited guidance exists for antimicrobial dosing adjustments in patients requiring extracorporporeal membrane oxygenation (ECMO) therapy. A systematic review was conducted to delineate the pharmacokinetics (PK) and pharmacodynamics (PD) of antimicrobials in critically ill adult patients requiring ECMO. METHODS Medline, EMBASE, Global Health, and All EBM Reviews databases were searched. Grey literature was examined. All studies reporting PK/PD parameters of antimicrobials in critically ill adults treated with ECMO were included, except for case reports and congress abstracts. Ex vivo studies were included. Two independent reviewers applied the inclusion and exclusion criteria. Reviewers were then paired to independently abstract data and evaluate methodological quality of studies using the ROBINS-I tool and the compliance with ClinPK guidelines. Patients' and studies' characteristics, key PK/PD findings, details of ECMO circuits and co-treatments were summarized qualitatively. Dosing recommendations were formulated based on data from controlled studies. RESULTS Thirty-two clinical studies were included; most were observational and uncontrolled. Fourteen ex vivo studies were analysed. Information on patient characteristics and co-treatments was often missing. The effect of ECMO on PK/PD parameters of antimicrobials varied depending on the studied drugs. Few dosing recommendations could be formulated given the lack of good quality data. CONCLUSION Limited data exist on the PK/PD of antimicrobials during ECMO therapy. Rigorously designed and well powered populational PK studies are required to establish empiric dosing guidelines for antimicrobials in patients requiring ECMO support. PROSPERO REGISTRATION NUMBER CRD42018099992 (Registered: July 24th 2018).
Collapse
Affiliation(s)
- Marc-Alexandre Duceppe
- Department of Pharmacy, McGill University Health Centre, 1001 Boul. Décarie, Local C-RC 6004, Montreal, QC, H4A 3J1, Canada.
| | - Salmaan Kanji
- Department of Pharmacy, The Ottawa Hospital, Ottawa, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Faculté de Pharmacie, Université de Montréal, Montreal, Canada
| | - Anh Thu Do
- Department of Pharmacy, McGill University Health Centre, 1001 Boul. Décarie, Local C-RC 6004, Montreal, QC, H4A 3J1, Canada
| | - Ni Ruo
- Department of Pharmacy, McGill University Health Centre, 1001 Boul. Décarie, Local C-RC 6004, Montreal, QC, H4A 3J1, Canada
| | - Yiorgos Alexandros Cavayas
- Department of Medicine, Division of Critical Care, Hôpital du Sacré-Coeur de Montréal Research Centre, Montreal, Canada.,Department of Surgery, Division of Critical Care, Montreal Heart Institute, Montreal, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, Canada
| | - Martin Albert
- Department of Medicine, Division of Critical Care, Hôpital du Sacré-Coeur de Montréal Research Centre, Montreal, Canada.,Department of Surgery, Division of Critical Care, Montreal Heart Institute, Montreal, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, Canada
| | - Maxime Robert-Halabi
- Department of Medicine, Division of Cardiology, Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Samara Zavalkoff
- Department of Pediatrics, Division of Pediatric Critical Care, McGill University Health Centre, Montreal, Canada.,Faculty of Medicine, McGill University, Montreal, Canada
| | - Patrice Dupont
- Bibliothèque de la santé, Université de Montréal, Montreal, Canada
| | - Gordan Samoukovic
- Faculty of Medicine, McGill University, Montreal, Canada.,Department of Surgery, Division of Critical Care, McGill University Health Centre, Montreal, Canada
| | - David R Williamson
- Faculté de Pharmacie, Université de Montréal, Montreal, Canada.,Department of Pharmacy, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada
| |
Collapse
|
35
|
Jaruratanasirikul S, Boonpeng A, Nawakitrangsan M, Samaeng M. NONMEM population pharmacokinetics and Monte Carlo dosing simulations of imipenem in critically ill patients with life-threatening severe infections during support with or without extracorporeal membrane oxygenation in an intensive care unit. Pharmacotherapy 2021; 41:572-597. [PMID: 34080708 DOI: 10.1002/phar.2597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 11/11/2022]
Abstract
STUDY OBJECTIVES The objectives of this study were (i) to determine the population pharmacokinetic (PK) of imipenem in critically ill patients with life-threatening severe infections, (ii) to investigate the impact of extracorporeal membrane oxygenation (ECMO) on the population PK of imipenem during support with ECMO compared to those without ECMO support, and (iii) to assess the probability of target attainment (PTA) for finding the optimal dosage regimens of imipenem in critically ill patients with life-threatening severe infections. DESIGN Open-label, PK study. SETTING Academic tertiary care medical center. PATIENTS Fifty critically ill patients with or without ECMO by pooling data from previously published studiesand unpublished data from 14 patients. INTERVENTION AND MEASUREMENTS The population PK of imipenem was determined using NONMEM and a Monte Carlo simulation was performed to determine the PTAs of achieving 40% and 75% exposure times during which the plasma drug concentrations remained above the MIC. MAIN RESULTS The values of volume of distribution and total clearance were 30.5 L and 13.3 L/h, respectively. The ECMO circuit did not show a significant influence on the PK parameters of imipenem. For pathogens with a MIC of 4 mg/L, the PTA target of 75% fT>MIC in patients with normal renal function was achieved when the imipenem was administered by a 4-h infusion of 1 g q6h. CONCLUSION The ECMO circuit had little effect on enhancing the PK changes of imipenem that had already occurred in these patients. A high dosage of imipenem may be required for achieving the PK/pharmacodynamic targets against less susceptible pathogens, however, the dosage regimens in patients with renal impairment may not need to be as high as those required in patients with normal renal function. ClinicalTrials.gov: NCT03858387.
