1
|
Latarissa IR, Khairinisa MA, Iftinan GN, Meiliana A, Sormin IP, Barliana MI, Lestari K. Efficacy and Safety of Antimalarial as Repurposing Drug for COVID-19 Following Retraction of Chloroquine and Hydroxychloroquine. Clin Pharmacol 2025; 17:1-11. [PMID: 39845335 PMCID: PMC11748038 DOI: 10.2147/cpaa.s493750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Various repurposing drugs have been tested for their efficacy on coronavirus disease 2019 (COVID-19), including antimalarial drugs. During the pandemic, Chloroquine (CQ) and Hydroxychloroquine (HCQ) demonstrated good potential against COVID-19, but further studies showed both drugs had side effects that were more dangerous than the efficacy. This made World Health Organization (WHO) ban the usage for COVID-19 patients. In this context, there is a need to explore other antimalarial drugs as potential therapies for COVID-19. This study provides a descriptive synthesis of clinical trials evaluating antimalarial drugs for COVID-19 treatment conducted after the withdrawal of CQ and HCQ. The method was a literature study using the keywords "antimalarial", "COVID-19", "SARS-CoV-2", "clinical trial", and "randomized controlled trial" on the MEDLINE, Scopus, and Cochrane databases. Inclusion criteria were published clinical trials with randomized controlled trials (RCTs) on the efficacy and safety of single antimalarial drugs for COVID-19, published in English and excluding combination therapies. The results showed 3 antimalarial drugs, namely Quinine Sulfate (QS), Atovaquone (AQ), and Artemisinin-Piperaquine (AP), had gone through clinical trial to assess efficacy and safety against COVID-19 patients. Out of the 3 drugs, only AP showed significant results in the primary outcome, which was the time required to reach undetectable levels of SARS-CoV-2. Furthermore, the intervention group took 10.6 days, and the control group took 19.3 days (p=0.001). Based on this review, AP showed significant potential as a therapy in the fight against COVID-19.
Collapse
Affiliation(s)
- Irma Rahayu Latarissa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Medication Therapy Adherence Clinic (MTAC), Universitas Padjadjaran, Sumedang, Indonesia
| | - Miski Aghnia Khairinisa
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ghina Nadhifah Iftinan
- Medication Therapy Adherence Clinic (MTAC), Universitas Padjadjaran, Sumedang, Indonesia
| | - Anna Meiliana
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Prodia Clinical Laboratory, Central Jakarta, Indonesia
| | - Ida Paulina Sormin
- Faculty of Pharmacy, University of 17 August 1945 Jakarta, Jakarta, Indonesia
- Prodia Diacro Laboratory, Jakarta, Indonesia
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia
| | - Keri Lestari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Medication Therapy Adherence Clinic (MTAC), Universitas Padjadjaran, Sumedang, Indonesia
- Center of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
2
|
Das G, Shin HS, Patra JK. The Antiviral and Antimalarial Prodrug Artemisinin from the Artemisia Species: A Review. Curr Issues Mol Biol 2024; 46:12099-12118. [PMID: 39590312 PMCID: PMC11593081 DOI: 10.3390/cimb46110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Artemisinin is a truly fascinating drug in many ways. Since the unrestrained procedure of its detection, as an antimalarial drug, artemisinin has received a great deal of consideration. Recently, application of artemisinin-based combination therapy has been broadly applied for treating numerous ailments. Moreover, as an antimalarial compound, artemisinin and its associated compounds have abundant healing efficacy and can be repurposed for additional symptoms, like autoimmune infections, cancer, and viral contaminations. Recently a number of studies have highlighted the significance of the artemisinin-related compounds in SARS-CoV-2 treatment. The current review purposes to present a concise account of the history of the antiviral and antimalarial prodrugs-Artemisinin, from the Artemisia species. It is followed by its antiviral, antimalarial prospective, chemical nature and extraction procedure, photochemistry, mechanism of action, and its clinical trials and patents, and accentuates the significance of the mechanistic studies concerned for therapeutic results, both in viral and malarial circumstances.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea;
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea;
| |
Collapse
|
3
|
Alipour Z, Zarezadeh S, Ghotbi-Ravandi AA. The Potential of Anti-coronavirus Plant Secondary Metabolites in COVID-19 Drug Discovery as an Alternative to Repurposed Drugs: A Review. PLANTA MEDICA 2024; 90:172-203. [PMID: 37956978 DOI: 10.1055/a-2209-6357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
In early 2020, a global pandemic was announced due to the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), known to cause COVID-19. Despite worldwide efforts, there are only limited options regarding antiviral drug treatments for COVID-19. Although vaccines are now available, issues such as declining efficacy against different SARS-CoV-2 variants and the aging of vaccine-induced immunity highlight the importance of finding more antiviral drugs as a second line of defense against the disease. Drug repurposing has been used to rapidly find COVID-19 therapeutic options. Due to the lack of clinical evidence for the therapeutic benefits and certain serious side effects of repurposed antivirals, the search for an antiviral drug against SARS-CoV-2 with fewer side effects continues. In recent years, numerous studies have included antiviral chemicals from a variety of plant species. A better knowledge of the possible antiviral natural products and their mechanism against SARS-CoV-2 will help to develop stronger and more targeted direct-acting antiviral agents. The aim of the present study was to compile the current data on potential plant metabolites that can be investigated in COVID-19 drug discovery and development. This review represents a collection of plant secondary metabolites and their mode of action against SARS-CoV and SARS-CoV-2.
Collapse
Affiliation(s)
- Zahra Alipour
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Somayeh Zarezadeh
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
4
|
Li W, Ding T, Chang H, Peng Y, Li J, Liang X, Ma H, Li F, Ren M, Wang W. Plant-derived strategies to fight against severe acute respiratory syndrome coronavirus 2. Eur J Med Chem 2024; 264:116000. [PMID: 38056300 DOI: 10.1016/j.ejmech.2023.116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused an unprecedented crisis, which has been exacerbated because specific drugs and treatments have not yet been developed. In the post-pandemic era, humans and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will remain in equilibrium for a long time. Therefore, we still need to be vigilant against mutated SARS-CoV-2 variants and other emerging human viruses. Plant-derived products are increasingly important in the fight against the pandemic, but a comprehensive review is lacking. This review describes plant-based strategies centered on key biological processes, such as SARS-CoV-2 transmission, entry, replication, and immune interference. We highlight the mechanisms and effects of these plant-derived products and their feasibility and limitations for the treatment and prevention of COVID-19. The development of emerging technologies is driving plants to become production platforms for various antiviral products, improving their medicinal potential. We believe that plant-based strategies will be an important part of the solutions for future pandemics.
Collapse
Affiliation(s)
- Wenkang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Tianze Ding
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Huimin Chang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yuanchang Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jun Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xin Liang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Huixin Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610000, China
| | - Wenjing Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572000, China.
| |
Collapse
|
5
|
Liu H, Li Z, Zhang Y, Jia L, Cai M, Wang R, Guo C. Antiviral effects of artemisinin and its derivatives. Chin Med J (Engl) 2023; 136:2993-2995. [PMID: 38018178 PMCID: PMC10752449 DOI: 10.1097/cm9.0000000000002934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 11/30/2023] Open
Affiliation(s)
- Hao Liu
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhen Li
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Lin Jia
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Rui Wang
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Caiping Guo
- Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
6
|
Golenser J, Hunt NH, Birman I, Jaffe CL, Zech J, Mäder K, Gold D. Applicability of Redirecting Artemisinins for New Targets. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300030. [PMID: 38094863 PMCID: PMC10714028 DOI: 10.1002/gch2.202300030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Indexed: 10/16/2024]
Abstract
Employing new therapeutic indications for drugs that are already approved for human use has obvious advantages, including reduced costs and timelines, because some routine steps of drug development and regulation are not required. This work concentrates on the redirection of artemisinins (ARTS) that already are approved for clinical use, or investigated, for malaria treatment. Several mechanisms of action are suggested for ARTS, among which only a few have been successfully examined in vivo, mainly the induction of oxidant stress and anti-inflammatory effects. Despite these seemingly contradictory effects, ARTS are proposed for repurposing in treatment of inflammatory disorders and diverse types of diseases caused by viral, bacterial, fungal, and parasitic infections. When pathogens are treated the expected outcome is diminution of the causative agents and/or their inflammatory damage. In general, repurposing ARTS is successful in only a very few cases, specifically when a valid mechanism can be targeted using an additional therapeutic agent and appropriate drug delivery. Investigation of repurposing should include optimization of drug combinations followed by examination in relevant cell lines, organoids, and animal models, before moving to clinical trials.
