1
|
Paice KM, Girdwood ST, Mizuno T, Pavia K, Punt N, Tang P, Dong M, Curry C, Jones R, Gibson A, Vinks AA, Kaplan J. Pharmacokinetic Factors Associated With Early Meropenem Target Attainment in Pediatric Severe Sepsis. Pediatr Crit Care Med 2024; 25:1103-1116. [PMID: 39162600 PMCID: PMC11617271 DOI: 10.1097/pcc.0000000000003599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
OBJECTIVES To determine the frequency of early meropenem concentration target attainment (TA) in critically ill children with severe sepsis; to explore clinical, therapeutic, and pharmacokinetic factors associated with TA; and to assess how fluid resuscitation and volume status relate to early TA. DESIGN Retrospective analysis of prospective observational cohort study. SETTING PICU in a single academic quaternary care children's hospital. PATIENTS Twenty-nine patients starting meropenem for severe sepsis (characterized as need for positive pressure ventilation, vasopressors, or ≥ 40 mL/kg bolused fluid), of which 17 were newly escalated to PICU level care. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Concentration-time profiles were analyzed using modeling software employing opportunistic sampling, Bayesian estimation, and a population pharmacokinetic model. Time above four times minimum inhibitory concentration (T > 4×MIC), using the susceptibility breakpoint of 1 µg/mL, was determined for each patient over the first 24 hours of meropenem therapy, as well as individual clearance and volume of distribution (Vd) estimates. Twenty-one of 29 patients met a target of 40%T > MIC 4 μg/mL. Reaching TA, vs. not, was associated with lower meropenem clearance. We failed to identify a difference in Vd or an association between the TA group and age, weight, creatinine-based estimated glomerular filtration rate (eGFR), or the amount of fluid administered. eGFR was, however, negatively correlated with overall T > MIC. CONCLUSIONS Eight of 29 pediatric patients with early severe sepsis did not meet the selected TA threshold within the first 24 hours of meropenem therapy. Higher clearance was associated with failure to meet targets. Identifying patients likely to have higher meropenem clearance could help with dosing regimens.
Collapse
Affiliation(s)
- Kelli M. Paice
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Translational and Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Sonya Tang Girdwood
- Division of Translational and Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Division of Hospital Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Tomoyuki Mizuno
- Division of Translational and Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Kathryn Pavia
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Translational and Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Nieko Punt
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Medimatics, Maastricht, the Netherlands
| | - Peter Tang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Min Dong
- Division of Translational and Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Calise Curry
- Division of Hospital Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Rhonda Jones
- Clinical Quality Improvement Systems, James M. Anderson Center for Health Systems Excellence, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Abigayle Gibson
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Alexander A. Vinks
- Division of Translational and Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Jennifer Kaplan
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
2
|
Cree ML, Abdul-Aziz MH, Schlapbach LJ, Roberts JA, Parker SL. The impact of extracorporeal support on antimicrobial pharmacokinetics in critically ill neonatal and paediatric patients: A systematic review. Int J Antimicrob Agents 2024; 64:107311. [PMID: 39197687 DOI: 10.1016/j.ijantimicag.2024.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVES Infections represent a major risk for critically ill neonatal and paediatric patients requiring extracorporeal life-saving support such as extracorporeal membrane oxygenation (ECMO) and/or continuous renal replacement therapies (CRRT). Patient outcomes rely on achieving target antimicrobial concentrations. In critically ill adults on extracorporeal support, suboptimal antimicrobial concentrations have been shown to be common. Our objective was to systematically review antimicrobial pharmacokinetic studies in critically ill term neonatal and paediatric patients receiving ECMO and/or CRRT and compare them to similar cohorts of patients not receiving ECMO or CRRT. METHODS Studies published between 1990 and 2022 were identified through systematic searches in PUBMED, Embase, Web of Science, Medline, Google Scholar and CINAHL. Studies were included which provided antimicrobial pharmacokinetic parameters (volume of distribution and clearance) in the neonatal and paediatric patients receiving ECMO and/or CRRT. Studies were excluded if no antimicrobial pharmacokinetic parameters were described or could be calculated. RESULTS Forty-four pharmacokinetic studies were identified describing 737 patients, with neonatal patients recruited in 70% of the ECMO studies and <1% of the CRRT studies. Of all the studies, 50% were case reports or case series. The pharmacokinetics were altered for gentamicin, daptomycin, ceftolozane, micafungin, voriconazole, cefepime, fluconazole, piperacillin, and vancomycin, although considerable patient variability was described. CONCLUSION Significant gaps remain in our understanding of the pharmacokinetic alterations in neonatal and paediatric patients receiving ECMO and CRRT support.
Collapse
Affiliation(s)
- Michele L Cree
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Pharmacy Department, Queensland Children's Hospital, Brisbane, Australia
| | - Mohd Hafiz Abdul-Aziz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Luregn J Schlapbach
- Pediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, Australia; Centre for Children's Health Research, The University of Queensland, Brisbane Australia; Department of Intensive Care and Neonatology, and Children`s Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Jason A Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia; Department of Intensive Care Medicine, Royal Brisbane & Women's Hospital, Brisbane Australia; Faculty of Medicine, Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Brisbane, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France; Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Suzanne L Parker
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
3
|
Alsultan A, Aldawsari MR, Alturaiq NK, Syed SA, Alsubai A, Kurdee Z, Alsubaie S, Alqahtani S, Abouelkheir M. Evaluation of pharmacokinetic pharmacodynamic target attainment of meropenem in pediatric patients. Pediatr Neonatol 2024; 65:386-390. [PMID: 38218717 DOI: 10.1016/j.pedneo.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/27/2023] [Accepted: 09/08/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Meropenem is a widely used carbapenem for treating severe pediatric infections. However, few studies have assessed its pharmacokinetics/pharmacodynamics (PK/PD) in pediatric patients. This study aimed to evaluate the proportion of Saudi pediatric patients achieving the PK/PD target of meropenem. METHODS A prospective observational study was conducted at King Saud University Medical City from July to September 2022. Pediatric patients receiving meropenem for suspected or proven infections were included in the study. The primary outcome was the percentage of patients achieving the recommended PK/PD target for critically ill or non-critically ill pediatric patients. RESULTS The study included 30 patients (nine neonates and 21 older pediatric patients). All neonates were critically ill. Among them, 55 % achieved the PK/PD target of 100 % free time above the MIC. In older ICU pediatric patients, only 11 % attained this target, whereas 58 % of older pediatrics in the general wards achieved the PK/PD target of 50 % free time above the MIC. Augmented renal clearance (ARC) was identified in 57 % of our pediatric patient population, none of whom achieved the recommended PK/PD targets. The median trough concentrations in patients with and without ARC were 0.75 and 1.3 μg/mL, respectively (P < 0.05). CONCLUSIONS The majority of patients in our cohort did not achieve the PK/PD target for meropenem. ARC emerged as a major risk factor for target attainment failure in both critically ill and non-critically ill pediatric patients.
Collapse
Affiliation(s)
- Abdullah Alsultan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Clinical Pharmacokinetics and Pharmacodynamics Unit, King Saud University Medical City, Riyadh, Saudi Arabia.
| | - Maram R Aldawsari
- Department of Pharmacy, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Nujood Khaled Alturaiq
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Ali Syed
- Department of Pharmaceutical, Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alsubai
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Clinical Pharmacokinetics and Pharmacodynamics Unit, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Zeyad Kurdee
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Saudi Arabia
| | - Sarah Alsubaie
- Pediatric Infectious Disease Unit, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Clinical Pharmacokinetics and Pharmacodynamics Unit, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Manal Abouelkheir
- Department of Clinical Pharmacy, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| |
Collapse
|
4
|
Butragueño-Laiseca L, Troconiz IF, Grau S, Campillo N, Padilla B, Fernández SN, Slöcker M, Herrera L, Santiago MJ. How to use meropenem in pediatric patients undergoing CKRT? Integrated meropenem pharmacokinetic model for critically ill children. Antimicrob Agents Chemother 2024; 68:e0172923. [PMID: 38656186 PMCID: PMC11620509 DOI: 10.1128/aac.01729-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Standard dosing could fail to achieve adequate systemic concentrations in ICU children or may lead to toxicity in children with acute kidney injury. The population pharmacokinetic analysis was used to simultaneously analyze all available data (plasma, prefilter, postfilter, effluent, and urine concentrations) and provide the pharmacokinetic characteristics of meropenem. The probability of target fT > MIC attainment, avoiding toxic levels, during the entire dosing interval was estimated by simulation of different intermittent and continuous infusions in the studied population. A total of 16 critically ill children treated with meropenem were included, with 7 of them undergoing continuous kidney replacement therapy (CKRT). Only 33% of children without CKRT achieved 90% of the time when the free drug concentration exceeded the minimum inhibitory concentration (%fT > MIC) for an MIC of 2 mg/L. In dose simulations, only continuous infusions (60-120 mg/kg in a 24-h infusion) reached the objective in patients <30 kg. In patients undergoing CKRT, the currently used schedule (40 mg/kg/12 h from day 2 in a short infusion of 30 min) was clearly insufficient in patients <30 kg. Keeping the dose to 40 mg/kg q8h without applying renal adjustment and extended infusions (40 mg/kg in 3- or 4-h infusion every 12 h) was sufficient to reach 90% fT > MIC (>2 mg/L) in patients >10 kg. In patients <10 kg, only continuous infusions reached the objective. In patients >30 kg, 60 mg/kg in a 24-h infusion is sufficient and avoids toxicity. This population model could help with an individualized dosing approach that needs to be adopted in critically ill pediatric patients. Critically ill patients subjected to or not to CKRT may benefit from the administration of meropenem in an extended or continuous infusion.