Collapse
Affiliation(s)
- Sutep Jaruratanasirikul
- Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Apinya Boonpeng
- School of Pharmaceutical Sciences, University of Phayao, Muang, Thailand
| | - Monchana Nawakitrangsan
- Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Maseetoh Samaeng
- Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
36
|
Gijsen M, Dreesen E, Annaert P, Nicolai J, Debaveye Y, Wauters J, Spriet I. Meropenem Pharmacokinetics and Target Attainment in Critically Ill Patients Are Not Affected by Extracorporeal Membrane Oxygenation: A Matched Cohort Analysis. Microorganisms 2021; 9:microorganisms9061310. [PMID: 34208553 PMCID: PMC8234236 DOI: 10.3390/microorganisms9061310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022] Open
Abstract
Existing evidence is inconclusive whether meropenem dosing should be adjusted in patients receiving extracorporeal membrane oxygenation (ECMO). Therefore, the aim of this observational matched cohort study was to evaluate the effect of ECMO on pharmacokinetic (PK) variability and target attainment (TA) of meropenem. Patients admitted to the intensive care unit (ICU) simultaneously treated with meropenem and ECMO were eligible. Patients were matched 1:1, based on renal function and body weight, with non-ECMO ICU patients. Meropenem blood sampling was performed over one or two dosing intervals. Population PK modelling was performed using NONMEM7.5. TA was defined as free meropenem concentrations >2 or 8 mg/L (i.e., 1 or 4× minimal inhibitory concentration, respectively) throughout the whole dosing interval. In total, 25 patients were included, contributing 27 dosing intervals. The overall TA was 56% and 26% for the 2 mg/L and 8 mg/L target, respectively. Population PK modelling identified estimated glomerular filtration rate according to the Chronic Kidney Disease Epidemiology equation and body weight, but not ECMO, as significant predictors. In conclusion, TA of meropenem was confirmed to be poor under standard dosing in critically ill patients but was not found to be influenced by ECMO. Future studies should focus on applying dose optimisation strategies for meropenem based on renal function, regardless of ECMO.
Collapse
Affiliation(s)
- Matthias Gijsen
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (E.D.); (I.S.)
- Pharmacy Department, UZ Leuven, 3000 Leuven, Belgium
- Correspondence:
| | - Erwin Dreesen
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (E.D.); (I.S.)
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (P.A.); (J.N.)
- BioNotus, 2845 Niel, Belgium
| | - Johan Nicolai
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (P.A.); (J.N.)
- Development Science, UCB Biopharma SRL, 1420 Braine-l’Alleud, Belgium
| | - Yves Debaveye
- Laboratory for Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium;
| | - Joost Wauters
- Medical Intensive Care Unit, UZ Leuven, 3000 Leuven, Belgium;
- Laboratory for Clinical Infectious and Inflammatory Diseases, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Isabel Spriet
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (E.D.); (I.S.)
- Pharmacy Department, UZ Leuven, 3000 Leuven, Belgium
| |
Collapse
|
37
|
Cies JJ, Nikolos P, Moore WS, Giliam N, Low T, Marino D, Deacon J, Enache A, Chopra A. Oxygenator impact on meropenem/vaborbactam in extracorporeal membrane oxygenation circuits. Perfusion 2021; 37:729-737. [PMID: 34034594 DOI: 10.1177/02676591211018985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION To determine the oxygenator impact on alterations of meropenem (MEM)/vaborbactam (VBR) in a contemporary neonatal/pediatric (1/4-inch) and adolescent/adult (3/8-inch) extra corporeal membrane oxygenation (ECMO) circuit including the Quadrox-i® oxygenator. METHODS 1/4-inch and 3/8-inch, simulated closed-loop ECMO circuits were prepared with a Quadrox-i pediatric and Quadrox-i adult oxygenator and blood primed. Additionally, 1/4-inch and 3/8-inch circuits were also prepared without an oxygenator in series. A one-time dose of MEM/VBR was administered into the circuits and serial pre- and post-oxygenator concentrations were obtained at 5 minutes, 1, 2, 3, 4, 5, 6, 8, 12, and 24-hour time points. MEM/VBR was also maintained in a glass vial and samples were taken from the vial at the same time periods for control purposes to assess for spontaneous drug degradation. RESULTS For the 1/4-inch circuit, there was an approximate mean 55% MEM loss with the oxygenator in series and a mean 33%-40% MEM loss without an oxygenator in series at 24 hours. For the 3/8-inch circuit, there was an approximate mean 70% MEM loss with the oxygenator in series and a mean 30%-38% MEM loss without an oxygenator in series at 24 hours. For both the 1/4-inch circuit and 3/8-inch circuits with and without an oxygenator, there was <10% VBR loss for the duration of the experiment. CONCLUSIONS This ex-vivo investigation demonstrated substantial MEM loss within an ECMO circuit with an oxygenator in series with both sizes of the Quadrox-i oxygenator at 24 hours and no significant VBR loss. Further evaluations with multiple dose in-vitro and in-vivo investigations are needed before specific MEM/VBR dosing recommendations can be made for clinical application with ECMO.