Collapse
Affiliation(s)
- Jacob Golenser
- Department of Microbiology and Molecular GeneticsKuvin Center for the Study of Infectious and Tropical DiseasesThe Hebrew University – Hadassah Medical CenterJerusalemIsrael
| | - Nicholas H. Hunt
- School of Medical SciencesUniversity of SydneySydney2050Australia
| | - Ida Birman
- Department of Microbiology and Molecular GeneticsKuvin Center for the Study of Infectious and Tropical DiseasesThe Hebrew University – Hadassah Medical CenterJerusalemIsrael
| | - Charles L. Jaffe
- Department of Microbiology and Molecular GeneticsKuvin Center for the Study of Infectious and Tropical DiseasesThe Hebrew University – Hadassah Medical CenterJerusalemIsrael
| | - Johanna Zech
- Institute of PharmacyMartin Luther University Halle‐Wittenberg06108HalleGermany
| | - Karsten Mäder
- Institute of PharmacyMartin Luther University Halle‐Wittenberg06108HalleGermany
| | - Daniel Gold
- Department of Clinical Microbiology and ImmunologyFaculty of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
7
|
Man HSJ, Moosa VA, Singh A, Wu L, Granton JT, Juvet SC, Hoang CD, de Perrot M. Unlocking the potential of RNA-based therapeutics in the lung: current status and future directions. Front Genet 2023; 14:1281538. [PMID: 38075698 PMCID: PMC10703483 DOI: 10.3389/fgene.2023.1281538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/06/2023] [Indexed: 02/12/2024] Open
Abstract
Awareness of RNA-based therapies has increased after the widespread adoption of mRNA vaccines against SARS-CoV-2 during the COVID-19 pandemic. These mRNA vaccines had a significant impact on reducing lung disease and mortality. They highlighted the potential for rapid development of RNA-based therapies and advances in nanoparticle delivery systems. Along with the rapid advancement in RNA biology, including the description of noncoding RNAs as major products of the genome, this success presents an opportunity to highlight the potential of RNA as a therapeutic modality. Here, we review the expanding compendium of RNA-based therapies, their mechanisms of action and examples of application in the lung. The airways provide a convenient conduit for drug delivery to the lungs with decreased systemic exposure. This review will also describe other delivery methods, including local delivery to the pleura and delivery vehicles that can target the lung after systemic administration, each providing access options that are advantageous for a specific application. We present clinical trials of RNA-based therapy in lung disease and potential areas for future directions. This review aims to provide an overview that will bring together researchers and clinicians to advance this burgeoning field.
Collapse
Affiliation(s)
- H. S. Jeffrey Man
- Temerty Faculty of Medicine, Institute of Medical Science, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Respirology and Critical Care Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Vaneeza A. Moosa
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, ON, Canada
| | - Anand Singh
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Licun Wu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, ON, Canada
| | - John T. Granton
- Division of Respirology and Critical Care Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Stephen C. Juvet
- Temerty Faculty of Medicine, Institute of Medical Science, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Respirology and Critical Care Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Chuong D. Hoang
- Thoracic Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marc de Perrot
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, ON, Canada
| |
Collapse
|
8
|
Li X, Feng J, Yuan Y, Zhang S, Xu Z, Xu Q, Song J, Ru L, Yuan Z, Wu W. Acute and subacute oral toxicity of artemisinin-hydroxychloroquine sulfate tablets in beagle dogs. Drug Chem Toxicol 2023; 46:995-1003. [PMID: 36039016 DOI: 10.1080/01480545.2022.2116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/03/2022]
Abstract
Artemisinin-hydroxychloroquine sulfate tablets (AH) are regarded as a relatively inexpensive and novel combination therapy for the treatment of various forms of malaria, particularly aminoquinoline drugs-resistant strains of Plasmodium falciparum. Our aim was to conduct acute and subacute oral toxicity studies in non-rodents to obtain more nonclinical data on the safety of AH. Acute toxicity evaluation was performed in beagle dogs at single doses of 230, 530, 790, 1180, 2660, and 5000 mg/kg. Beagle dogs at doses of 0, 56, 84, and 126 mg/kg were used to assess subacute toxicity for 14 days. The approximate lethal dose range for acute oral administration of AH in dogs is found to be 790-1180 mg/kg, and toxic symptoms prior to death include gait instability, limb weakness, mental fatigue, tachypnea, and convulsion. Repeated doses of AH in dogs caused vomiting, soft feces, decreased activity, anorexia, and splenic red pulp vacuolation. Of note, AH could reduce body weight gain and prolong the QTc interval of individual dogs. Therefore, the no-observed-adverse-effect level (NOAEL) and lowest-observed-adverse-effect level (LOAEL) of oral administration of AH for 14 days in dogs are determined to be 84 mg/kg and 126 mg/kg, respectively.
Collapse
Affiliation(s)
- Xiaobo Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianjia Feng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueming Yuan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shouya Zhang
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyong Xu
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Ru
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zheng Yuan
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanting Wu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Weathers PJ. Artemisinin as a therapeutic vs. its more complex Artemisia source material. Nat Prod Rep 2023; 40:1158-1169. [PMID: 36541391 DOI: 10.1039/d2np00072e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Covering: up to 2017-2022Many small molecule drugs are first discovered in nature, commonly the result of long ethnopharmacological use by people, and then characterized and purified from their biological sources. Traditional medicines are often more sustainable, but issues related to source consistency and efficacy present challenges. Modern medicine has focused solely on purified molecules, but evidence is mounting to support some of the more traditional uses of medicinal biologics. When is a more traditional delivery of a therapeutic appropriate and warranted? What studies are required to establish validity of a traditional medicine approach? Artemisia annua and A. afra are two related but unique medicinal plant species with long histories of ethnopharmacological use. A. annua produces the sesquiterpene lactone antimalarial drug, artemisinin, while A. afra produces at most, trace amounts of the compound. Both species also have an increasing repertoire of modern scientific and pharmacological data that make them ideal candidates for a case study. Here accumulated recent data on A. annua and A. afra are reviewed as a basis for establishing a decision tree for querying their therapeutic use, as well as that of other medicinal plant species.