Collapse
Affiliation(s)
- Laura Butragueño-Laiseca
- Pediatric Intensive Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- Pediatrics Department, Universidad Complutense de Madrid, Madrid, Spain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Development Origin Network (RICORS) RD21/0012/0011, Carlos III Health Institute, Madrid, Spain
| | - Iñaki F. Troconiz
- Pharmacometrics and Systems Pharmacology Research Unit, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Santiago Grau
- Pharmacy Department, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuria Campillo
- Pharmacy Department, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Belén Padilla
- Clinical Microbiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Sarah Nicole Fernández
- Pediatric Intensive Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- Pediatrics Department, Universidad Complutense de Madrid, Madrid, Spain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Development Origin Network (RICORS) RD21/0012/0011, Carlos III Health Institute, Madrid, Spain
| | - María Slöcker
- Pediatric Intensive Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- Pediatrics Department, Universidad Complutense de Madrid, Madrid, Spain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Development Origin Network (RICORS) RD21/0012/0011, Carlos III Health Institute, Madrid, Spain
| | - Laura Herrera
- Pediatric Intensive Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- Pediatrics Department, Universidad Complutense de Madrid, Madrid, Spain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Development Origin Network (RICORS) RD21/0012/0011, Carlos III Health Institute, Madrid, Spain
| | - María José Santiago
- Pediatric Intensive Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- Pediatrics Department, Universidad Complutense de Madrid, Madrid, Spain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Development Origin Network (RICORS) RD21/0012/0011, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
5
|
Pokorná P, Michaličková D, Tibboel D, Berner J. Meropenem Disposition in Neonatal and Pediatric Extracorporeal Membrane Oxygenation and Continuous Renal Replacement Therapy. Antibiotics (Basel) 2024; 13:419. [PMID: 38786147 PMCID: PMC11117356 DOI: 10.3390/antibiotics13050419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
This study aimed to characterize the impact of extracorporeal membrane oxygenation (ECMO) on the pharmacokinetics (PK) of meropenem in neonates and children and to provide recommendations for meropenem dosing in this specific population of patients. Therapeutic drug monitoring (152 meropenem plasma concentrations) data from 45 patients (38 received ECMO) with a body weight (BW) of 7.88 (3.62-11.97) kg (median (interquartile range)) and postnatal age of 3 (0-465) days were collected. The population PK analysis was performed using NONMEM V7.3.0. Monte Carlo simulations were performed to assess the probability of target achievement (PTA) for 40% of time the free drug remained above the minimum inhibitory concentration (fT > MIC) and 100% fT > MIC. BW was found to be a significant covariate for the volume of distribution (Vd) and clearance (CL). Additionally, continuous renal replacement therapy (CRRT) was associated with a two-fold increase in Vd. In the final model, the CL and Vd for a typical patient with a median BW of 7.88 kg that was off CRRT were 1.09 L/h (RSE = 8%) and 3.98 L (14%), respectively. ECMO did not affect meropenem PK, while superimposed CRRT significantly increased Vd. We concluded that current dosing regimens provide acceptably high PTA for MIC ≤ 4 mg/L for 40% fT > MIC, but individual dose adjustments are needed for 100% fT > MIC.
Collapse
Affiliation(s)
- Pavla Pokorná
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic
- Department of Physiology and Pharmacology, Karolinska Institute and Karolinska University Hospital, 171 77 Stockholm, Sweden
- Department of Pediatric Surgery, Erasmus Medical Center Sophia Children’s Hospital, 3062 PA Rotterdam, The Netherlands
| | - Danica Michaličková
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic
| | - Dick Tibboel
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic
- Department of Pediatric Surgery, Erasmus Medical Center Sophia Children’s Hospital, 3062 PA Rotterdam, The Netherlands
| | - Jonas Berner
- Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, 128 00 Prague, Czech Republic
- Department of Physiology and Pharmacology, Karolinska Institute and Karolinska University Hospital, 171 77 Stockholm, Sweden
- Pediatric Perioperative Medicine and Intensive Care, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
6
|
Morales Junior R, Juodinis VD, Telles JP, Romano P, Duarte NJC, De Souza DC, Santos SRCJ. Pharmacokinetics and Therapeutic Target Attainment of Meropenem in Pediatric Post-Liver Transplant Patients: Extended vs Intermittent Infusion. Transplant Proc 2023; 55:2456-2461. [PMID: 37923571 DOI: 10.1016/j.transproceed.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/16/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE The aim of this study is to characterize the concentration-time profile, pharmacokinetics parameters, and therapeutic target attainment of meropenem in pediatric post-liver transplant patients according to the duration of infusion. METHODS This is a prospective cohort of pediatric transplant recipients with preserved renal function receiving meropenem 40 mg/kg every 8 hours. The patients were stratified into 2 groups based on infusion duration: G1 (15 minutes of intermittent infusion) and G1 (3 hours of extended infusion). Two blood samples per child were collected during the same interval within 48 hours of starting the antimicrobial. Meropenem concentrations were determined by high-performance liquid chromatography with tandem mass spectrometry. Pharmacokinetic parameters were assessed using a noncompartmental analysis. The therapeutic target was defined as 100% of the time above the minimum inhibitory concentration. FINDINGS Fourteen patients with 28 measured meropenem concentrations were included. Lower values of volume of distribution and meropenem clearance compared with other critically ill pediatric populations were found. All patients achieved the therapeutic target against gram-negative pathogens with a minimum inhibitory concentration of ≤8 mg/L. Patients receiving a 15-minute infusion had higher values of peak and trough concentrations, resulting in unnecessary increased total drug exposure when compared to patients receiving a 3-hour infusion (P < .05). CONCLUSIONS Meropenem at 120 mg/kg/d attained the therapeutic target against sensitive microorganisms in pediatric liver transplant recipients. The extended infusion should be preferred for patient safety. Because of the pharmacokinetic changes resulting from liver transplantation, individualized meropenem dosing regimens may be necessary.
Collapse
Affiliation(s)
- Ronaldo Morales Junior
- Clinical Pharmacokinetics Center, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Pediatric Unit, Hospital Sírio-Libanês, São Paulo, Brazil.
| | | | - João Paulo Telles
- Ac Camargo Cancer Center, Infectious Diseases Department, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
7
|
Wu YE, Kou C, Li X, Tang BH, Yao BF, Hao GX, Zheng Y, van den Anker J, You DP, Shen AD, Zhao W. Developmental Population Pharmacokinetics-Pharmacodynamics of Meropenem in Chinese Neonates and Young Infants: Dosing Recommendations for Late-Onset Sepsis. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1998. [PMID: 36553441 PMCID: PMC9777159 DOI: 10.3390/children9121998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
The pharmacokinetic (PK) studies of meropenem in Chinese newborns with late-onset sepsis (LOS) are still lacking. Causative pathogens of LOS and their susceptibility patterns in China differ from the data abroad. We, therefore, conducted a developmental population pharmacokinetic−pharmacodynamic analysis in Chinese newborns with the goal to optimize meropenem dosing regimens for LOS therapy. An opportunistic sampling strategy was used to collect meropenem samples, followed by model building and validation. A Monte Carlo simulation was performed to show the probability of target attainment (PTA) for various dosages. The information from 78 newborns (postmenstrual age: 27.4−46.1 weeks) was compiled and had a good fit to a 1-compartment model that had first order elimination. The median (range) values of estimated weight−normalized volume of distribution (V)and clearance (CL) were 0.60 (0.51−0.69) L/kg and 0.16 (0.04−0.51) L/h/kg, respectively. Covariate analysis revealed that postnatal age (PNA), gestational age (GA) and current weight (CW) were the most important factors in describing meropenem PK. Simulation results showed for LOS with a minimal inhibitory concentration (MIC) of 8 mg/L, the doses of 30 mg/kg 3 times daily (TID) as a 1-h infusion for newborns with GA ≤ 37 weeks and 40 mg/kg TID as a 3-h infusion for those with GA > 37 weeks were optimal, with PTA of 71.71% and 75.08%, respectively. In conclusion, we proposed an evidence-based dosing regimen of meropenem for LOS in Chinese newborns by using the population pharmacokinetic−pharmacodynamic analysis, based on domestic common pathogens and their susceptibility patterns.