Collapse
Affiliation(s)
- Jeffrey J Cies
- The Center for Pediatric Pharmacotherapy LLC, Pottstown, PA, USA.,St. Christopher's Hospital for Children, Philadelphia, PA, USA.,Drexel University College of Medicine, Philadelphia, PA, USA
| | - Peter Nikolos
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, NY, USA.,New York Presbyterian Weill Cornell Medical Center, New York, NY, USA
| | - Wayne S Moore
- The Center for Pediatric Pharmacotherapy LLC, Pottstown, PA, USA
| | - Nadji Giliam
- St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Tracy Low
- St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Daniel Marino
- St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Jillian Deacon
- St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Adela Enache
- Atlantic Diagnostic Laboratories, Bensalem, PA, USA
| | - Arun Chopra
- The Center for Pediatric Pharmacotherapy LLC, Pottstown, PA, USA.,NYU Langone Medical Center, New York, NY, USA.,NYU School of Medicine, New York, NY, USA
| |
Collapse
|
38
|
Schießer S, Hitzenbichler F, Kees MG, Kratzer A, Lubnow M, Salzberger B, Kees F, Dorn C. Measurement of Free Plasma Concentrations of Beta-Lactam Antibiotics: An Applicability Study in Intensive Care Unit Patients. Ther Drug Monit 2021; 43:264-270. [PMID: 33086362 DOI: 10.1097/ftd.0000000000000827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The antibacterial effect of antibiotics is linked to the free drug concentration. This study investigated the applicability of an ultrafiltration method to determine free plasma concentrations of beta-lactam antibiotics in ICU patients. METHODS Eligible patients included adult ICU patients treated with ceftazidime (CAZ), meropenem (MEM), piperacillin (PIP)/tazobactam (TAZ), or flucloxacillin (FXN) by continuous infusion. Up to 2 arterial blood samples were drawn at steady state. Patients could be included more than once if they received another antibiotic. Free drug concentrations were determined by high-performance liquid chromatography with ultraviolet detection after ultrafiltration, using a method that maintained physiological conditions (pH 7.4/37°C). Total drug concentrations were determined to calculate the unbound fraction. In a post-hoc analysis, free concentrations were compared with the target value of 4× the epidemiological cut-off value (ECOFF) for Pseudomonas aeruginosa as a worst-case scenario for empirical therapy with CAZ, MEM or PIP/tazobactam and against methicillin-sensitive Staphylococcus aureus for targeted therapy with FXN. RESULTS Fifty different antibiotic treatment periods in 38 patients were evaluated. The concentrations of the antibiotics showed a wide range because of the fixed dosing regimen in a mixed population with variable kidney function. The mean unbound fractions (fu) of CAZ, MEM, and PIP were 102.5%, 98.4%, and 95.7%, with interpatient variability of <6%. The mean fu of FXN was 11.6%, with interpatient variability of 39%. It was observed that 2 of 12 free concentrations of CAZ, 1 of 40 concentrations of MEM, and 11 of 23 concentrations of PIP were below the applied target concentration of 4 × ECOFF for P. aeruginosa. All concentrations of FXN (9 samples from 6 patients) were >8 × ECOFF for methicillin-sensitive Staphylococcus aureus. CONCLUSIONS For therapeutic drug monitoring purposes, measuring total or free concentrations of CAZ, MEM, or PIP is seemingly adequate. For highly protein-bound beta-lactams such as FXN, free concentrations should be favored in ICU patients with prevalent hypoalbuminemia.
Collapse
Affiliation(s)
- Selina Schießer
- Departments of Infection Prevention and Infectious Diseases and
| | | | | | | | - Matthias Lubnow
- Department of Internal Medicine II, University Hospital Regensburg
| | | | - Frieder Kees
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
39
|
Steffens NA, Zimmermann ES, Nichelle SM, Brucker N. Meropenem use and therapeutic drug monitoring in clinical practice: a literature review. J Clin Pharm Ther 2021; 46:610-621. [PMID: 33533509 DOI: 10.1111/jcpt.13369] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/01/2021] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Meropenem, a carbapenem antibiotic, is widely prescribed for the treatment of life-threatening infections. The main parameter associated with its therapeutic success is the percentage of time that the levels remain above the minimum inhibitory concentration. Inadequate levels of meropenem can lead to therapeutic failure and increase the possibility of microbial resistance. The employment of strategies involving dose regimens and drug pharmacodynamics has become increasingly important to optimize therapies. In the present study, we conducted a review with the purpose of assembling information about the clinical use of meropenem and therapeutic drug monitoring. METHODS A literature review emphasizing the application of therapeutic drug monitoring (TDM) of meropenem in clinical practice has been done. To identify articles related to the topic, we performed a standardized search from January 21, 2020 to December 21, 2020, using specific descriptors in PubMed, Lilacs and Embase. RESULTS AND DISCUSSION In total, 35 studies were included in the review. The daily dose of meropenem commonly ranged from 3 to 6 g/day. Critically ill patients and those with impaired renal function appear to be the most suitable patients for the application of meropenem TDM, in order to guide therapy. We observed that most of the studies recommend TDM and that, in nine locations, the TDM of meropenem and of other beta-lactams is a routine practice. TDM data can help to maximize the clinical outcomes of the treatment with meropenem. It can also improve the patient care by providing suitable levels of meropenem, guiding the most appropriate dose regimens, which is the main parameter associated with therapeutic success. WHAT IS NEW AND CONCLUSION The findings from this review suggest that the therapeutic monitoring of meropenem can be beneficial, since it adjusts the treatment and aids clinical outcomes. It does so by indicating the appropriate dosage and preventing failure, toxicity and possible antimicrobial resistance. The multidisciplinary effort, basic knowledge and communication among the medical team are also essential.
Collapse
Affiliation(s)
- Nadine A Steffens
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Estevan S Zimmermann
- Center for Pharmacometrics & Systems Pharmacology, College of Pharmacy, University of Florida at Lake Nona, Orlando, FL, USA
| | - Sabrina M Nichelle
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Natália Brucker
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.,Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
40
|
Wang Y, Li Z, Chen W, Yan G, Wang G, Lu G, Chen C. Pharmacokinetics of meropenem in children with sepsis undergoing extracorporeal life support: A prospective observational study. J Clin Pharm Ther 2021; 46:754-761. [PMID: 33476064 PMCID: PMC8248190 DOI: 10.1111/jcpt.13344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 01/28/2023]
Abstract
What is known and Objective Meropenem, a broad‐spectrum carbapenem, is frequently used to treat severe bacterial infections in critically ill children. Recommendations for meropenem doses in adult infections are available; however, few studies have been published regarding the use of meropenem in children with sepsis, especially in those receiving continuous renal replacement therapy (CRRT) and extracorporeal membrane oxygenation (ECMO). We aimed to investigate the pharmacokinetic (PK) parameters of meropenem in children with sepsis receiving extracorporeal life support (ECLS). Methods This was a prospective observational clinical study of children with sepsis receiving ECMO or CRRT in the paediatric intensive care unit (PICU) of a children's hospital. The enrolled children received 20 mg/kg meropenem infusion over 1 hour, every 8 hours, and were grouped into children receiving ECMO, children receiving CRRT and children receiving neither ECMO nor CRRT. Plasma meropenem concentrations were determined using a validated high‐performance liquid chromatography‐tandem mass spectrometry (HPLC‐MS/MS). The key PK parameters were determined using the non‐compartmental approach. Results and discussion Twenty‐seven patients were finally enrolled. The eCLCR of the CRRT group was lower than that of the ECMO group. The values of elimination half‐life (t1/2), area under the plasma concentration‐time curve (AUCtau), area under the plasma concentration‐time curve from time zero to infinity (AUC0‐∞), and total clearance (CL) in the ECMO group were not different from those of the other groups (all p > 0.05). However, the AUCtau (p = 0.0137) and AUC0‐∞ (p = 0.0234) significantly decreased after filtration through a hemofiltration membrane in patients receiving CRRT. What is new and Conclusion No significant alterations in the PK parameters of meropenem occurred in children with sepsis administered ECMO and/or CRRT. Further investigations including PK modelling could provide evidence for appropriate meropenem dosing regimens during ECLS administration.