Collapse
Affiliation(s)
- Pamela J Weathers
- Department of Biology and Biotechnology, 100 Institute Rd, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
10
|
Nair MS, Huang Y, Wang M, Weathers PJ. SARS-CoV-2 omicron variants are susceptible in vitro to Artemisia annua hot water extracts. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116291. [PMID: 36804200 PMCID: PMC9937997 DOI: 10.1016/j.jep.2023.116291] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L. has >2000 yr of history in treating fever a symptom common to many infectious diseases including viruses. The plant is widely used as a tea infusion in many areas of the globe to thwart many infectious diseases. AIM OF THE STUDY The SARS-CoV-2 (COVID-19) virus continues to infect millions while rapidly evolving new variants that are more transmissible and evade vaccine-elicited antibodies, e.g., omicron and its subvariants. Having shown potency against all previously tested variants, A. annua L. extracts were further tested against highly infectious omicron and its recent subvariants. MATERIALS AND METHODS Using Vero E6 cells, we measured the in vitro efficacy (IC50) of stored (frozen) dried-leaf hot-water A. annua L. extracts of four cultivars (A3, BUR, MED, and SAM) against SARS-CoV-2 variants: original WA1 (WT), BA.1 (omicron), BA.2, BA.2.12.1, and BA.4. End point virus titers of infectivity in cv. BUR-treated human lung A459 cells overexpressing hu-ACE2 were determined for both WA1 and BA.4 viruses. RESULTS When normalized to the artemisinin (ART) or leaf dry weight (DW) equivalent of the extract, the IC50 values ranged from 0.5 to 16.5 μM ART and from 20 to 106 μg DW. IC50 values were within limits of assay variation of our earlier studies. End-point titers confirmed a dose-response inhibition in ACE2 overexpressing human lung cells to the BUR cultivar. Cell viability losses were not measurable at leaf dry weights ≤50 μg for any cultivar extract. CONCLUSIONS A. annua hot-water extracts (tea infusions) continue to show efficacy against SARS-CoV-2 and its rapidly evolving variants and deserve greater attention as a possible cost-effective therapeutic.
Collapse
Affiliation(s)
- M S Nair
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, USA.
| | - Y Huang
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, USA.
| | - M Wang
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, USA.
| | - P J Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
11
|
Elmi A, Mohamed AS, Said S, Bationo R. A Comparison Study of Medicinal Plants Used Against SARS-CoV-2 and Those Recommended Against Malaria in Africa. ETHNOPHARMACOLOGY AND DRUG DISCOVERY FOR COVID-19: ANTI-SARS-COV-2 AGENTS FROM HERBAL MEDICINES AND NATURAL PRODUCTS 2023:549-573. [DOI: 10.1007/978-981-99-3664-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
13
|
Ji X, Meng X, Zhu X, He Q, Cui Y. Research and development of Chinese anti-COVID-19 drugs. Acta Pharm Sin B 2022; 12:4271-4286. [PMID: 36119967 PMCID: PMC9472487 DOI: 10.1016/j.apsb.2022.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
The outbreak and spread of coronavirus disease 2019 (COVID-19) highlighted the importance and urgency of the research and development of therapeutic drugs. Very early into the COVID-19 pandemic, China has begun developing drugs, with some notable progress. Herein, we summarizes the anti-COVID-19 drugs and promising drug candidates originally developed and researched in China. Furthermore, we discussed the developmental prospects, mechanisms of action, and advantages and disadvantages of the anti-COVID-19 drugs in development, with the aim to contribute to the rational use of drugs in COVID-19 treatment and more effective development of new drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the variants. Neutralizing antibody is an effective approach to overcome COVID-19. However, drug resistance induced by rapid virus mutation will likely to challenge neutralizing antibodies. Taking into account current epidemic trends, small molecule drugs have a crucial role in fighting COVID-19 due to their significant advantage of convenient administration and affordable and broad-spectrum. Traditional Chinese medicines, including natural products and traditional Chinese medicine prescriptions, contribute to the treatment of COVID-19 due to their unique mechanism of action. Currently, the research and development of Chinese anti-COVID-19 drugs have led to some promising achievements, thus prompting us to expect even more rapidly available solutions.
Collapse
Affiliation(s)
- Xiwei Ji
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China
| | - Xiangrui Meng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qingfeng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
14
|
Bijelić K, Hitl M, Kladar N. Phytochemicals in the Prevention and Treatment of SARS-CoV-2-Clinical Evidence. Antibiotics (Basel) 2022; 11:1614. [PMID: 36421257 PMCID: PMC9686831 DOI: 10.3390/antibiotics11111614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The first case of SARS-CoV-2 infection was reported in December 2019. Due to the rapid spread of the disease and the lack of adequate therapy, the use of plants that have a long history in the treatment of viral infections has often been considered. The aim of this paper is to provide a brief review of the literature on the use of phytochemicals during the new pandemic. An extensive search of published works was performed through platforms Google Scholar, PubMed, Science Direct, Web of Science and Clinicaltrials.gov. Numerous preclinical studies on the use of phytochemicals (quercetin, curcumin, baicalin, kaempferol, resveratrol, glycyrrhizin, lycorine, colchicine) against SARS-CoV-2 have shown that these components can be effective in the prevention and treatment of this infection. Clinical research has proven that the use of black cumin and green propolis as well as quercetin has positive effects. As for other phytochemicals, in addition to preclinical testing which has already been carried out, it would be necessary to conduct clinical tests in order to assert their effectiveness. For those phytochemicals whose clinical efficacy has been proven, it would be necessary to conduct research on a larger number of patients, so that the conclusions are more representative.
Collapse
Affiliation(s)
- Katarina Bijelić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Maja Hitl
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Nebojša Kladar
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Center for Medical and Pharmaceutical Investigation and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
15
|
Wang L, Wang Z, Yang Z, Wang X, Yan L, Wu J, Liu Y, Fu B, Yang H. Potential common mechanism of four Chinese patent medicines recommended by diagnosis and treatment protocol for COVID-19 in medical observation period. Front Med (Lausanne) 2022; 9:874611. [PMID: 36388945 PMCID: PMC9643314 DOI: 10.3389/fmed.2022.874611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
The global epidemic has been controlled to some extent, while sporadic outbreaks still occur in some places. It is essential to summarize the successful experience and promote the development of new drugs. This study aimed to explore the common mechanism of action of the four Chinese patent medicine (CPMs) recommended in the Medical Observation Period COVID-19 Diagnostic and Treatment Protocol and to accelerate the new drug development process. Firstly, the active ingredients and targets of the four CPMs were obtained by the Chinese medicine composition database (TCMSP, TCMID) and related literature, and the common action targets of the four TCMs were sorted out. Secondly, the targets of COVID-19 were obtained through the gene-disease database (GeneCards, NCBI). Then the Venn diagram was used to intersect the common drug targets with the disease targets. And GO and KEGG pathway functional enrichment analysis was performed on the intersected targets with the help of the R package. Finally, the results were further validated by molecular docking and molecular dynamics analysis. As a result, a total of 101 common active ingredients and 21 key active ingredients of four CPMs were obtained, including quercetin, luteolin, acacetin, kaempferol, baicalein, naringenin, artemisinin, aloe-emodin, which might be medicinal substances for the treatment of COVID-19. TNF, IL6, IL1B, CXCL8, CCL2, IL2, IL4, ICAM1, IFNG, and IL10 has been predicted as key targets. 397 GO biological functions and 166 KEGG signaling pathways were obtained. The former was mainly enriched in regulating apoptosis, inflammatory response, and T cell activation. The latter, with 92 entries related to COVID-19, was mainly enriched to signaling pathways such as Coronavirus disease-COVID-19, Cytokine-cytokine receptor interaction, IL-17 signaling pathway, and Toll-like receptor signaling pathway. Molecular docking results showed that 19/21 of key active ingredients exhibited strong binding activity to recognized COVID-19-related targets (3CL of SARS-CoV-2, ACE2, and S protein), even better than one of these four antiviral drugs. Among them, shinflavanone had better affinity to 3CL, ACE2, and S protein of SARS-CoV-2 than these four antiviral drugs. In summary, the four CPMs may play a role in the treatment of COVID-19 by binding flavonoids such as quercetin, luteolin, and acacetin to target proteins such as ACE2, 3CLpro, and S protein and acting on TNF, IL6, IL1B, CXCL8, and other targets to participate in broad-spectrum antiviral, immunomodulatory and inflammatory responses.