Collapse
Affiliation(s)
- Yue-E Wu
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chen Kou
- Department of Neonatology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100020, China
| | - Xue Li
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Bo-Hao Tang
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Bu-Fan Yao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yi Zheng
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - John van den Anker
- Division of Clinical Pharmacology, Children’s National Medical Center, Washington, DC 20010, USA
- Departments of Pediatrics, Pharmacology & Physiology, George Washington University, School of Medicine and Health Sciences, Washington, DC 20052, USA
- Department of Paediatric Pharmacology and Pharmacometrics, University Children’s Hospital Basel, 4056 Basel, Switzerland
| | - Dian-Ping You
- Pediatric Research Institute, Children’s Hospital of Hebei Province Affiliated to Hebei Medical University, Shijiazhuang 050000, China
| | - A-Dong Shen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou 450018, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Shandong University, Jinan 250012, China
| |
Collapse
|
8
|
Tang Girdwood S, Pavia K, Paice K, Hambrick HR, Kaplan J, Vinks AA. β-lactam precision dosing in critically ill children: Current state and knowledge gaps. Front Pharmacol 2022; 13:1044683. [PMID: 36532752 PMCID: PMC9752101 DOI: 10.3389/fphar.2022.1044683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
There has been emerging interest in implementing therapeutic drug monitoring and model-informed precision dosing of β-lactam antibiotics in critically ill patients, including children. Despite a position paper endorsed by multiple international societies that support these efforts in critically ill adults, implementation of β-lactam precision dosing has not been widely adopted. In this review, we highlight what is known about β-lactam antibiotic pharmacokinetics and pharmacodynamics in critically ill children. We also define the knowledge gaps that present barriers to acceptance and implementation of precision dosing of β-lactam antibiotics in critically ill children: a lack of consensus on which subpopulations would benefit most from precision dosing and the uncertainty of how precision dosing changes outcomes. We conclude with opportunities for further research to close these knowledge gaps.
Collapse
Affiliation(s)
- Sonya Tang Girdwood
- Division of Clinical Pharmacology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Division of Hospital Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,*Correspondence: Sonya Tang Girdwood,
| | - Kathryn Pavia
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Kelli Paice
- Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - H. Rhodes Hambrick
- Division of Nephrology and Hypertension, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Jennifer Kaplan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States,Division of Critical Care Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Alexander A. Vinks
- Division of Clinical Pharmacology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
9
|
Tian X, Dong L, Jiang TT, Tang BH, Wang ZM, Wu YE, You DP, Bi J, Qian SY, Qi H, Shen AD. Meropenem for children with severe pneumonia: Protocol for a randomized controlled trial. Front Pharmacol 2022; 13:1021661. [DOI: 10.3389/fphar.2022.1021661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Pneumonia, caused by infection or other factors, seriously endangers the health of children. Meropenem is an effective broad-spectrum antibiotic using in the treatment of infectious diseases. In the therapy of pneumonia, meropenem is mostly employed for the treatment of moderate to severe pneumonia. Previously, we established a population pharmacokinetics (PPK) model for meropenem in pediatric severe infection and simulated the control rate of the time during which the free plasma concentration of meropenem exceeds the minimum inhibitory concentration (MIC) is 70% of the dosing interval (70% fT > MIC). Therefore, we plan to conduct a multicenter randomized controlled trial (RCT) to compare the efficacy and safety between conventional regimen and model regimen for meropenem in pediatric severe pneumonia.Methods: One hundred patients (aged 3 months to 15 years) will be recruited in this RCT. They will be assigned randomly (at a 1:1 ratio) to a conventional treatment group (20 mg/kg, q8h, with 0.5–1 h infusion) and a model treatment group (20 mg/kg, q8 h, with 4 h infusion). The primary outcome will be 70% fT > MIC. Secondary outcomes will be the prevalence of meropenem therapy failure, duration of antibiotic therapy, changes in levels of inflammatory indicators, changes in imaging examination results, and prevalence of adverse events. Ethical approval of our clinical trial has been granted by the ethics committee of Beijing Children’s Hospital ([2022]-E-133-Y). This trial has been registered in the Chinese Clinical Trial Registry (ChiCTR2200061207).Discussion: Based on our previous PPK data, we have designed this RCT. It is hoped that it will promote rational use of antibacterial drugs in children suffering from severe pneumonia.Clinical Trial Registration: http://www.chictr.org.cn identifier, ChiCTR2200061207.
Collapse
|
10
|
Wang Z, Bi J, You D, Tang Y, Liu G, Yu J, Jin Z, Jiang T, Tian X, Qi H, Dong L, Dong L, Zhang Q, Zhao W, Shen A. Improving the efficacy for meropenem therapy requires a high probability of target attainment in critically ill infants and children. Front Pharmacol 2022; 13:961863. [PMID: 36278190 PMCID: PMC9581397 DOI: 10.3389/fphar.2022.961863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Probability of target attainment is the key factor influencing the outcome of meropenem therapy. The objective of the present study was to evaluate the relationship between the time in which the plasma free concentration of meropenem exceeds the minimum inhibitory concentration of pathogens (fT>MIC) during therapy and the clinical outcome of treatment to optimize meropenem therapy. Critically ill children with infections who had received intravenous meropenem monotherapy were included. The relationship between fT>MIC of meropenem and effectiveness and safety were explored. Data from 53 children (mean age ± standard deviation, 26 months ± 38) were available for final analysis. Children with fT>MIC ≥ 5.6 h (n = 14) had a more significant improvement in antibacterial efficacy in terms of decrease in fever (p = 0.02), white blood cell count (p = 0.014), and C-reactive protein (p = 0.02) compared with children with fT>MIC < 5.6 h (n = 39) after meropenem therapy completed. No drug-related adverse events were shown to have a causal association with meropenem therapy. Our study shows the clinical benefits of sufficient target attainment of meropenem therapy. Meeting a suitable pharmacodynamic target attainment of meropenem is required to ensure better antibacterial efficacy in critically ill infants and children. Clinical Trial Registration:clinicaltrials.gov, Identifier NCT03643497.
Collapse
Affiliation(s)
- Zeming Wang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Bi
- Baoding Children’s Hospital, Baoding, China
| | - Dianping You
- Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Yu Tang
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Gang Liu
- Department of Infection Diseases, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jinqian Yu
- Department of Neonatology, Sunyi Women’s and Children’s Hospital of Beijing Children’s Hospital, Beijing, China
| | - Zhipeng Jin
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | | | - Xue Tian
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Hui Qi
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Lei Dong
- Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Lili Dong
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Qunqun Zhang
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Wei Zhao
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Shandong University, Jinan, China
- *Correspondence: Wei Zhao, ; Adong Shen,
| | - Adong Shen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
- *Correspondence: Wei Zhao, ; Adong Shen,
| |
Collapse
|
11
|
Maimongkol P, Yonwises W, Anugulruengkitt S, Sophonphan J, Treyaprasert W, Wacharachaisurapol N. Therapeutic drug monitoring of meropenem and pharmacokinetic-pharmacodynamic target assessment in critically ill pediatric patients from a prospective observational study. Int J Infect Dis 2022; 120:96-102. [PMID: 35489632 DOI: 10.1016/j.ijid.2022.04.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES To compare the unbound plasma meropenem concentrations at mid-dosing intervals (Cmid, 50%fT), end-dosing intervals (Ctrough, 100%fT), and proportions of patients achieving 50%fT and 100%fT above MIC (50%fT>MIC and 100%fT>MIC) between extended infusion (EI) and intermittent bolus (IB) administration in a therapeutic drug monitoring (TDM) program in children. METHODS A prospective observational study was conducted in children aged 1 month to 18 years receiving meropenem every 8 h by either EI or IB. Meropenem Cmid, Ctrough, and proportions of patients achieving 50%fT>MIC and 100%fT>MIC were compared. RESULTS TDM data from 72 patients with a median age (IQR) of 12 months (3-37) were used. Meropenem dose was 120 and 60 mg/kg/day in EI and IB groups, respectively. Geometric mean (95% CI) Cmid of EI versus IB was 17.3 mg/L (13.7-21.8) versus 3.4 mg/L (1.7-6.7) (P<0.001). Geometric mean (95% CI) Ctrough of EI versus IB was 2.3 mg/L (1.6-3.4) versus 0.8 mg/L (0.4-1.5) (P=0.005). Greater proportions of patients achieving 50%fT>MIC and 100%fT>MIC were observed in the EI group. CONCLUSIONS A meropenem dose of 20 mg/kg/dose given by IB should not be used in critically ill children, even if they are not suspected of having a CNS infection. A dose of 40 mg/kg/dose given by EI resulted in higher Cmid, Ctrough, and proportions of patients achieving 50%fT>MIC and 100%fT>MIC.