Collapse
Affiliation(s)
- Yixue Wang
- PICU of Children's Hospital of Fudan University, Shanghai, China
| | - Zhiping Li
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, Shanghai, China
| | - Weiming Chen
- PICU of Children's Hospital of Fudan University, Shanghai, China
| | - Gangfeng Yan
- PICU of Children's Hospital of Fudan University, Shanghai, China
| | - Guangfei Wang
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, Shanghai, China
| | - Guoping Lu
- PICU of Children's Hospital of Fudan University, Shanghai, China
| | - Chao Chen
- NICU of Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
41
|
Pharmacokinetics and Monte Carlo Dosing Simulations of Imipenem in Critically Ill Patients with Life-Threatening Severe Infections During Support with Extracorporeal Membrane Oxygenation. Eur J Drug Metab Pharmacokinet 2020; 45:735-747. [PMID: 32886347 PMCID: PMC7471576 DOI: 10.1007/s13318-020-00643-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Background Extracorporeal membrane oxygenation (ECMO), a cardiopulmonary bypass device, has been found to increase the profound pathophysiological changes associated with life-threatening severe infections in patients with multiple comorbidities, which results in alterations of pharmacokinetic patterns for antibiotics. Objectives The aims of this study were (1) to determine the pharmacokinetics of imipenem and (2) to assess the probability of target attainment (PTA) for imipenem in critically ill patients with life-threatening severe infections during support with ECMO. Methods The pharmacokinetic studies were carried out following administration of 0.5 g of imipenem every 6 h on the 4th dose of drug administration in 10 patients and a Monte Carlo simulation was performed to determine the PTA of achieving 40% exposure time during which the plasma drug concentrations remained above minimum inhibitory concentration (T > MIC) and 80% T > MIC. Results The median values of volume of distribution and total clearance (CL) of imipenem in these patients were 13.98 L and 9.78 L/h, respectively. A high PTA (≥ 90%) for a target of 80% with a MIC of 4 μg/mL in patients with CLCR 60–120 mL/min and flow rate of ECMO circuit 3–5.5 L/min was observed when imipenem was administered by a 4-h infusion of 1 g every 6 h. Conclusions A high dosage regimen such as 1 g every 6 h of imipenem may be required to achieve pharmacodynamic targets against less susceptible pathogens in this patient population. ClinicalTrial.gov Identifier NCT03776305, date of registration: 11 December 2018. Electronic supplementary material The online version of this article (10.1007/s13318-020-00643-3) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Kühn D, Metz C, Seiler F, Wehrfritz H, Roth S, Alqudrah M, Becker A, Bracht H, Wagenpfeil S, Hoffmann M, Bals R, Hübner U, Geisel J, Lepper PM, Becker SL. Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: a prospective, observational single-center study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:664. [PMID: 33239110 PMCID: PMC7689974 DOI: 10.1186/s13054-020-03397-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Effective antimicrobial treatment is key to reduce mortality associated with bacterial sepsis in patients on intensive care units (ICUs). Dose adjustments are often necessary to account for pathophysiological changes or renal replacement therapy. Extracorporeal membrane oxygenation (ECMO) is increasingly being used for the treatment of respiratory and/or cardiac failure. However, it remains unclear whether dose adjustments are necessary to avoid subtherapeutic drug levels in septic patients on ECMO support. Here, we aimed to evaluate and comparatively assess serum concentrations of continuously applied antibiotics in intensive care patients being treated with and without ECMO. METHODS Between October 2018 and December 2019, we prospectively enrolled patients on a pneumological ICU in southwest Germany who received antibiotic treatment with piperacillin/tazobactam, ceftazidime, meropenem, or linezolid. All antibiotics were applied using continuous infusion, and therapeutic drug monitoring of serum concentrations (expressed as mg/L) was carried out using high-performance liquid chromatography. Target concentrations were defined as fourfold above the minimal inhibitory concentration (MIC) of susceptible bacterial isolates, according to EUCAST breakpoints. RESULTS The final cohort comprised 105 ICU patients, of whom 30 were treated with ECMO. ECMO patients were significantly younger (mean age: 47.7 vs. 61.2 years; p < 0.001), required renal replacement therapy more frequently (53.3% vs. 32.0%; p = 0.048) and had an elevated ICU mortality (60.0% vs. 22.7%; p < 0.001). Data on antibiotic serum concentrations derived from 112 measurements among ECMO and 186 measurements from non-ECMO patients showed significantly lower median serum concentrations for piperacillin (32.3 vs. 52.9; p = 0.029) and standard-dose meropenem (15.0 vs. 17.8; p = 0.020) in the ECMO group. We found high rates of insufficient antibiotic serum concentrations below the pre-specified MIC target among ECMO patients (piperacillin: 48% vs. 13% in non-ECMO; linezolid: 35% vs. 15% in non-ECMO), whereas no such difference was observed for ceftazidime and meropenem. CONCLUSIONS ECMO treatment was associated with significantly reduced serum concentrations of specific antibiotics. Future studies are needed to assess the pharmacokinetic characteristics of antibiotics in ICU patients on ECMO support.