Collapse
Affiliation(s)
- Lin Wang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zheyi Wang
- Qilu Hospital, Shandong University, Shandong, China
| | - Zhihua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xingwang Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, China
| | - Liping Yan
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jianxiong Wu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yue Liu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Baohui Fu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
16
|
Sharma N, Kulkarni GT, Bhatt AN, Satija S, Singh L, Sharma A, Dua K, Karwasra R, Khan AA, Ahmad N, Raza K. Therapeutic Options for the SARS-CoV-2 Virus: Is There a Key in Herbal Medicine? Nat Prod Commun 2022. [DOI: 10.1177/1934578x221126303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
SARS-CoV-2 has been responsible for over 500 million cumulative cases all over the world since December 2019 and has marked the third introduction of a highly pathogenic virus after SARS-CoV and MERS-CoV. This virus is in a winning situation because scientists are still racing to explore effective therapeutics, vaccines, and event treatment regimens. In view of progress in current disease management, until now none of the preventive/treatment measures can be considered entirely effective to treat SARS-CoV-2 infection. Therefore, it is required to look up substitute ways for the management of this disease. In this context, herbal medicines could be a good choice. This article emphasizes the antiviral potential of some herbal constituents which further can be a drug of choice in SARS-CoV-2 treatment. This article may be a ready reference for discovering natural lead compounds and targets in SARS-CoV-2 associated works.
Collapse
Affiliation(s)
- Nitin Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Anant Narayan Bhatt
- Department of Nuclear Medicine, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Lubhan Singh
- Department of Pharmacology, KharvelSubharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, India
| | - Anjana Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, UP, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine (CCRUM), Ministry of AYUSH, Govt of India, New Delhi, India
| | - Asim Ali Khan
- Central Council for Research in Unani Medicine (CCRUM), Ministry of AYUSH, Govt of India, New Delhi, India
| | - Nadeem Ahmad
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
17
|
Ávila-Gálvez MÁ, Rafael-Pita C, Fernández N, Baixinho J, Anastácio JD, Cankar K, Bosch D, Nunes Dos Santos C. Targeting proteases involved in the viral replication of SARS-CoV-2 by sesquiterpene lactones from chicory ( Cichorium intybus L.). Food Funct 2022; 13:8977-8988. [PMID: 35938740 DOI: 10.1039/d2fo00933a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SARS-CoV-2 is a highly transmissible and pathogenic coronavirus causing a respiratory disease that emerged in 2019, leading to a public health emergency situation which continues to date. The treatment options are still very limited and vaccines available are less effective against new variants. SARS-CoV-2 enzymes, namely main protease (Mpro) and papain-like protease (PLpro), play a pivotal role in the viral life cycle, making them a putative drug target. Here, we described for the first time the potential inhibitory activity of chicory extract against both proteases. Besides, we have identified that the four most abundant sesquiterpene lactones in chicory inhibited these proteases, showing an effective binding in the active sites of Mpro and PLpro. This paper provides new insight for further drug development or food-based strategies for the prevention of SARS-CoV-2 by targeting viral proteases.
Collapse
Affiliation(s)
- María Ángeles Ávila-Gálvez
- Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal.
| | - Carlos Rafael-Pita
- Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal.
| | - Naiara Fernández
- Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
| | - João Baixinho
- Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - José D Anastácio
- Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal.
| | - Katarina Cankar
- Wageningen University and Research, Wageningen Plant Research, BU Bioscience, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Dirk Bosch
- Wageningen University and Research, Wageningen Plant Research, BU Bioscience, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Cláudia Nunes Dos Santos
- Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
18
|
Nair M, Huang Y, Weathers P. SARS-CoV-2 omicron variants succumb in vitro to Artemisia annua hot water extracts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.07.22.501141. [PMID: 35923322 PMCID: PMC9347282 DOI: 10.1101/2022.07.22.501141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The SARS-CoV-2 (COVID-19) global pandemic continuous to infect and kill millions while rapidly evolving new variants that are more transmissible and evading vaccine-elicited antibodies. Artemisia annua L. extracts have shown potency against all previously tested variants. Here we further queried extract efficacy against omicron and its recent subvariants. Using Vero E6 cells, we measured the in vitro efficacy (IC 50 ) of stored (frozen) dried-leaf hot-water A. annua L. extracts of four cultivars (A3, BUR, MED, and SAM) against SARS-CoV-2 variants: original WA1 (WT), BA.1.1.529+R346K (omicron), BA.2, BA.2.12.1, and BA.4. IC 50 values normalized to the extract artemisinin (ART) content ranged from 0.5-16.5 µM ART. When normalized to dry mass of the extracted A. annua leaves, values ranged from 20-106 µg. Although IC 50 values for these new variants are slightly higher than those reported for previously tested variants, they were within limits of assay variation. There was no measurable loss of cell viability at leaf dry weights ≤50 µg of any cultivar extract. Results continue to indicate that oral consumption of A. annua hot-water extracts (tea infusions) could potentially provide a cost-effective approach to help stave off this pandemic virus and its rapidly evolving variants.
Collapse
Affiliation(s)
- M.S. Nair
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Y. Huang
- Aaron Diamond AIDS Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - P.J. Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
19
|
Sakamuru S, Huang R, Xia M. Use of Tox21 Screening Data to Evaluate the COVID-19 Drug Candidates for Their Potential Toxic Effects and Related Pathways. Front Pharmacol 2022; 13:935399. [PMID: 35910344 PMCID: PMC9333127 DOI: 10.3389/fphar.2022.935399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022] Open
Abstract
Currently, various potential therapeutic agents for coronavirus disease-2019 (COVID-19), a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are being investigated worldwide mainly through the drug repurposing approach. Several anti-viral, anti-bacterial, anti-malarial, and anti-inflammatory drugs were employed in randomized trials and observational studies for developing new therapeutics for COVID-19. Although an increasing number of repurposed drugs have shown anti-SARS-CoV-2 activities in vitro, so far only remdesivir has been approved by the US FDA to treat COVID-19, and several other drugs approved for Emergency Use Authorization, including sotrovimab, tocilizumab, baricitinib, paxlovid, molnupiravir, and other potential strategies to develop safe and effective therapeutics for SARS-CoV-2 infection are still underway. Many drugs employed as anti-viral may exert unwanted side effects (i.e., toxicity) via unknown mechanisms. To quickly assess these drugs for their potential toxicological effects and mechanisms, we used the Tox21 in vitro assay datasets generated from screening ∼10,000 compounds consisting of approved drugs and environmental chemicals against multiple cellular targets and pathways. Here we summarize the toxicological profiles of small molecule drugs that are currently under clinical trials for the treatment of COVID-19 based on their in vitro activities against various targets and cellular signaling pathways.
Collapse
|
20
|
Agrawal PK, Agrawal C, Blunden G. Artemisia Extracts and Artemisinin-Based Antimalarials for COVID-19 Management: Could These Be Effective Antivirals for COVID-19 Treatment? Molecules 2022; 27:3828. [PMID: 35744958 PMCID: PMC9231170 DOI: 10.3390/molecules27123828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 12/23/2022] Open
Abstract
As the world desperately searches for ways to treat the coronavirus disease 2019 (COVID-19) pandemic, a growing number of people are turning to herbal remedies. The Artemisia species, such as A. annua and A. afra, in particular, exhibit positive effects against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and COVID-19 related symptoms. A. annua is a source of artemisinin, which is active against malaria, and also exhibits potential for other diseases. This has increased interest in artemisinin's potential for drug repurposing. Artemisinin-based combination therapies, so-called ACTs, have already been recognized as first-line treatments against malaria. Artemisia extract, as well as ACTs, have demonstrated inhibition of SARS-CoV-2. Artemisinin and its derivatives have also shown anti-inflammatory effects, including inhibition of interleukin-6 (IL-6) that plays a key role in the development of severe COVID-19. There is now sufficient evidence in the literature to suggest the effectiveness of Artemisia, its constituents and/or artemisinin derivatives, to fight against the SARS-CoV-2 infection by inhibiting its invasion, and replication, as well as reducing oxidative stress and inflammation, and mitigating lung damage.