Collapse
Affiliation(s)
- Passara Maimongkol
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wanlika Yonwises
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suvaporn Anugulruengkitt
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Pediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jiratchaya Sophonphan
- The HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), Bangkok, Thailand
| | - Wanchai Treyaprasert
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Noppadol Wacharachaisurapol
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
12
|
Contemporary Treatment of Resistant Gram-Negative Infections in Pediatric Patients. Infect Dis Clin North Am 2022; 36:147-171. [DOI: 10.1016/j.idc.2021.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Dubinsky S, Watt K, Saleeb S, Ahmed B, Carter C, Yeung CH, Edginton A. Pharmacokinetics of Commonly Used Medications in Children Receiving Continuous Renal Replacement Therapy: A Systematic Review of Current Literature. Clin Pharmacokinet 2022; 61:189-229. [PMID: 34846703 PMCID: PMC8816883 DOI: 10.1007/s40262-021-01085-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND OBJECTIVE The use of continuous renal replacement therapy (CRRT) for renal support has increased substantially in critically ill children compared with intermittent modalities owing to its preferential effects on hemodynamic stability. With the expanding role of CRRT, the quantification of extracorporeal clearance and the effect on primary pharmacokinetic parameters is of the utmost importance. Within this review, we aimed to summarize the current state of the literature and compare published pharmacokinetic analyses of commonly used medications in children receiving CRRT to those who are not. METHODS A systematic search of the literature within electronic databases PubMed, EMBASE, Cochrane Library, and Web of Science was conducted. Published studies that were included contained relevant information on the use of commonly administered medications to children, from neonates to adolescents, receiving CRRT. Pharmacokinetic parameters that were analyzed included volume of distribution, total clearance, extracorporeal clearance, area under the curve, and elimination half-life. Information regarding CRRT circuit, flow rates, and membrane components was analyzed to investigate differences in pharmacokinetics between each modality. RESULTS Forty-five studies met the final inclusion criteria within this systematic review, totaling 833 pediatric patients, with 586 receiving CRRT. Antimicrobials were the most common pharmacological class represented within the literature, representing 81% (35/43) of studies analyzed. Children receiving CRRT largely had similar volume of distribution and total clearance to critically ill children not receiving CRRT, suggesting reno-protective dose adjustments may lead to subtherapeutic dosing regimens in these patients. Overall, there was a tendency for hydrophilic agents, with a low protein binding to undergo elevated total clearance in these children. However, results should be interpreted with caution because of the large variability amongst patient populations and heterogeneity with CRRT modalities, flow rates, and use of extracorporeal membrane oxygenation within studies. This review was able to identify that variation in solute removal, or CRRT modalities, properties (i.e., flow rates), and membrane composition, may have differing effects on the pharmacokinetics of commonly administered medications. CONCLUSIONS The current state of the literature regarding medications administered to children receiving CRRT largely focuses on antimicrobials. Significant gaps remain with other commonly used medications such as sedatives and analgesics. Overall reporting of patient clinical characteristics, CRRT settings, and circuit composition was poor, with only 10% of articles including all relevant information to assess the impact of CRRT on total clearance. Changes in pharmacokinetics because of CRRT often required higher than labeled doses, suggesting renally adjusted or reno-protective doses may lead to subtherapeutic dosing regimens. A thorough understanding of the interplay between patient, drug, and CRRT-circuit factors are required to ensure adequate delivery of dosing regimens to this vulnerable population.
Collapse
Affiliation(s)
- Samuel Dubinsky
- University of Waterloo, School of Pharmacy, Waterloo, Ontario, Canada
| | - Kevin Watt
- University of Waterloo, School of Pharmacy, Waterloo, Ontario, Canada;,Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | - Caitlin Carter
- University of Waterloo, School of Pharmacy, Waterloo, Ontario, Canada
| | - Cindy H.T. Yeung
- University of Waterloo, School of Pharmacy, Waterloo, Ontario, Canada
| | - Andrea Edginton
- University of Waterloo, School of Pharmacy, Waterloo, Ontario, Canada
| |
Collapse
|
14
|
Caro Y, Van Strate P, Sartorio M, Cámara M, De Zan M. Application of the lifecycle approach to the development and validation of a chromatographic method for therapeutic drug monitoring of ceftazidime, meropenem, and piperacillin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Zhou P, Zhang Y, Wang Z, Ying Y, Xing Y, Tong X, Zhai S. Extended or Continuous Infusion of Carbapenems in Children with Severe Infections: A Systematic Review and Narrative Synthesis. Antibiotics (Basel) 2021; 10:antibiotics10091088. [PMID: 34572670 PMCID: PMC8470113 DOI: 10.3390/antibiotics10091088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023] Open
Abstract
We systematically reviewed the efficacy and safety of an extended or continuous infusion (EI/CI) versus short-term infusion (STI) of carbapenems in children with severe infections. Databases, including PubMed, Embase, the Cochrane Library, Clinicaltrials.gov, China National Knowledge Infrastructure, WanFang Data, and SinoMed, were systematically searched from their inceptions to 10 August 2020, for all types of studies (such as randomized controlled trials (RCTs), retrospective studies, and pharmacokinetic or population pharmacokinetic (PK/PPK) studies) comparing EI/CI versus STI in children with severe infection. There was no limitation on language, and a manual search was also conducted. The data were screened, evaluated, extracted, and reviewed by two researchers independently. Quantitative (meta-analysis) or qualitative analyses of the included studies were performed. Twenty studies (including two RCTs, one case series, six case reports, and 11 PK/PPK studies) were included in this review (CRD42020162845). The RCTs’ quality evaluation results revealed a risk of selection and concealment bias. Qualitative analysis of RCTs demonstrated that, compared with STI, an EI (3 to 4 h) of meropenem in late-onset neonatal sepsis could improve the clinical effectiveness and microbial clearance rates, and reduce the rates of mortality; however, the differences in the incidence of other adverse events were not statistically significant. Retrospective studies showed that children undergoing an EI of meropenem experienced satisfactory clinical improvement. In addition, the results of the PK/PPK study showed that an EI (3 or 4 h)/CI of carbapenems in severely infected children was associated with a more satisfactory goal achievement rate (probability of target attainment) and a cumulative fraction of response than STI therapy. In summary, the EI/CI of carbapenems in children with severe infection has a relatively sufficient PK or pharmacodynamic (PD) basis and satisfactory efficacy and safety. However, due to the limited quantity and quality of studies, the EI/CI therapy should not be used routinely in severely infected children. This conclusion should be further verified by more high-quality controlled clinical trials or observational studies based on PK/PD theories.
Collapse
Affiliation(s)
- Pengxiang Zhou
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; (P.Z.); (Y.Z.); (Y.Y.)
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing 100191, China
| | - Yahui Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; (P.Z.); (Y.Z.); (Y.Y.)
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| | - Zhenhuan Wang
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
- Department of Pharmacy, First Hospital of Tsinghua University, Beijing 100016, China
| | - Yingqiu Ying
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; (P.Z.); (Y.Z.); (Y.Y.)
| | - Yan Xing
- Department of Pediatrics, Peking University Third Hospital, Beijing 100191, China;
| | - Xiaomei Tong
- Department of Pediatrics, Peking University Third Hospital, Beijing 100191, China;
- Correspondence: (X.T.); (S.Z.); Tel.: +86-(010)-82267671 (X.T.); +86-(010)-82266686 (S.Z.)
| | - Suodi Zhai
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; (P.Z.); (Y.Z.); (Y.Y.)