Collapse
Affiliation(s)
- Dennis Kühn
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany.,Department of Internal Medicine V - Pneumology, Allergology and Intensive Care Medicine, Saarland University Medical Center, Homburg, Germany
| | - Carlos Metz
- Department of Internal Medicine V - Pneumology, Allergology and Intensive Care Medicine, Saarland University Medical Center, Homburg, Germany
| | - Frederik Seiler
- Department of Internal Medicine V - Pneumology, Allergology and Intensive Care Medicine, Saarland University Medical Center, Homburg, Germany
| | - Holger Wehrfritz
- Department of Internal Medicine V - Pneumology, Allergology and Intensive Care Medicine, Saarland University Medical Center, Homburg, Germany
| | - Sophie Roth
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Mohammad Alqudrah
- Department of Internal Medicine V - Pneumology, Allergology and Intensive Care Medicine, Saarland University Medical Center, Homburg, Germany
| | - André Becker
- Department of Internal Medicine V - Pneumology, Allergology and Intensive Care Medicine, Saarland University Medical Center, Homburg, Germany
| | - Hendrik Bracht
- Department of Anaesthesiology and Critical Care Medicine, University Hospital of Ulm, Ulm, Germany
| | - Stefan Wagenpfeil
- Department of Medical Biometry, Epidemiology and Medical Informatics, Saarland University, Homburg, Germany
| | - Mathias Hoffmann
- Hospital Pharmacy, Saarland University Medical Center, Homburg, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pneumology, Allergology and Intensive Care Medicine, Saarland University Medical Center, Homburg, Germany
| | - Ulrich Hübner
- Department of Clinical Chemistry and Laboratory Medicine, Homburg, Germany
| | - Jürgen Geisel
- Department of Clinical Chemistry and Laboratory Medicine, Homburg, Germany
| | - Philipp M Lepper
- Department of Internal Medicine V - Pneumology, Allergology and Intensive Care Medicine, Saarland University Medical Center, Homburg, Germany.
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany.
| |
Collapse
|
43
|
Delattre IK, Hites M, Laterre PF, Dugernier T, Spapen H, Wallemacq PE, Jacobs F, Taccone FS. What is the optimal loading dose of broad-spectrum β-lactam antibiotics in septic patients? Results from pharmacokinetic simulation modelling. Int J Antimicrob Agents 2020; 56:106113. [PMID: 32721604 DOI: 10.1016/j.ijantimicag.2020.106113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/25/2020] [Accepted: 07/19/2020] [Indexed: 01/15/2023]
Abstract
Optimal loading doses of β-lactams to rapidly achieve adequate drug concentrations in critically ill patients are unknown. This was a post-hoc analysis of a prospective study that evaluated broad-spectrum β-lactams [piperacillin (PIP), ceftazidime (CAZ), cefepime (FEP) and meropenem (MEM)] pharmacokinetics (PKs) in patients with sepsis or septic shock (n = 88). Monte Carlo simulation was performed for 1000 virtual patients using specific sets of covariates for various dosing regimens and different durations of administration. Pharmacodynamic (PD) targets were considered as drug concentrations exceeding at least 50% of time above four times the minimum inhibitory concentration (T>4 × MIC) of Pseudomonas aeruginosa, according to EUCAST criteria, for PIP, 70%T>4 × MIC for CAZ and FEP and 40%T>4 × MIC for MEM. The probability of target attainment (PTA) was derived by calculating the percentage of patients who attained the PK/PD target at each MIC. The optimal loading dose was defined as the one associated with a ≥90% probability to achieve the PD targets. Our simulation model identified an optimal loading dose for PIP of 8 g given as a 3-h infusion (PTA of 96.2%), for CAZ and FEP of 4 g given as a 3-h infusion (PTA of 96.5% and 98.4%, respectively), and for MEM of 2 g given as a 30-min infusion (PTA of 93.4%), with the following antibiotic dose administered 6 h thereafter regardless of the drug. A higher first dose of broad-spectrum β-lactams should be given to adequately treat less-susceptible pathogens in septic patients. These findings need to be validated in a prospective study.
Collapse
Affiliation(s)
- Isabelle K Delattre
- Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain (UCL), Brussels, Belgium; Louvain Drug Research Institute, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Maya Hites
- Department of Infectious Diseases, Cliniques Universitaires de Bruxelles Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierre-Francois Laterre
- Department of Intensive Care, Cliniques Universitaires St Luc, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Thierry Dugernier
- Department of Intensive Care, Clinique St-Pierre, Ottignies, Belgium
| | - Herbert Spapen
- Department of Intensive Care, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Pierre E Wallemacq
- Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Frédérique Jacobs
- Department of Infectious Diseases, Cliniques Universitaires de Bruxelles Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Cliniques Universitaires de Bruxelles Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
44
|
Mané C, Delmas C, Porterie J, Jourdan G, Verwaerde P, Marcheix B, Concordet D, Georges B, Ruiz S, Gandia P. Influence of extracorporeal membrane oxygenation on the pharmacokinetics of ceftolozane/tazobactam: an ex vivo and in vivo study. J Transl Med 2020; 18:213. [PMID: 32460856 PMCID: PMC7251674 DOI: 10.1186/s12967-020-02381-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background Extracorporeal membrane oxygenation (ECMO) is increasingly used in intensive care units and can modify drug pharmacokinetics and lead to under-exposure associated with treatment failure. Ceftolozane/tazobactam is an antibiotic combination used for complicated infections in critically ill patients. Launched in 2015, sparse data are available on the influence of ECMO on the pharmacokinetics of ceftolozane/tazobactam. The aim of the present study was to determine the influence of ECMO on the pharmacokinetics of ceftolozane-tazobactam. Methods An ex vivo model (closed-loop ECMO circuits primed with human whole blood) was used to study adsorption during 8-h inter-dose intervals over a 24-h period (for all three ceftolozane/tazobactam injections) with eight samples per inter-dose interval. Two different dosages of ceftolozane/tazobactam injection were studied and a control (whole blood spiked with ceftolozane/tazobactam in a glass tube) was performed. An in vivo porcine model was developed with a 1-h infusion of ceftolozane–tazobactam and concentration monitoring for 11 h. Pigs undergoing ECMO were compared with a control group. Pharmacokinetic analysis of in vivo data (non-compartmental analysis and non-linear mixed effects modelling) was performed to determine the influence of ECMO. Results With the ex vivo model, variations in concentration ranged from − 5.73 to 1.26% and from − 12.95 to − 2.89% respectively for ceftolozane (concentrations ranging from 20 to 180 mg/l) and tazobactam (concentrations ranging from 10 to 75 mg/l) after 8 h. In vivo pharmacokinetic exploration showed that ECMO induces a significant decrease of 37% for tazobactam clearance without significant modification in the pharmacokinetics of ceftolozane, probably due to a small cohort size. Conclusions Considering that the influence of ECMO on the pharmacokinetics of ceftolozane/tazobactam is not clinically significant, normal ceftolozane and tazobactam dosing in critically ill patients should be effective for patients undergoing ECMO.