Collapse
Affiliation(s)
- Pawan K. Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA;
| | - Chandan Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA;
| | - Gerald Blunden
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK;
| |
Collapse
|
21
|
Shi Q, Xia F, Wang Q, Liao F, Guo Q, Xu C, Wang J. Discovery and repurposing of artemisinin. Front Med 2022; 16:1-9. [PMID: 35290595 PMCID: PMC8922983 DOI: 10.1007/s11684-021-0898-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022]
Abstract
Malaria is an ancient infectious disease that threatens millions of lives globally even today. The discovery of artemisinin, inspired by traditional Chinese medicine (TCM), has brought in a paradigm shift and been recognized as the “best hope for the treatment of malaria” by World Health Organization. With its high potency and low toxicity, the wide use of artemisinin effectively treats the otherwise drug-resistant parasites and helps many countries, including China, to eventually eradicate malaria. Here, we will first review the initial discovery of artemisinin, an extraordinary journey that was in stark contrast with many drugs in western medicine. We will then discuss how artemisinin and its derivatives could be repurposed to treat cancer, inflammation, immunoregulation-related diseases, and COVID-19. Finally, we will discuss the implications of the “artemisinin story” and how that can better guide the development of TCM today. We believe that artemisinin is just a starting point and TCM will play an even bigger role in healthcare in the 21st century.
Collapse
Affiliation(s)
- Qiaoli Shi
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei Xia
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qixin Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fulong Liao
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiuyan Guo
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chengchao Xu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. .,Department of Geriatrics, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, China.
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China. .,Central People's Hospital of Zhanjiang, Zhanjiang, 524045, China. .,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Department of Geriatrics, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, 518020, China.
| |
Collapse
|
22
|
Ataba E, Dorkenoo AM, Nguepou CT, Bakai T, Tchadjobo T, Kadzahlo KD, Yakpa K, Atcha-Oubou T. Potential Emergence of Plasmodium Resistance to Artemisinin Induced by the Use of Artemisia annua for Malaria and COVID-19 Prevention in Sub-African Region. Acta Parasitol 2022; 67:55-60. [PMID: 34797496 PMCID: PMC8602884 DOI: 10.1007/s11686-021-00489-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022]
Abstract
Plasmodium resistance to antimalarial drugs is an obstacle to the elimination of malaria in endemic areas. This situation is particularly dramatic for Africa, which accounts for nearly 92% of malaria cases worldwide. Drug pressure has been identified as a key factor in the emergence of antimalarial drug resistance. Indeed, this pressure is favoured by several factors, including the use of counterfeit forms of antimalarials, inadequate prescription controls, poor adherence to treatment regimens, dosing errors, and the increasing use of other forms of unapproved antimalarials. This resistance has led to the replacement of chloroquine (CQ) by artemisinin-based combination therapies (ACTs) which are likely to become ineffective in the coming years due to the uncontrolled use of Artemisia annua in the sub-Saharan African region for malaria prevention and COVID-19. The use of Artemisia annua for the prevention of malaria and COVID-19 could be an important factor in the emergence of resistance to Artemisinin-based combination therapies.
Collapse
Affiliation(s)
- Essoham Ataba
- Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA) /Unité de Recherche en Immunologie et Immunomodulation (UR2IM), Université de Lomé, Boulevard Eyadema, 01BP 1515 Lomé, Togo
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé de l’Hygiène Publique et de l’Accès Universel Aux Soins, Quartier Administratif, 01BP 518 Lomé, Togo
| | - Ameyo M. Dorkenoo
- Faculté des Sciences de la Santé, Université de Lomé, Boulevard Eyadema, 01BP 1515 Lomé, Togo
| | - Christèle Tchopba Nguepou
- Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA) /Unité de Recherche en Immunologie et Immunomodulation (UR2IM), Université de Lomé, Boulevard Eyadema, 01BP 1515 Lomé, Togo
| | - Tchaa Bakai
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé de l’Hygiène Publique et de l’Accès Universel Aux Soins, Quartier Administratif, 01BP 518 Lomé, Togo
| | - Tchassama Tchadjobo
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé de l’Hygiène Publique et de l’Accès Universel Aux Soins, Quartier Administratif, 01BP 518 Lomé, Togo
| | - Komla Dovenè Kadzahlo
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé de l’Hygiène Publique et de l’Accès Universel Aux Soins, Quartier Administratif, 01BP 518 Lomé, Togo
| | - Kossi Yakpa
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé de l’Hygiène Publique et de l’Accès Universel Aux Soins, Quartier Administratif, 01BP 518 Lomé, Togo
| | - Tinah Atcha-Oubou
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé de l’Hygiène Publique et de l’Accès Universel Aux Soins, Quartier Administratif, 01BP 518 Lomé, Togo
| |
Collapse
|
23
|
Chauhan N, Kashyap U, Dolma SK, Reddy SGE. Chemical Composition, Insecticidal, Persistence and Detoxification Enzyme Inhibition Activities of Essential Oil of Artemisia maritima against the Pulse Beetle. Molecules 2022; 27:1547. [PMID: 35268647 PMCID: PMC8911588 DOI: 10.3390/molecules27051547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 12/23/2022] Open
Abstract
Pulse beetle is the major pests of pulses that cause significant loss to grains leads to unfit for consumption and marketing. Indiscriminate use of synthetic pesticides for the control of pulse beetle (Callosobruchus chinensis and Callosobruchus maculatus) led to insect resistance, pesticide residues on grains which affect consumer's health and environment. Essential oils (EOs) are good alternatives to synthetics due to their safety to the environment and consumers' health. The main objective of the present study was to explore the chemical composition, fumigant, repellency, ovipositional deterrence, persistence, and detoxification enzyme inhibition of Artemisia maritima essential oil against pulse beetle. Results showed that primary components of the EO were 1,8-Cineole and bornyl acetate. EO showed promising fumigant toxicity to C. chinensis and C. maculatus (LC50 = 1.17 and 0.56 mg/L, respectively) after 48 h. In the repellent assay, EO at 8 mg/L showed 92-96% repellence after 1 h. In ovipositional deterrence assay, EO showed more ovipositional deterrence against C. chinensis (OD50 = 3.30 mg/L) than C. maculatus (OD50 = 4.01 mg/L). Higher concentrations of oil (8 and 6 mg/L) in C. maculatus showed significant inhibition of the glutathione-S-transferase enzyme (7.14 and 5.61 n mol/min/mL, respectively).
Collapse
Affiliation(s)
- Nandita Chauhan
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (N.C.); (U.K.); (S.K.D.)
| | - Urvashi Kashyap
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (N.C.); (U.K.); (S.K.D.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shudh Kirti Dolma
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (N.C.); (U.K.); (S.K.D.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sajjalavarahalli G. Eswara Reddy
- Entomology Laboratory, Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; (N.C.); (U.K.); (S.K.D.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
24
|
Lu LY, Feng PH, Yu MS, Chen MC, Lin AJH, Chen JL, Yu LHL. Current utilization of interferon alpha for the treatment of coronavirus disease 2019: A comprehensive review. Cytokine Growth Factor Rev 2022; 63:34-43. [PMID: 35115233 PMCID: PMC8755267 DOI: 10.1016/j.cytogfr.2022.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/14/2022]
Abstract
Recent studies have identified an association between perturbed type I interferon (IFN) responses and the severity of coronavirus disease 2019 (COVID-19). IFNα intervention may normalize the dysregulated innate immunity of COVID-19. However, details regarding its utilization and therapeutic evidence have yet to be systematically evaluated. The aim of this comprehensive review was to summarize the current utilization of IFNα for COVID-19 treatment and to explore the evidence on safety and efficacy. A comprehensive review of clinical studies in the literature prior to December 1st, 2021, was performed to identify the current utilization of IFNα, which included details on the route of administration, the number of patients who received the treatment, the severity at the initiation of treatment, age range, the time from the onset of symptoms to treatment, dose, frequency, and duration as well as safety and efficacy. Encouragingly, no evidence was found against the safety of IFNα treatment for COVID-19. Early intervention, either within five days from the onset of symptoms or at hospital admission, confers better clinical outcomes, whereas late intervention may result in prolonged hospitalization.