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing 100191, China
- Correspondence: (X.T.); (S.Z.); Tel.: +86-(010)-82267671 (X.T.); +86-(010)-82266686 (S.Z.)
| |
Collapse
|
16
|
Zylbersztajn B, Parker S, Navea D, Izquierdo G, Ortiz P, Torres JP, Fajardo C, Diaz R, Valverde C, Roberts J. Population Pharmacokinetics of Vancomycin and Meropenem in Pediatric Extracorporeal Membrane Oxygenation Support. Front Pharmacol 2021; 12:709332. [PMID: 34483917 PMCID: PMC8411703 DOI: 10.3389/fphar.2021.709332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/04/2021] [Indexed: 12/27/2022] Open
Abstract
Objective: Describe primary pharmacokinetic/pharmacodynamic (PK/PD) parameters of vancomycin and meropenem in pediatric patients undergoing ECMO and analyze utilized dosing to reach PK/PD target. Design: Prospective, multicentric, population PK analysis. Setting: Two hospitals with pediatric intensive care unit. Patients: Pediatric patients (1 month - 15 years old) receiving vancomycin and meropenem for empiric or definitive infection treatment while ECMO support. Measurements and Main Results: Four serum concentration were obtained for patients receiving vancomycin (n = 9) and three for meropenem (n = 9). The PK/PD target for vancomycin was a ratio of the area under the curve to the minimal inhibitory concentration (AUC/MIC) of >400, and for meropenem was 4 times above MIC for 50% of the dosing interval (fT50% > 4xMIC). Pharmacokinetic modeling was performed using PMetrics 1.5.0. We included nine patients, with 11 PK profiles for each antimicrobial. The median age of patients was 4 years old (2 months - 13 years) and 45% were male. Creatinine clearance (CL) was 183 (30–550) ml/min/1.73 m2. The median dose was 13.6 (range 10–15) mg/kg every 6–12 h and 40 mg/kg every 8–12 h for vancomycin and meropenem, respectively. Two compartment models were fitted. Weight was included as a covariate on volume of the central compartment (Vc) for meropenem. Weight was included as a covariate on both Vc and clearance (CL) and serum creatinine was also included as a covariate on CL for vancomycin. The pharmacokinetic parameters CL and Vc were 0.139 ± 0.102 L/h/kg and 0.289 ± 0.295 L/kg for meropenem and 0.060 ± 0.055 L/h/kg and 0.419 ± 0.280 L/kg for vancomycin, respectively. Across each dosing interval 91% of patients achieved the PK/PD targets for adequate exposure for meropenem and 63.6% for vancomycin. Conclusion: Pharmacokinetic/pharmacodynamic objectives for vancomycin were achieved partially with conventional doses and higher dosing with extended infusion were needed in the case of meropenem.
Collapse
Affiliation(s)
| | - Suzanne Parker
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | | | | | - Paula Ortiz
- Pediatric Intensive Care Unit, Roberto Del Rio Hospital, SantiagoChile
| | - Juan Pablo Torres
- Department of Infectious Disease, Clinica Las Condes, Santiago, Chile
| | | | - Rodrigo Diaz
- Intensive Care Unit, Clinica Las Condes, Santiago, Chile
| | | | - Jason Roberts
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Department of Intensive Care Medicine, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France.,Department of Pharmacy, Royal Brisbane & Women's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Wang Y, Chen W, Huang Y, Wang G, Li Z, Yan G, Chen C, Lu G. Optimized Dosing Regimens of Meropenem in Septic Children Receiving Extracorporeal Life Support. Front Pharmacol 2021; 12:699191. [PMID: 34504424 PMCID: PMC8421735 DOI: 10.3389/fphar.2021.699191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Objectives: To develop a population pharmacokinetic model of meropenem in children with sepsis receiving extracorporeal life support (ECLS) and optimize the dosage regimen based on investigating the probability of target attainment (PTA). Methods: The children with sepsis were prospectively enrolled in a pediatric intensive care unit from January 2018 to December 2019. The concentration-time data were fitted using nonlinear mixed effect model approach by NONMEM program. The stochastic simulation considering various scenarios based on proposed population pharmacokinetics model were conducted, and the PTAs were calculated to optimize the dosage regimens. Results: A total of 25 children with sepsis were enrolled, of whom13 received ECMO, 9 received CRRT, and 4 received ECMO combined with CRRT. 12 children received a two-step 3-h infusion and 13 children received 1-h infusion. Bodyweight and creatinine clearance had significant impacts on the PK parameters. ECMO intervention was not related to the PK properties. If 100%T > MIC was chosen as target, children receiving 40 mg/kg q8h over a 3 h-infusion only reached the PTA up to 77.4%. If bacteria with MIC 2 mg/L were to be treated with meropenem and the PTA target was 50%T > MIC, a dose of 40 mg/kg q8h for 1 h infusion would be necessary. Conclusions: The PK properties of meropenem in septic children receiving extracorporeal life support were best described. We recommended the opitimized dosing regimens for septic children receiving ECLS depending on the PTA of PK target 50%T > MIC and 100%T > MIC, for children with sepsis during ECLS with different body weight, estimated creatinine clearance (eCRCL) and MIC of bacteria.
Collapse
Affiliation(s)
- Yixue Wang
- Department of Pediatric Critical Care Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Weiming Chen
- Department of Pediatric Critical Care Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Yidie Huang
- Department of Clinical Pharmacy, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Guangfei Wang
- Department of Clinical Pharmacy, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Zhiping Li
- Department of Clinical Pharmacy, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Gangfeng Yan
- Department of Pediatric Critical Care Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Chao Chen
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Guoping Lu
- Department of Pediatric Critical Care Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
18
|
Population pharmacokinetics of meropenem in critically ill infant patients. Int J Infect Dis 2021; 111:58-64. [PMID: 34419581 DOI: 10.1016/j.ijid.2021.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Population pharmacokinetic analysis in critically ill infants remains a challenge for lack of information. OBJECTIVES To determine the population pharmacokinetic parameters of meropenem and evaluate the covariates affecting population pharmacokinetic parameters. METHODS A prospective study was conducted on 35 patients. A total of 160 blood samples were collected and determined free of drug concentrations of meropenem. Population pharmacokinetic data were analyzed using NONMEM software. Internal validation methods, including bootstrapping and prediction-corrected visual predictive checks, were applied to evaluate the robustness and predictive power of the final model. RESULTS A one-compartment model with first-order elimination showed the best fit to the data. The typical clearance (CL) values and volume of distribution (Vd) were 1.33 L/h and 2.27 L, respectively. Weight and creatinine clearance were influential covariates for CL, while weight was a significant covariate for Vd of meropenem. The model evaluation results suggested robustness and good predictability of the final model. The standard dosage regimens of meropenem achieved 40% f T>MIC but not enough if a more aggressive target of 80% f T>MIC at MIC value of ≥ 16 µg/mL is desired. CONCLUSIONS This population pharmacokinetic model could be used for suggesting individualized meropenem dosage regimens in critically ill infants.
Collapse
|
19
|
Chacón-González C, Rivera-Salgado D, Brenes-Chacón H, Naranjo-Zuñiga G, Ávila-Aguero ML. Use of Meropenem in a Tertiary Pediatric Hospital in Costa Rica and Its Role in the Era of Antimicrobial Stewardship. Cureus 2021; 13:e15809. [PMID: 34306876 PMCID: PMC8294019 DOI: 10.7759/cureus.15809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
Background Understanding antibiotic profiles and their resistance patterns can improve hospital quality care and optimize clinical outcomes. This paper characterizes the use of meropenem in the National Children’s Hospital of Caja Costarricense del Seguro Social (CCSS) in Costa Rica, and its role in antibiotic stewardship. Methods This is a retrospective observational study from hospitalized patients under 13 years of age that received meropenem as part of their treatment. Patients were identified through medical and pharmacy records. Data was summarized using frequencies and percentages for categorical variables, means and standard deviations for normally distributed continuous variables, and medians with interquartile ranges (IQR) for non-normally distributed continuous variables. Results A total of 181 of the 309 selected patients met inclusion criteria. Median age was 21 months (IQR: 4.0-79.0). Mean length of stay was 31 days (16.0-58.0). The most frequent diagnosis was septic shock (29%). 87% of patients received at least one antibiotic prior to receiving meropenem; 71% of patients received a second antibiotic simultaneously with meropenem. In 113 (62%) cases, meropenem was prescribed as empirical therapy. The most frequent isolate was extended-spectrum ß-lactamase Escherichia coli (24%). 74% of patients who received meropenem as targeted therapy had a favorable outcome. Conclusions Meropenem can be used as monotherapy for complicated, multi-drug resistant, gram negative, bacterial infections, due to its susceptibility profile, convenient dosing schedule, and minimum adverse effects. However, it should be restricted to cases where no other drug is available in order to safeguard its value.