Collapse
Affiliation(s)
- Camille Mané
- Pharmacokinetics and Toxicology Laboratory, Toulouse University Hospital, Toulouse, France.,INTHERES, INRAE, ENVT, Université de Toulouse, Toulouse, France
| | - Clément Delmas
- Intensive Cardiac Care Unit, Rangueil University Hospital, Toulouse, France.,Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR-1048, National Institute of Health and Medical Research (INSERM), Toulouse, France
| | - Jean Porterie
- Institute of Metabolic and Cardiovascular Diseases (I2MC), UMR-1048, National Institute of Health and Medical Research (INSERM), Toulouse, France.,Cardiovascular Surgery Unit, Rangueil University Hospital, Toulouse, France
| | - Géraldine Jourdan
- Critical and Intensive Care Unit, Stomalab UMR 5273 CNRS/UPS-EFS-ENVT-INSERM U1031, Toulouse School of Veterinary Medicine, Toulouse, France
| | - Patrick Verwaerde
- Anesthesia-Emergency-Intensive Care Department, UPEC/IMRB-Inserm U955, Alfort School of Veterinary Medicine, Maisons-Alfort, France
| | - Bertrand Marcheix
- Cardiovascular Surgery Unit, Rangueil University Hospital, Toulouse, France
| | | | - Bernard Georges
- Anesthesia-General Intensive Care Division, Rangueil General Intensive Care Department, Toulouse University Hospital, Toulouse, France
| | - Stéphanie Ruiz
- Anesthesia-General Intensive Care Division, Rangueil General Intensive Care Department, Toulouse University Hospital, Toulouse, France
| | - Peggy Gandia
- Pharmacokinetics and Toxicology Laboratory, Toulouse University Hospital, Toulouse, France. .,INTHERES, INRAE, ENVT, Université de Toulouse, Toulouse, France.
| |
Collapse
|
45
|
Saito J, Shoji K, Oho Y, Aoki S, Matsumoto S, Yoshida M, Nakamura H, Kaneko Y, Hayashi T, Yamatani A, Capparelli E, Miyairi I. Meropenem pharmacokinetics during extracorporeal membrane oxygenation and continuous haemodialysis: a case report. J Glob Antimicrob Resist 2020; 22:651-655. [PMID: 32417590 DOI: 10.1016/j.jgar.2020.04.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Pharmacokinetic (PK) parameters can change significantly during extracorporeal membrane oxygenation (ECMO) and continuous haemodialysis. This case report describes the pharmacokinetics of a 3-h meropenem infusion in an infantile anuric patient on ECMO with continuous haemodialysis. CASE A 19-month-old female patient with asplenia syndrome was admitted to the paediatric intensive care unit for postoperative management of an extracardiac total cavopulmonary connection procedure. Veno-arterial ECMO and continuous haemodialysis were initiated on postoperative Day 2 for circulatory insufficiency due to septic shock and thrombosis of the inferior vena cava extending to the pulmonary artery. Blood and ascites cultures were positive for extended-spectrum β-lactamase-producing Escherichia coli, and 3-h meropenem infusions [120-300 mg/kg/day divided every 8 h (q8h)] were commenced. Following dose escalation to 300 mg/kg/day q8h, sustained negative blood cultures were confirmed. The estimated meropenem clearance and volume of distribution (Vd) were 2.21 mL/kg/min and 0.59 L/kg, respectively. These patient-specific PK parameters were used to predict the PK profile of various dosing regimens. Both 1-h and 3-h infusions of meropenem at 60, 120 and 200 mg/kg/day q8h predicted that the free drug concentration would remain above the minimum inhibitory concentration (fT>MIC) at an MIC of 1 μg/mL for >40% of the dosing interval. However, when the target was set at 100% fT>MIC, only a 3-h infusion of 200 mg/kg/day q8h could achieve the target in this patient despite the presence of anuria. CONCLUSION To optimise meropenem dosing in paediatric patients on ECMO and continuous haemodialysis, further study and PK monitoring are warranted.
Collapse
Affiliation(s)
- Jumpei Saito
- Department of Pharmacy, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-0074, Japan.