Collapse
Affiliation(s)
- Ling-Ying Lu
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Kaohsiung Veterans General Hospital, No.386, Dazhong 1st Rd., Zuoying District, Kaohsiung City, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Rd, Zhonghe District, New Taipei City, Taiwan,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei City, Taiwan
| | - Ming-Sun Yu
- Division of Hematology, Conde S. Januário Hospital, Estrada do Visconde de São Januário, Macau, China
| | - Min-Chi Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City, Taiwan
| | - Alex Jia-Hong Lin
- Medical Affairs Department, Panco Healthcare Co., Ltd., a PharmaEssentia Company, 2F-5 No. 3 Park Street, Nangang District, Taipei, Taiwan
| | - Justin L. Chen
- Medical Affairs Department, Panco Healthcare Co., Ltd., a PharmaEssentia Company, 2F-5 No. 3 Park Street, Nangang District, Taipei, Taiwan
| | - Lennex Hsueh-Lin Yu
- Medical Affairs Department, Panco Healthcare Co., Ltd., a PharmaEssentia Company, 2F-5 No. 3 Park Street, Nangang District, Taipei, Taiwan,Corresponding author
| |
Collapse
|
25
|
Li X, Liao X, Yan X, Yuan Y, Yuan Z, Liu R, Xu Z, Wang Q, Xu Q, Ru L, Song J. Acute and subacute oral toxicity of artemisinin-hydroxychloroquine sulfate tablets in rats. Regul Toxicol Pharmacol 2022; 129:105114. [PMID: 35007669 DOI: 10.1016/j.yrtph.2022.105114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/05/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
Abstract
Artemisinin-hydroxychloroquine sulfate tablets (AH) are considered a relatively inexpensive and novel combination therapy for treating all forms of malaria, especially aminoquinoline drugs-resistant strains of P.falciparum. We aim to carry out acute and subacute oral toxicity studies in rats to acquire preclinical data on the safety of AH. Acute toxicity was evaluated in Sprague-Dawley (SD) rats at a single dose of 1980, 2970, 4450, 6670, and 10000 mg/kg. A 14-days subacute toxicity was assessed in SD rats at doses of 0, 146, 219, 328, and 429 mg/kg. The median lethal dose (LD50) of acute oral administration of AH in rats is found to be 3119 mg/kg, and toxic symptoms include decreased spontaneous activity, dyspnea, bristling, soft feces, spasticity, and convulsion. Repeated doses of AH have toxic effects on the nervous system, skin, blood system, liver, kidney, and spleen in rats. The main toxic reactions include epilation, emaciation, mental irritability, decreased body weight gain and food consumption, changes in the hematological and biochemical parameters, especially pathological lesions in the liver, kidney, and spleen. The no-observed-adverse-effect level (NOAEL) and lowest-observed-adverse-effect level (LOAEL) of AH are considered to be 219 mg/kg and 328 mg/kg, respectively.
Collapse
Affiliation(s)
- Xiaobo Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, China
| | - Xingcheng Liao
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiufang Yan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yueming Yuan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, China
| | - Zheng Yuan
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, China
| | - Ruidong Liu
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, China
| | - Zhiyong Xu
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, China
| | - Qi Wang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, China; Guangzhou Chest Hospital, Guangzhou, 510095, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Li Ru
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, 510445, China.
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
26
|
Abodunrin OP, Onifade OF, Adegboyega AE. Therapeutic capability of five active compounds in typical African medicinal plants against main proteases of SARS-CoV-2 by computational approach. INFORMATICS IN MEDICINE UNLOCKED 2022; 31:100964. [PMID: 35647264 PMCID: PMC9125996 DOI: 10.1016/j.imu.2022.100964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a pandemic cause of Corona Virus Disease (COVID-19), that has claimed numerous human lives across the globe. Main protease being the active protein of SARS-CoV-2 requires urgent mitigating effect against the spread of the virus. The therapeutic roles of the active compounds present in ten typical African medicinal plants were investigated in this study. Five active compounds Curcuma longa (Curcumin and Bisdethoxy curcumin), Garcinia kola (kolaviron), Zingiber officinale (Gingerol) and Vernonia amygdalina (Artemisinin) were selected and docked against Main protease through receptor grid generation, protein ligand docking, receptor ligand complex pharmacophore and binding free energy. The results obtained revealed Curcumin had the highest binding score of -8.628 kcal/mol while artermisinin presented the least with -4.123 kcal/mol. The outcome of the pharmacokinetic prediction in this study revealed high transport capacity across the gastrointestinal tract and high blood brain barrier permeability for curcumin, bisdemethoxy curcumin, gingerol and artemisinin. The exemption is gingerol with low LD50 value (250 mg/kg), the LD50 of all active compounds ranged from 2000 to 4228 mg/kg. Adsorption, distribution, metabolism, excretion and toxicity (ADMET) properties exhibited by all compounds portrayed them as non-hepatotoxic, non-cytotoxic, non-mutagenic and non-carcinogenic. The active compounds exhibited drug-likeness features against Main protease of Covid-19.
Collapse
Affiliation(s)
- Oluwasayo Peter Abodunrin
- Radiation and Health Physics, Physical Sciences Department, Bells University of Technology, Ota, Nigeria
| | - Olayinka Fisayo Onifade
- Phytomedicine, Biochemistry and Bioinformatics, Chemical Sciences Department, Bells University of Technology, Ota, Nigeria
| | | |
Collapse
|
27
|
Farmanpour-Kalalagh K, Beyraghdar Kashkooli A, Babaei A, Rezaei A, van der Krol AR. Artemisinins in Combating Viral Infections Like SARS-CoV-2, Inflammation and Cancers and Options to Meet Increased Global Demand. FRONTIERS IN PLANT SCIENCE 2022; 13:780257. [PMID: 35197994 PMCID: PMC8859114 DOI: 10.3389/fpls.2022.780257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/03/2022] [Indexed: 05/05/2023]
Abstract
Artemisinin is a natural bioactive sesquiterpene lactone containing an unusual endoperoxide 1, 2, 4-trioxane ring. It is derived from the herbal medicinal plant Artemisia annua and is best known for its use in treatment of malaria. However, recent studies also indicate the potential for artemisinin and related compounds, commonly referred to as artemisinins, in combating viral infections, inflammation and certain cancers. Moreover, the different potential modes of action of artemisinins make these compounds also potentially relevant to the challenges the world faces in the COVID-19 pandemic. Initial studies indicate positive effects of artemisinin or Artemisia spp. extracts to combat SARS-CoV-2 infection or COVID-19 related symptoms and WHO-supervised clinical studies on the potential of artemisinins to combat COVID-19 are now in progress. However, implementing multiple potential new uses of artemisinins will require effective solutions to boost production, either by enhancing synthesis in A. annua itself or through biotechnological engineering in alternative biosynthesis platforms. Because of this renewed interest in artemisinin and its derivatives, here we review its modes of action, its potential application in different diseases including COVID-19, its biosynthesis and future options to boost production.