Collapse
Affiliation(s)
- Constanza Chacón-González
- Pediatrics, Hospital Nacional de Niños "Dr. Carlos Sáenz Herrera", San José, CRI.,Medicine, Universidad de Ciencias Médicas (UCIMED), San José, CRI
| | - Daniel Rivera-Salgado
- Pediatrics, Hospital Nacional de Niños "Dr. Carlos Sáenz Herrera", San José, CRI.,Medicine, Universidad de Costa Rica, San José, CRI
| | - Helena Brenes-Chacón
- Pediatric Infectious Diseases, Hospital Nacional de Niños "Dr. Carlos Sáenz Herrera", San José, CRI
| | - Gabriela Naranjo-Zuñiga
- Pediatric Infectious Diseases, Hospital Nacional De Niños "Dr. Carlos Sáenz Herrera", San José, CRI.,Medicine, Universidad de Ciencias Médicas (UCIMED), San José, CRI
| | - María L Ávila-Aguero
- Pediatric Infectious Diseases, Hospital Nacional De Niños "Dr. Carlos Sáenz Herrera", San José, CRI.,Pediatric Infectious Diseases, Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, USA
| |
Collapse
|
20
|
Population Pharmacokinetics and Pharmacodynamics of Meropenem in Critically Ill Pediatric Patients. Antimicrob Agents Chemother 2021; 65:AAC.01909-20. [PMID: 33199385 DOI: 10.1128/aac.01909-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022] Open
Abstract
This study investigates the optimal meropenem (MEM) dosing regimen for critically ill pediatric patients, for which there is a lack of pharmacokinetic (PK) studies. We conducted a retrospective single-center PK and pharmacodynamic (PD) analysis of 34 pediatric intensive care unit patients who received MEM. Individual PK parameters were determined by a two-compartment analysis. The median (range) age and body weight were 1.4 (0.03 to 14.6) years and 8.9 (2.7 to 40.9) kg, respectively, and eight (23.5%) patients received continuous renal replacement therapy (CRRT), three of whom received extracorporeal membrane oxygenation. Renal function, the systemic inflammatory response syndrome (SIRS) score for the clearance (CL), and the use of CRRT for the central volume of distribution (V c) were identified as significant covariates. The mean CL, V c, and peripheral volume of distribution (V p) were 0.45 liters/kg/h, 0.49 liters/kg, and 0.34 liters/kg, respectively. The mean population CL of MEM increased by 35% in patients with SIRS and V c increased by 66% in patients on CRRT in the final model. Dosing simulations suggested that the standard dosing regimen provided insufficient PD exposures of a 100% free time above the MIC, and higher doses (40 to 80 mg/kg of body weight/dose every 8 h) with a prolonged 3-h infusion were required to ensure the appropriate PD exposures for patients with SIRS. Our PK model indicated that critically ill pediatric patients are at risk of subtherapeutic exposure under the standard dosing regimen of MEM. A larger, prospective investigation confirming the safety and efficacy of higher concentrations and prolonged infusion of MEM is necessary.
Collapse
|
21
|
Reappraisal of the Optimal Dose of Meropenem in Critically Ill Infants and Children: a Developmental Pharmacokinetic-Pharmacodynamic Analysis. Antimicrob Agents Chemother 2020; 64:AAC.00760-20. [PMID: 32513801 DOI: 10.1128/aac.00760-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/02/2020] [Indexed: 11/20/2022] Open
Abstract
Data of developmental pharmacokinetics (PK) of meropenem in critically ill infants and children with severe infections are limited. We assessed the population PK and defined the appropriate regimen to optimize treatment in this population based on developmental PK-pharmacodynamic (PD) analysis. Blood samples were collected from pediatric intensive care unit patients with severe infection treated with standard dosage regimens for meropenem. Population PK data were analyzed using NONMEM software. Fifty-seven patients (mean age, 2.96 years [range, 0.101 to 14.4]; mean body weight, 15.8 kg [range, 5.0 to 65.0]) were included. A total of 135 meropenem concentrations were obtainable for population PK modeling. The median number of samples per patients was 2 (range, 1 to 4). A two-compartment model with first-order elimination was optimal for PK modeling. Weight and creatinine clearance (estimated by the Schwartz formula) were significantly correlated with the PK parameters of meropenem. The probabilities of target attainment for pathogens with low MICs of 1 and 2 μg/ml were 87.5% and 68.6% following administration of 40 mg/kg/dose (every 8 h [q8h]) as a 4-h infusion and 98.0% and 73.3% with high MICs of 4 and 8 μg/ml following administration of 110 mg/kg/day as a continuous infusion in critically ill infants and children under 70% fT >MIC (the free time during which the plasma concentration of meropenem exceeds the MIC), respectively. The standard dosage regimens for meropenem did not meet an appropriate PD target, and an optimal dosing regimen was established in critically ill infants and children. (This study has been registered at ClinicalTrials.gov under identifier NCT03643497.).
Collapse
|
22
|
Saito J, Shoji K, Oho Y, Aoki S, Matsumoto S, Yoshida M, Nakamura H, Kaneko Y, Hayashi T, Yamatani A, Capparelli E, Miyairi I. Meropenem pharmacokinetics during extracorporeal membrane oxygenation and continuous haemodialysis: a case report. J Glob Antimicrob Resist 2020; 22:651-655. [PMID: 32417590 DOI: 10.1016/j.jgar.2020.04.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Pharmacokinetic (PK) parameters can change significantly during extracorporeal membrane oxygenation (ECMO) and continuous haemodialysis. This case report describes the pharmacokinetics of a 3-h meropenem infusion in an infantile anuric patient on ECMO with continuous haemodialysis. CASE A 19-month-old female patient with asplenia syndrome was admitted to the paediatric intensive care unit for postoperative management of an extracardiac total cavopulmonary connection procedure. Veno-arterial ECMO and continuous haemodialysis were initiated on postoperative Day 2 for circulatory insufficiency due to septic shock and thrombosis of the inferior vena cava extending to the pulmonary artery. Blood and ascites cultures were positive for extended-spectrum β-lactamase-producing Escherichia coli, and 3-h meropenem infusions [120-300 mg/kg/day divided every 8 h (q8h)] were commenced. Following dose escalation to 300 mg/kg/day q8h, sustained negative blood cultures were confirmed. The estimated meropenem clearance and volume of distribution (Vd) were 2.21 mL/kg/min and 0.59 L/kg, respectively. These patient-specific PK parameters were used to predict the PK profile of various dosing regimens. Both 1-h and 3-h infusions of meropenem at 60, 120 and 200 mg/kg/day q8h predicted that the free drug concentration would remain above the minimum inhibitory concentration (fT>MIC) at an MIC of 1 μg/mL for >40% of the dosing interval. However, when the target was set at 100% fT>MIC, only a 3-h infusion of 200 mg/kg/day q8h could achieve the target in this patient despite the presence of anuria. CONCLUSION To optimise meropenem dosing in paediatric patients on ECMO and continuous haemodialysis, further study and PK monitoring are warranted.