| | - Kensuke Shoji
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan
| | - Yusuke Oho
- Department of Pharmacy, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-0074, Japan
| | - Satoshi Aoki
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Shotaro Matsumoto
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Michiko Yoshida
- Office for Infection Control, National Center for Child Health and Development, Tokyo, Japan
| | - Hidefumi Nakamura
- Clinical Research Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yukihiro Kaneko
- Department of Cardiovascular Surgery, National Center for Child Health and Development, Tokyo, Japan
| | - Taiyu Hayashi
- Department of Cardiology, National Center for Child Health and Development, Tokyo, Japan
| | - Akimasa Yamatani
- Department of Pharmacy, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-0074, Japan
| | - Edmund Capparelli
- University of California at San Diego, Division of Host-Microbe Systems and Therapeutics, University of California at San Diego, La Jolla, CA, USA
| | - Isao Miyairi
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
46
|
Kang S, Jang JY, Hahn J, Kim D, Lee JY, Min KL, Yang S, Wi J, Chang MJ. Dose Optimization of Cefpirome Based on Population Pharmacokinetics and Target Attainment during Extracorporeal Membrane Oxygenation. Antimicrob Agents Chemother 2020; 64:e00249-20. [PMID: 32122899 PMCID: PMC7179593 DOI: 10.1128/aac.00249-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
To obtain the optimal dosage regimen in patients receiving extracorporeal membrane oxygenation (ECMO), we developed a population pharmacokinetics model for cefpirome and performed pharmacodynamic analyses. This prospective study included 15 patients treated with cefpirome during ECMO. Blood samples were collected during ECMO (ECMO-ON) and after ECMO (ECMO-OFF) at predose and 0.5 to 1, 2 to 3, 4 to 6, 8 to 10, and 12 h after cefpirome administration. The population pharmacokinetic model was developed using nonlinear mixed effects modeling and stepwise covariate modeling. Monte Carlo simulation was used to assess the probability of target attainment (PTA) and cumulative fraction of response (CFR) according to the MIC distribution. Cefpirome pharmacokinetics were best described by a two-compartment model. Covariate analysis indicated that serum creatinine concentration (SCr) was negatively correlated with clearance, and the presence of ECMO increased clearance and the central volume of distribution. The simulations showed that patients with low SCr during ECMO-ON had lower PTA than patients with high SCr during ECMO-OFF; so, a higher dosage of cefpirome was required. Cefpirome of 2 g every 8 h for intravenous bolus injection or 2 g every 12 h for extended infusion over 4 h was recommended with normal kidney function receiving ECMO. We established a population pharmacokinetic model for cefpirome in patients with ECMO, and appropriate cefpirome dosage regimens were recommended. The impact of ECMO could be due to the change in patient status on consideration of the small population and uncertainty in covariate relationships. Dose optimization of cefpirome may improve treatment success and survival in patients receiving ECMO. (This study has been registered at ClinicalTrials.gov under identifier NCT02581280.).
Collapse
Affiliation(s)
- Soyoung Kang
- Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University, Incheon, Republic of Korea
| | - June Young Jang
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Jongsung Hahn
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Dasohm Kim
- Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University, Incheon, Republic of Korea
| | - Jun Yeong Lee
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea
| | - Kyoung Lok Min
- Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University, Incheon, Republic of Korea
| | - Seungwon Yang
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea
| | - Jin Wi
- Division of Cardiology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Jung Chang
- Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University, Incheon, Republic of Korea
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea
| |
Collapse
|
47
|
Derendorf H, Heinrichs T, Reimers T, Lebert C, Brinkmann A. Calculated initial parenteral treatment of bacterial infections: Pharmacokinetics and pharmacodynamics. GMS INFECTIOUS DISEASES 2020; 8:Doc17. [PMID: 32373442 PMCID: PMC7186811 DOI: 10.3205/id000061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This is the third chapter of the guideline "Calculated initial parenteral treatment of bacterial infections in adults - update 2018" in the 2nd updated version. The German guideline by the Paul-Ehrlich-Gesellschaft für Chemotherapie e.V. (PEG) has been translated to address an international audience. The chapter features the pharmacokinetic and pharmacodynamics properties of the most frequently used antiinfective agents.
Collapse
Affiliation(s)
- Hartmut Derendorf
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, USA
| | | | - Tobias Reimers
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, USA
| | | | - Alexander Brinkmann
- Klinik für Anästhesie, operative Intensivmedizin und spezielle Schmerztherapie, Klinikum Heidenheim, Germany
| |
Collapse
|
48
|
Abstract
OBJECTIVES To determine the oxygenator impact on alterations of ceftolozane/tazobactam in a contemporary neonatal/pediatric (1/4-inch) and adolescent/adult (3/8-inch) extracorporeal membrane oxygenation circuit including the Quadrox-i oxygenator (Maquet, Wayne, NJ). DESIGN A 1/4-inch and 3/8-inch, simulated closed-loop extracorporeal membrane oxygenation circuits were prepared with a Quadrox-i pediatric and Quadrox-i adult oxygenator and blood primed. Additionally, 1/4-inch and 3/8-inch circuits were also prepared without an oxygenator in series. A one-time dose of ceftolozane/tazobactam was administered into the circuits and serial preoxygenator and postoxygenator concentrations were obtained at 5 minutes, 1, 2, 3, 4, 5, 6, and 24-hour time points. Ceftolozane/tazobactam was also maintained in a glass vial and samples were taken from the vial at the same time periods for control purposes to assess for spontaneous drug degradation SETTING:: A free-standing extracorporeal membrane oxygenation circuit. PATIENTS None. INTERVENTIONS Single-dose administration of ceftolozane/tazobactam into closed-loop extracorporeal membrane oxygenation circuits prepared with and without an oxygenator in series with serial preoxygenator, postoxygenator, and reference samples obtained for concentration determination over a 24-hour study period. MEASUREMENTS AND MAIN RESULTS For the 1/4-inch circuit, there was approximately 92% ceftolozane and 22-25% tazobactam loss with the oxygenator in series and 19-30% ceftolozane and 31-34% tazobactam loss without an oxygenator in series at 24 hours. For the 3/8-inch circuit, there was approximately 85% ceftolozane and 29% tazobactam loss with the oxygenator in series and 25-27% ceftolozane and 23-26% tazobactam loss without an oxygenator in series at 24 hours. The reference ceftolozane and tazobactam concentrations remained relatively constant during the entire study period demonstrating the drug loss in each size of the extracorporeal membrane oxygenation circuit with or without an oxygenator was not a result of spontaneous drug degradation. CONCLUSIONS This ex vivo investigation demonstrated substantial ceftolozane loss within an extracorporeal membrane oxygenation circuit with an oxygenator in series with both sizes of the Quadrox-i oxygenator at 24 hours and significant ceftolozane loss in the absence of an oxygenator. Tazobactam loss was similar regardless of the presence of an oxygenator. Further evaluations with multiple dose in vitro and in vivo investigations are needed before specific drug dosing recommendations can be made for clinical application with extracorporeal membrane oxygenation.