Collapse
Affiliation(s)
- Karim Farmanpour-Kalalagh
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Arman Beyraghdar Kashkooli
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Arman Beyraghdar Kashkooli,
| | - Alireza Babaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Rezaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
28
|
Ghodke B, Ghodke A, Mali K, Thorat P. Comparative, observational study of the use of artesunate injections along with standard-of-care treatment versus only standard-of-care treatment in moderate and severe acute respiratory distress syndrome cases of COVID-19-positive infections. MGM JOURNAL OF MEDICAL SCIENCES 2022. [DOI: 10.4103/mgmj.mgmj_173_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
29
|
Guo DA, Yao CL, Wei WL, Zhang JQ, Bi QR, Li JY, Khan I, Bauer R. Traditional Chinese medicines against COVID-19: A global overview. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/2311-8571.353502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
30
|
Fuzimoto AD. An overview of the anti-SARS-CoV-2 properties of Artemisia annua, its antiviral action, protein-associated mechanisms, and repurposing for COVID-19 treatment. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:375-388. [PMID: 34479848 PMCID: PMC8378675 DOI: 10.1016/j.joim.2021.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/22/2021] [Indexed: 12/23/2022]
Abstract
Artemisia annua and its phytocompounds have a rich history in the research and treatment of malaria, rheumatoid arthritis, systemic lupus erythematosus, and other diseases. Currently, the World Health Organization recommends artemisinin-based combination therapy as the first-line treatment for multi-drug-resistant malaria. Due to the various research articles on the use of antimalarial drugs to treat coronaviruses, a question is raised: would A. annua and its compounds provide anti-severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) properties? PubMed/MEDLINE, Scopus, and Google Scholar were searched for peer-reviewed articles that investigated the antiviral effects and mechanisms of A. annua and its phytochemicals against SARS-CoVs. Particularly, articles that evidenced the herb’s role in inhibiting the coronavirus-host proteins were favored. Nineteen studies were retrieved. From these, fourteen in silico molecular docking studies demonstrated potential inhibitory properties of artemisinins against coronavirus-host proteins including 3CLPRO, S protein, N protein, E protein, cathepsin-L, helicase protein, nonstructural protein 3 (nsp3), nsp10, nsp14, nsp15, and glucose-regulated protein 78 receptor. Collectively, A. annua constituents may impede the SARS-CoV-2 attachment, membrane fusion, internalization into the host cells, and hinder the viral replication and transcription process. This is the first comprehensive overview of the application of compounds from A. annua against SARS-CoV-2/coronavirus disease 2019 (COVID-19) describing all target proteins. A. annua’s biological properties, the signaling pathways implicated in the COVID-19, and the advantages and disadvantages for repurposing A. annua compounds are discussed. The combination of A. annua’s biological properties, action on different signaling pathways and target proteins, and a multi-drug combined-therapy approach may synergistically inhibit SARS-CoV-2 and assist in the COVID-19 treatment. Also, A. annua may modulate the host immune response to better fight the infection.
Collapse
|
31
|
Sepehrinezhad A, Gorji A, Sahab Negah S. SARS-CoV-2 may trigger inflammasome and pyroptosis in the central nervous system: a mechanistic view of neurotropism. Inflammopharmacology 2021; 29:1049-1059. [PMID: 34241783 PMCID: PMC8266993 DOI: 10.1007/s10787-021-00845-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can enter the central nervous system and cause several neurological manifestations. Data from cerebrospinal fluid analyses and postmortem samples have been shown that SARS-CoV-2 has neuroinvasive properties. Therefore, ongoing studies have focused on mechanisms involved in neurotropism and neural injuries of SARS-CoV-2. The inflammasome is a part of the innate immune system that is responsible for the secretion and activation of several pro-inflammatory cytokines, such as interleukin-1β, interleukin-6, and interleukin-18. Since cytokine storm has been known as a major mechanism followed by SARS-CoV-2, inflammasome may trigger an inflammatory form of lytic programmed cell death (pyroptosis) following SARS-CoV-2 infection and contribute to associated neurological complications. We reviewed and discussed the possible role of inflammasome and its consequence pyroptosis following coronavirus infections as potential mechanisms of neurotropism by SARS-CoV-2. Further studies, particularly postmortem analysis of brain samples obtained from COVID-19 patients, can shed light on the possible role of the inflammasome in neurotropism of SARS-CoV-2.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Epilepsy Research Center, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Neurology, Westfälische Wilhelms-Universität, Münster, Germany
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Society for Brain Mapping and Therapeutics, Iranian Chapter, SBMT, Los Angeles, USA.
| |
Collapse
|
32
|
Torshin IY, Gromova OA, Chuchalin AG, Zhuravlev YI. Chemoreactome screening of pharmaceutical effects on SARS-CoV-2 and human virome to help decide on drug-based COVID-19 therapy. FARMAKOEKONOMIKA. MODERN PHARMACOECONOMIC AND PHARMACOEPIDEMIOLOGY 2021; 14:191-211. [DOI: 10.17749/2070-4909/farmakoekonomika.2021.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Background. So-called rational drug design is suboptimal when it comes to finding effective and safe drug-based treatment for COVID-19. Another approach seems promising: to reprofile the pharmaceuticals registered in the Anatomical, Therapeutic, and Chemical Classifier (ATC).Material and methods. Chemoreactome screening, a method that simulates the results of inhibiting viral growth in a cell culture, models the effects of pharmaceuticals on the human virome, and estimates the adverse effects of medicines, was used to reprofile about 2700 pharmaceuticals from the ATC. The information technology behind chemoreactome analysis is based on the topological recognition theory advanced by the Institute of Pharmaceutical Informatics, Federal Research Center for Informatics and Control, Russian Academy of Sciences.Results. Sixty two pharmaceuticals and 20 micronutrients were found to have a pronounced antiviral effect with minimal side effects. Comparison against data of basic research and clinical trials showed 31 out of 62 pharmaceuticals to have been independently confirmed usable in COVID-19 treatment. These inhibit coronaviral proteins and/or function as adaptogenic molecules that improve the functioning of cells exposed to viral stress. Glucosamine sulfate was found to have the best safety profile and minimum effects on the healthy human virome out of all the tested anticoronaviral micronutrients.Conclusions. Reprofiling of pharmaceuticals registered in the ATC could significantly speed up the search for more effective and safer drugbased COVID-19 treatments. Several micronutrients show promise for long-term coronavirus prevention, especially in the elderly.
Collapse
Affiliation(s)
- I. Yu. Torshin
- Institute of Pharmacoinformatics, Federal Research Center “Informatics and Management”, Russian Academy of Sciences; Big Data Storage and Analysis Center, Lomonosov Moscow State University
| | - O. A. Gromova
- Institute of Pharmacoinformatics, Federal Research Center “Informatics and Management”, Russian Academy of Sciences; Big Data Storage and Analysis Center, Lomonosov Moscow State University
| | | | - Yu. I. Zhuravlev
- Institute of Pharmacoinformatics, Federal Research Center “Informatics and Management”, Russian Academy of Sciences
| |
Collapse
|
33
|
Ghosh AK, Miller H, Knox K, Kundu M, Henrickson KJ, Arav-Boger R. Inhibition of Human Coronaviruses by Antimalarial Peroxides. ACS Infect Dis 2021; 7:1985-1995. [PMID: 33783182 PMCID: PMC8043207 DOI: 10.1021/acsinfecdis.1c00053] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 02/07/2023]
Abstract
As the toll of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues, efforts are ongoing to identify new agents and repurpose safe drugs for its treatment. Antimalarial peroxides have reported antiviral and anticancer activities. Here, we evaluated the in vitro activities of artesunate (AS) and two ozonides (OZ418 and OZ277) against human α-coronavirus NL63 and β-coronaviruses OC43 and SARS-CoV-2 in several cell lines. OZ418 had the best selectivity index (SI) in NL63-infected Vero cells and MK2 cells. The overall SI of the tested compounds was cell-type dependent. In OC43-infected human foreskin fibroblasts, AS had the best cell-associated SI, ≥17 μM, while the SI of OZ418 and OZ277 was ≥12 μM and ≥7 μM, respectively. AS did not inhibit SARS-CoV-2 in either Vero or Calu-3 cells. A comparison of OZ418 and OZ277 activity in SARS-CoV2-infected Calu-3 cells revealed similar EC50 (5.3 μM and 11.6 μM, respectively), higher than the EC50 of remdesivir (1.0 ± 0.1 μM), but the SI of OZ418 was higher than OZ277. A third ozonide, OZ439, inhibited SARS-CoV-2 efficiently in Vero cells, but compared to OZ418 in Calu-3 cells, it showed higher toxicity. Improved inhibition of SARS-CoV-2 was observed when OZ418 was used together with remdesivir. Although the EC50 of ozonides might be clinically achieved in plasma after intravenous administration, sustained virus suppression in tissues will require further considerations, including drug combination. Our work supports the potential repurposing of ozonides and calls for future in vivo models.