Collapse
Affiliation(s)
- Jumpei Saito
- Department of Pharmacy, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-0074, Japan.
| | - Kensuke Shoji
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan
| | - Yusuke Oho
- Department of Pharmacy, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-0074, Japan
| | - Satoshi Aoki
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Shotaro Matsumoto
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Michiko Yoshida
- Office for Infection Control, National Center for Child Health and Development, Tokyo, Japan
| | - Hidefumi Nakamura
- Clinical Research Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yukihiro Kaneko
- Department of Cardiovascular Surgery, National Center for Child Health and Development, Tokyo, Japan
| | - Taiyu Hayashi
- Department of Cardiology, National Center for Child Health and Development, Tokyo, Japan
| | - Akimasa Yamatani
- Department of Pharmacy, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-0074, Japan
| | - Edmund Capparelli
- University of California at San Diego, Division of Host-Microbe Systems and Therapeutics, University of California at San Diego, La Jolla, CA, USA
| | - Isao Miyairi
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
23
|
Caro Y, Cámara M, De Zan M. A review of bioanalytical methods for the therapeutic drug monitoring of β-lactam antibiotics in critically ill patients: Evaluation of the approaches used to develop and validate quality attributes. Talanta 2020; 210:120619. [DOI: 10.1016/j.talanta.2019.120619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022]
|
24
|
Degradation of Meropenem by Heterogeneous Photocatalysis Using TiO2/Fiberglass Substrates. Catalysts 2020. [DOI: 10.3390/catal10030344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Meropenem (MER), a carbapenem, is considered a last-resort antibiotic. Its presence in water bodies, together with other antibiotics, has brought about environmental problems related to the destruction of natural microorganisms and the development of antibiotic-resistant bacteria. Herein, the degradation of MER by heterogeneous photocatalysis using TiO2 immobilized on fiberglass substrates is reported. Morphological characterization of the substrates was performed by Scanning Electron Microscopy (SEM). Three pH values (4.0, 5.7, and 7.9) were tested for the treatment of MER solutions (100 mg/L). The best rate constants and MER removals were obtained at pH 4.0 (0.032 min−1; 83.79%) and 5.7 (0.032 min−1; 83.48%). Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removals of 25.80% and 29.60% were achieved for the treatment at a pH value of 5.7. The reuse and regeneration of the plates were also tested. The activity of the substrates was maintained until the fourth cycle of reuse, nonetheless, a decrease in MER removal was observed for the 5th cycle. After the fourth cycle of reuse, the activity of the substrates was recovered by a regeneration procedure involving a wash stage of the substrates with a 1% H2O2 solution in an ultrasonic bath.
Collapse
|
25
|
Hassan HE, Ivaturi V, Gobburu J, Green TP. Dosage Regimens for Meropenem in Children with Pseudomonas Infections Do Not Meet Serum Concentration Targets. Clin Transl Sci 2019; 13:301-308. [PMID: 31692264 PMCID: PMC7070814 DOI: 10.1111/cts.12710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/28/2019] [Indexed: 11/30/2022] Open
Abstract
There have been literature reports that some recommended meropenem dosage regimens may fail to meet therapeutic targets in some high‐risk children and adults. We evaluated this observation in children using literature studies conducted in infants and children. Observed and, as necessary, simulated data from the literature were combined, yielding a data set of 288 subjects (1 day to ~ 17 years). A population pharmacokinetic model was fit to the data and then used to simulate the recommended dosing regimens and estimate the proportion of subjects achieving recommended target exposures. A two‐compartment model best fit the data with weight, postnatal age, gestational age, and serum creatinine as covariates. The US Food and Drug Administration (FDA)‐approved dosing regimens achieved targets in ~ 90% or more of subjects less than 3 months of age for organisms with minimum inhibitory concentration (MIC)'s of 2 and 4 mg/L; however, only 68.4% and 41.7% of subjects older than 3 months and weighing < 50 kg achieved target exposures for organisms with MIC's of 2 and 4 mg/L, respectively [Correction added on January 23, 2020, after first online publication: "> 3 months" corrected to "less than 3 months".]. Moreover, for subjects weighing more than 50 kg, only 41.3% and 17% achieved these respective targets. Simulation studies were used to explore the impact of changing dose, dosing interval, and infusion duration on the likelihood of achieving therapeutic targets in these groups. Our findings illustrate that current dosing recommendations for children over 3 months of age fail to meet therapeutic targets in an unacceptable fraction of patients. Further investigation is needed to develop new dosing strategies in these patients.
Collapse
Affiliation(s)
- Hazem E Hassan
- School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Vijay Ivaturi
- School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jogarao Gobburu
- School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Thomas P Green
- Feinberg School of Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
26
|
Population pharmacokinetics of meropenem in critically ill children with different renal functions. Eur J Clin Pharmacol 2019; 76:61-71. [DOI: 10.1007/s00228-019-02761-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 09/06/2019] [Indexed: 10/25/2022]
|
27
|
Zou L, Meng F, Hu L, Huang Q, Liu M, Yin T. A novel reversed-phase high-performance liquid chromatographic assay for the simultaneous determination of imipenem and meropenem in human plasma and its application in TDM. J Pharm Biomed Anal 2019; 169:142-150. [PMID: 30861406 DOI: 10.1016/j.jpba.2019.01.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/24/2018] [Accepted: 01/25/2019] [Indexed: 11/30/2022]
Abstract
A rapid and specific reversed-phase high-performance liquid chromatographic (RP-HPLC) assay with UV detection has been developed and validated for the simultaneous determination of imipenem and meropenem in human plasma. The extraction process was performed through protein precipitation method using acetonitrile and dichloromethane, and the recoveries of quality controls (QCs) were > 91.5%. Isocratic elution followed by gradient elution of acetonitrile and water was employed over a C18 analytical column for separation. The detection was performed at 298 nm. This method was accurate and reproducible (coefficient of variation, CV < 8%), allowing quantification of carbapenem at the plasma-level ranges from 0.1 to 100 μg/ml without interference of any of the 30 frequently prescribed drugs. Stabilities of imipenem and meropenem were determined with or without stabilizer solutions at -80°C, -20°C, +4 °C and room temperature 20°C. These two drugs showed higher stability at the low temperatures. Addition of 3-(N-morpholino) propanesulfonic acid (MOPS) might also increase their stability. The results of therapeutic drug monitoring (TDM) in neonates and adults showed high inter- and intra- individual variabilities in the trough concentrations of imipenem and meropenem, thus confirming the importance and necessity of TDM. For neonatal patients, imipenem 20 mg/kg, q12h (40mg/kg/day) failed to produce significant therapeutic effects, and either the dose or the frequency was adjusted to achieve 60mg/kg/day or above to maintain the trough concentration required for the curative effect. The low operational cost and good separation efficiency would help implement this assay for the routine therapeutic drug monitoring of imipenem and meropenem in hospitals.
Collapse
Affiliation(s)
- Le Zou
- Pharmacy department, Xiangya Hospital, Central south university, No. 87, Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Fanqi Meng
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172, Tongzipo Road, Changsha, 410013, Hunan Province, China.
| | - Lin Hu
- Pharmacy department, Xiangya Hospital, Central south university, No. 87, Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Qi Huang
- Pharmacy department, Xiangya Hospital, Central south university, No. 87, Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Min Liu
- Pharmacy department, Xiangya Hospital, Central south university, No. 87, Xiangya Road, Changsha, 410008, Hunan Province, China.
| | - Tao Yin
- Pharmacy department, Xiangya Hospital, Central south university, No. 87, Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
28
|
Lonsdale DO, Baker EH, Kipper K, Barker C, Philips B, Rhodes A, Sharland M, Standing JF. Scaling beta-lactam antimicrobial pharmacokinetics from early life to old age. Br J Clin Pharmacol 2018; 85:316-346. [PMID: 30176176 DOI: 10.1111/bcp.13756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/02/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
AIMS Beta-lactam dose optimization in critical care is a current priority. We aimed to review the pharmacokinetics (PK) of three commonly used beta-lactams (amoxicillin ± clavulanate, piperacillin-tazobactam and meropenem) to compare PK parameters reported in critically and noncritically ill neonates, children and adults, and to investigate whether allometric and maturation scaling principles could be applied to describe changes in PK parameters through life. METHODS A systematic review of PK studies of the three drugs was undertaken using MEDLINE and EMBASE. PK parameters and summary statistics were extracted and scaled using allometric principles to 70 kg individual for comparison. Pooled data were used to model clearance maturation and decline using a sigmoidal (Hill) function. RESULTS A total of 130 papers were identified. Age ranged from 29 weeks to 82 years and weight from 0.9-200 kg. PK parameters from critically ill populations were reported with wider confidence intervals than those in healthy volunteers, indicating greater PK variability in critical illness. The standard allometric size and sigmoidal maturation model adequately described increasing clearance in neonates, and a sigmoidal model was also used to describe decline in older age. Adult weight-adjusted clearance was achieved at approximately 2 years postmenstrual age. Changes in volume of distribution were well described by the standard allometric model, although amoxicillin data suggested a relatively higher volume of distribution in neonates. CONCLUSIONS Critical illness is associated with greater PK variability than in healthy volunteers. The maturation models presented will be useful for optimizing beta-lactam dosing, although a prospective, age-inclusive study is warranted for external validation.