Collapse
|
49
|
Antibiotic dosing during extracorporeal membrane oxygenation: does the system matter? Curr Opin Anaesthesiol 2020; 33:71-82. [PMID: 31764007 DOI: 10.1097/aco.0000000000000810] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW The aims of this review are to discuss the impact of extracorporeal membrane oxygenation (ECMO) on antibiotic pharmacokinetics and how this phenomenon may influence antibiotic dosing requirements in critically ill adult ECMO patients. RECENT FINDINGS The body of literature describing antibiotic pharmacokinetic and dosing requirements during ECMO support in critically adult patients is currently scarce. However, significant development has recently been made in this research area and more clinical pharmacokinetic data have emerged to inform antibiotic dosing in these patients. Essentially, these clinical data highlight several important points that clinicians need to consider when dosing antibiotics in critically ill adult patients receiving ECMO: physicochemical properties of antibiotics can influence the degree of drug loss/sequestration in the ECMO circuit; earlier pharmacokinetic data, which were largely derived from the neonatal and paediatric population, are certainly useful but cannot be extrapolated to the critically ill adult population; modern ECMO circuitry has minimal adsorption and impact on the pharmacokinetics of most antibiotics; and pharmacokinetic changes in ECMO patients are more reflective of critical illness rather than the ECMO therapy itself. SUMMARY An advanced understanding of the pharmacokinetic alterations in critically ill patients receiving ECMO is essential to provide optimal antibiotic dosing in these complex patients pending robust dosing guidelines. Antibiotic dosing in this patient population should generally align with the recommended dosing strategies for critically ill patients not on ECMO support. Performing therapeutic drug monitoring (TDM) to guide antibiotic dosing in this patient population appears useful.
Collapse
|
50
|
Sieg A, Pandya K, Winstead R, Evans R. Overview of Pharmacological Considerations in Extracorporeal Membrane Oxygenation. Crit Care Nurse 2019; 39:29-43. [PMID: 30936129 DOI: 10.4037/ccn2019236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Extracorporeal membrane oxygenation has become more widely used in recent years. Although this technology has proven to be lifesaving, it is not devoid of complications contributing to significant morbidity and mortality. Nurses who care for patients receiving extracorporeal membrane oxygenation should further their understanding of changes in medication profiles due to complex interactions with the extracorporeal membrane oxygenation circuitry. The aim of this comprehensive review is to give nurses a better understanding of analgesic, sedative, anti-infective, and anticoagulation medications that are frequently used to treat patients receiving extracorporeal membrane oxygenation.
Collapse
Affiliation(s)
- Adam Sieg
- Adam Sieg is an assistant professor in the Department of Pharmacy Practice and Science at the University of Kentucky College of Pharmacy, Lexington, Kentucky, and a clinical pharmacist specialist in advanced heart failure and heart transplant/mechanical circulatory support. .,Komal Pandya is a cardiothoracic surgery clinical pharmacist with the University of Kentucky Medical Center in Lexington, Kentucky, and adjunct assistant professor in the Department of Pharmacy Practice and Science at the University of Kentucky College of Pharmacy. .,Ryan Winstead is a clinical transplant specialist at Virginia Commonwealth University Health, Richmond, Virginia. .,Rickey Evans is an assistant professor in the Department of Clinical Pharmacy and Outcomes Sciences at the University of South Carolina College of Pharmacy and clinical pharmacy specialist in critical care at Palmetto Health Richland in Columbia, South Carolina.
| | - Komal Pandya
- Adam Sieg is an assistant professor in the Department of Pharmacy Practice and Science at the University of Kentucky College of Pharmacy, Lexington, Kentucky, and a clinical pharmacist specialist in advanced heart failure and heart transplant/mechanical circulatory support.,Komal Pandya is a cardiothoracic surgery clinical pharmacist with the University of Kentucky Medical Center in Lexington, Kentucky, and adjunct assistant professor in the Department of Pharmacy Practice and Science at the University of Kentucky College of Pharmacy.,Ryan Winstead is a clinical transplant specialist at Virginia Commonwealth University Health, Richmond, Virginia.,Rickey Evans is an assistant professor in the Department of Clinical Pharmacy and Outcomes Sciences at the University of South Carolina College of Pharmacy and clinical pharmacy specialist in critical care at Palmetto Health Richland in Columbia, South Carolina
| | - Ryan Winstead
- Adam Sieg is an assistant professor in the Department of Pharmacy Practice and Science at the University of Kentucky College of Pharmacy, Lexington, Kentucky, and a clinical pharmacist specialist in advanced heart failure and heart transplant/mechanical circulatory support.,Komal Pandya is a cardiothoracic surgery clinical pharmacist with the University of Kentucky Medical Center in Lexington, Kentucky, and adjunct assistant professor in the Department of Pharmacy Practice and Science at the University of Kentucky College of Pharmacy.,Ryan Winstead is a clinical transplant specialist at Virginia Commonwealth University Health, Richmond, Virginia.,Rickey Evans is an assistant professor in the Department of Clinical Pharmacy and Outcomes Sciences at the University of South Carolina College of Pharmacy and clinical pharmacy specialist in critical care at Palmetto Health Richland in Columbia, South Carolina
| | - Rickey Evans
- Adam Sieg is an assistant professor in the Department of Pharmacy Practice and Science at the University of Kentucky College of Pharmacy, Lexington, Kentucky, and a clinical pharmacist specialist in advanced heart failure and heart transplant/mechanical circulatory support.,Komal Pandya is a cardiothoracic surgery clinical pharmacist with the University of Kentucky Medical Center in Lexington, Kentucky, and adjunct assistant professor in the Department of Pharmacy Practice and Science at the University of Kentucky College of Pharmacy.,Ryan Winstead is a clinical transplant specialist at Virginia Commonwealth University Health, Richmond, Virginia.,Rickey Evans is an assistant professor in the Department of Clinical Pharmacy and Outcomes Sciences at the University of South Carolina College of Pharmacy and clinical pharmacy specialist in critical care at Palmetto Health Richland in Columbia, South Carolina
| |
Collapse
|