Collapse
Affiliation(s)
- Dagan O Lonsdale
- Institute for Infection and Immunity, St George's, University of London, London, UK.,St George's University Hospitals NHS Foundation Trust, London, UK
| | - Emma H Baker
- Institute for Infection and Immunity, St George's, University of London, London, UK.,St George's University Hospitals NHS Foundation Trust, London, UK
| | - Karin Kipper
- Institute for Infection and Immunity, St George's, University of London, London, UK.,Institute of Chemistry, University of Tartu, Tartu, Estonia.,Analytical Services International Ltd
| | - Charlotte Barker
- Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Barbara Philips
- Institute for Infection and Immunity, St George's, University of London, London, UK.,St George's University Hospitals NHS Foundation Trust, London, UK
| | - Andrew Rhodes
- St George's University Hospitals NHS Foundation Trust, London, UK
| | - Mike Sharland
- Institute for Infection and Immunity, St George's, University of London, London, UK.,St George's University Hospitals NHS Foundation Trust, London, UK
| | - Joseph F Standing
- Institute for Infection and Immunity, St George's, University of London, London, UK.,St George's University Hospitals NHS Foundation Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
29
|
Multicenter Study of the Relationship between Carbapenem MIC Values and Clinical Outcome of Patients with Acinetobacter Bacteremia. Antimicrob Agents Chemother 2017; 61:AAC.00661-17. [PMID: 28652230 DOI: 10.1128/aac.00661-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/19/2017] [Indexed: 11/20/2022] Open
Abstract
The Clinical and Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) offer different recommendations for carbapenem MIC susceptibility breakpoints for Acinetobacter species. In addition, the clinical efficacy of the intermediate category remains uncertain. This study was designed to determine the optimal predictive breakpoints based on the survival of patients with Acinetobacter bacteremia treated with a carbapenem. We analyzed the 30-day mortality rates of 224 adults who received initial carbapenem monotherapy for the treatment of Acinetobacter bacteremia at 4 medical centers over a 5-year period, according to the carbapenem MICs of the initial isolates. The 30-day mortality was about 2-fold greater in patients whose isolates had carbapenem MICs of ≥8 mg/liter than in those with isolates with MICs of ≤4 mg/liter. The differences were significant by bivariate analysis (53.1% [60/113] versus 25.2% [28/111], respectively; P < 0.001) and on survival analysis by the log rank test (P < 0.001). Classification and regression tree analysis revealed a split between MICs of 4 and 8 mg/liter and predicted the same difference in mortality, with a P value of <0.001. Carbapenem treatment for Acinetobacter bacteremia caused by isolates with carbapenem MICs of ≥8 mg/liter was an independent predictor of 30-day mortality (odds ratio, 4.218; 95% confidence interval, 2.213 to 8.039; P < 0.001). This study revealed that patients with Acinetobacter bacteremia treated with a carbapenem had a more favorable outcome when the carbapenem MICs of their isolates were ≤4 mg/liter than those with MICs of ≥8 mg/liter.
Collapse
|
30
|
Cies JJ, Moore WS, Enache A, Chopra A. Population Pharmacokinetics and Pharmacodynamic Target Attainment of Meropenem in Critically Ill Young Children. J Pediatr Pharmacol Ther 2017; 22:276-285. [PMID: 28943823 DOI: 10.5863/1551-6776-22.4.276] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This study aims to describe the population pharmacokinetics and pharmacodynamic target attainment of meropenem in critically ill children. METHODS The study involved a retrospective medical record review from a 189-bed, freestanding children's tertiary care teaching hospital of patients ages 1 to 9 years who received meropenem with concurrent therapeutic drug monitoring. RESULTS There were 9 patients ages 1 to 9 years (mean age, 3.1 ± 2.9 years) with a mean weight of 17.1 ± 11.9 kg who met the inclusion/exclusion criteria and were included in the pharmacokinetic analysis. Meropenem concentrations were best described by a 2-compartment model with first-order elimination, with an R2 and bias of 0.91 and 13.2 mg/L, respectively, for the observed versus population predicted concentrations, and an R2, bias, and imprecision of 1, 0.0675, and 1 mg/L, respectively, for the observed versus individual predicted concentrations. The mean total body drug clearance for the population was 6.99 ± 2.5 mL/min/kg, and Vc was 0.57 ± 0.47 L/kg. The calculated population estimate for the total volume of distribution was 0.78 ± 0.73 L/kg. Standard 0.5-hour meropenem infusions did not provide for appropriate pharmacodynamic exposures of 40% free time > minimum inhibitory concentration (40% fT > MIC) for Gram-negative organisms with susceptible MICs. Dosage regimens employing prolonged and continuous infusion regimens did provide appropriate pharmacodynamic exposures of 40% fT > MIC for Gram-negative organisms up to the break point for Pseudomonas aeruginosa of 4 mg/L. CONCLUSION These data suggest the reference dosage regimens for meropenem (20-40 mg/kg per dose every 8 hours) do not meet an appropriate pharmacodynamic target attainment in critically ill children ages 1 to 9 years. Based on these data, only the 3- to 4-hour prolonged infusion and 24-hour continuous infusion regimens were able to achieve an optimal probability of target attainment against all susceptible Gram-negative bacteria in critically ill children for 40% fT > MIC. Dosage regimens of 120 and 160 mg/kg/day as continuous infusion regimens may be necessary to achieve an optimal probability of target attainment against all susceptible Gram-negative bacteria in critically ill children for 80% fT > MIC. Based on these findings, confirmation with a larger, prospective investigation in critically ill children is warranted.
Collapse
|
31
|
Dorofaeff T, Bandini RM, Lipman J, Ballot DE, Roberts JA, Parker SL. Uncertainty in Antibiotic Dosing in Critically Ill Neonate and Pediatric Patients: Can Microsampling Provide the Answers? Clin Ther 2016; 38:1961-75. [PMID: 27544661 DOI: 10.1016/j.clinthera.2016.07.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE With a decreasing supply of antibiotics that are effective against the pathogens that cause sepsis, it is critical that we learn to use currently available antibiotics optimally. Pharmacokinetic studies provide an evidence base from which we can optimize antibiotic dosing. However, these studies are challenging in critically ill neonate and pediatric patients due to the small blood volumes and associated risks and burden to the patient from taking blood. We investigate whether microsampling, that is, obtaining a biologic sample of low volume (<50 μL), can improve opportunities to conduct pharmacokinetic studies. METHODS We performed a literature search to find relevant articles using the following search terms: sepsis, critically ill, severe infection, intensive care AND antibiotic, pharmacokinetic, p(a)ediatric, neonate. For microsampling, we performed a search using antibiotics AND dried blood spots OR dried plasma spots OR volumetric absorptive microsampling OR solid-phase microextraction OR capillary microsampling OR microsampling. Databases searched include Web of Knowledge, PubMed, and EMbase. FINDINGS Of the 32 antibiotic pharmacokinetic studies performed on critically ill neonate or pediatric patients in this review, most of the authors identified changes to the pharmacokinetic properties in their patient group and recommended either further investigations into this patient population or therapeutic drug monitoring to ensure antibiotic doses are suitable. There remain considerable gaps in knowledge regarding the pharmacokinetic properties of antibiotics in critically ill pediatric patients. Implementing microsampling in an antibiotic pharmacokinetic study is contingent on the properties of the antibiotic, the pathophysiology of the patient (and how this can affect the microsample), and the location of the patient. A validation of the sampling technique is required before implementation. IMPLICATIONS Current antibiotic regimens for critically ill neonate and pediatric patients are frequently suboptimal due to a poor understanding of altered pharmacokinetic properties. An assessment of the suitability of microsampling for pharmacokinetic studies in neonate and pediatric patients is recommended before wider use. The method of sampling, as well as the method of bioanalysis, also requires validation to ensure the data obtained reflect the true result.
Collapse
Affiliation(s)
- Tavey Dorofaeff
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia; Paediatric Intensive Care, Lady Cilento Children's Hospital, Brisbane, Australia
| | - Rossella M Bandini
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa; Wits UQ Critical Care Infection Collaboration, Johannesburg, South Africa
| | - Jeffrey Lipman
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia; Wits UQ Critical Care Infection Collaboration, Johannesburg, South Africa; Department of Intensive Care Medicine, Royal Brisbane Hospital, Brisbane, Australia; Faculty of Health, Brisbane, Queensland University of Technology, Brisbane, Australia
| | - Daynia E Ballot
- Wits UQ Critical Care Infection Collaboration, Johannesburg, South Africa; Department of Paediatrics and Child Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Jason A Roberts
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia; Department of Intensive Care Medicine, Royal Brisbane Hospital, Brisbane, Australia; Department of Pharmacy, Royal Brisbane Hospital, Brisbane, Australia; School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Suzanne L Parker
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia.
| |
Collapse
|