Collapse
Affiliation(s)
- Ayan Kumar Ghosh
- Department of Pediatrics, Division of Infectious
Disease, Medical College of Wisconsin, Milwaukee, Wisconsin
53226, United States
| | - Halli Miller
- Department of Pediatrics, Division of Infectious
Disease, Medical College of Wisconsin, Milwaukee, Wisconsin
53226, United States
| | - Konstance Knox
- Coppe Healthcare Solutions,
Waukesha, Wisconsin 53186, United States
| | | | - Kelly J. Henrickson
- Department of Pediatrics, Division of Infectious
Disease, Medical College of Wisconsin, Milwaukee, Wisconsin
53226, United States
| | - Ravit Arav-Boger
- Department of Pediatrics, Division of Infectious
Disease, Medical College of Wisconsin, Milwaukee, Wisconsin
53226, United States
| |
Collapse
|
34
|
Nair MS, Huang Y, Fidock DA, Polyak SJ, Wagoner J, Towler MJ, Weathers PJ. Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114016. [PMID: 33716085 PMCID: PMC7952131 DOI: 10.1016/j.jep.2021.114016] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/23/2021] [Accepted: 03/05/2021] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L. has been used for millennia in Southeast Asia to treat "fever". Many infectious microbial and viral diseases have been shown to respond to A. annua and communities around the world use the plant as a medicinal tea, especially for treating malaria. AIM OF THE STUDY SARS-CoV-2 (the cause of Covid-19) globally has infected and killed millions of people. Because of the broad-spectrum antiviral activity of artemisinin that includes blockade of SARS-CoV-1, we queried whether A. annua suppressed SARS-CoV-2. MATERIALS AND METHODS Using Vero E6 and Calu-3 cells, we measured anti SARS-CoV-2 activity against fully infectious virus of dried leaf extracts of seven cultivars of A. annua sourced from four continents. IC50s were calculated and defined as the concentrations that inhibited viral replication by 50%; CC50s were also calculated and defined as the concentrations that kill 50% of cells. RESULTS Hot-water leaf extracts based on artemisinin, total flavonoids, or dry leaf mass showed antiviral activity with IC50 values of 0.1-8.7 μM, 0.01-0.14 μg, and 23.4-57.4 μg, respectively. Antiviral efficacy did not correlate with artemisinin or total flavonoid contents of the extracts. One dried leaf sample was >12 years old, yet its hot-water extract was still found to be active. The UK and South African variants, B1.1.7 and B1.351, were similarly inhibited. While all hot water extracts were effective, concentrations of artemisinin and total flavonoids varied by nearly 100-fold in the extracts. Artemisinin alone showed an estimated IC50 of about 70 μM, and the clinically used artemisinin derivatives artesunate, artemether, and dihydroartemisinin were ineffective or cytotoxic at elevated micromolar concentrations. In contrast, the antimalarial drug amodiaquine had an IC50 = 5.8 μM. Extracts had minimal effects on infection of Vero E6 or Calu-3 cells by a reporter virus pseudotyped by the SARS-CoV-2 spike protein. There was no cytotoxicity within an order of magnitude above the antiviral IC90 values. CONCLUSIONS A. annua extracts inhibit SARS-CoV-2 infection, and the active component(s) in the extracts is likely something besides artemisinin or a combination of components that block virus infection at a step downstream of virus entry. Further studies will determine in vivo efficacy to assess whether A. annua might provide a cost-effective therapeutic to treat SARS-CoV-2 infections.
Collapse
Affiliation(s)
- M S Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - Y Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - D A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - S J Polyak
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA.
| | - J Wagoner
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98104, USA.
| | - M J Towler
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | - P J Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
35
|
Bouafia M, Amamou F, Gherib M, Benaissa M, Azzi R, Nemmiche S. Ethnobotanical and ethnomedicinal analysis of wild medicinal plants traditionally used in Naâma, southwest Algeria. VEGETOS (BAREILLY, INDIA) 2021; 34:654-662. [PMID: 34131369 PMCID: PMC8192681 DOI: 10.1007/s42535-021-00229-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022]
Abstract
Algerian people largely rely on traditional medicine practices as part of a community’s identity. This first ethnobotanical study aimed to quantify and document the wild medicinal plant taxa from four family and the related traditional knowledge in Naâma province, Algeria. The survey was carried out between 2018 and 2020. The socio-demographic data and the use of medicinal species were recorded and collected randomly from 84 indigenous people using pre-prepared questionnaire. The result was evaluated using quantitative indices. A total of 27 medicinal plant species belonging to 21 genera used in the community were mostly recorded. The most represented families were Lamiaceae and Asteraceae (12 species for each of them). The aerial parts were the most frequently used plant part (73 %), while a decoction (34 %), and infusion (31 %) were the major modes of remedy preparation. The species with high UV were Rosmarinus officinalis L. (0.80), Artemisia herba-alba Asso (0.76), and Juniperus phoenicea L. subsp. phoenicea (0.75). Species with highest FL were: Ephedra alata subsp. alenda (Stapf) Trab (100 %), Teucrium polium L. (60 %), and Ballota hirsuta Benth (57.14.5 %). Atractylis caespitosa Desf and Nepeta nepetella subsp.amethystina (Poir.) Briq were newly cited as medicinal plants and have not been recorded previously in Algeria. Artemisia herba-alba Asso and Thymus algeriensis Boiss. & Reut were reported to treat COVID-19 symptoms. The results obtained indicate the richness of the area with medicinal plants as well as knowledge of alternative medicine. The most cited plants could be contained molecules that can be tested for therapeutic uses.
Collapse
Affiliation(s)
- Miloud Bouafia
- Laboratory of Antifungal, Antibiotic, Physico-chemical, Synthesis and Biological Activity, Faculty of SNV-STU, University of Tlemcen, BP 119, Imama, 13000 Tlemcen, Algeria.,Laboratory of Sustainable Management of Natural Resources in Arid and Semi-Arid Zones, University Center of Naâma, BP 66, 45000 Naâma, Algeria.,Present Address: Department of Biology, Faculty of Natural Sciences and Life Sciences of the Earth and the Universe, University of Abou Bekr Belkaid, BP 119, Tlemcen, Algeria
| | - Fouzia Amamou
- Laboratory of Natural Products, Faculty of SNV-STU, LAPRONA, University of Tlemcen, BP 119, Imama, 13000 Tlemcen, Algeria
| | - Mohamed Gherib
- Laboratory of Sustainable Management of Natural Resources in Arid and Semi-Arid Zones, University Center of Naâma, BP 66, 45000 Naâma, Algeria
| | - Mohammed Benaissa
- Laboratory of Ecology and Management of Natural Ecosystems, Faculty of SNV-STU, University of Tlemcen, BP 119, Imama, 13000 Tlemcen, Algeria
| | - Rachid Azzi
- Laboratory of Antifungal, Antibiotic, Physico-chemical, Synthesis and Biological Activity, Faculty of SNV-STU, University of Tlemcen, BP 119, Imama, 13000 Tlemcen, Algeria
| | - Saïd Nemmiche
- Department of biology, Faculty of Nature and Life Sciences, University of Mostaganem, Mostaganem, Algeria
| |
Collapse
|
36
|
Vassileva S, Mateeva V, Drenovska K. Drug repurposing of dermatologic medications to treat coronavirus disease 2019: Science or fiction? Clin Dermatol 2021; 39:430-445. [PMID: 34518001 PMCID: PMC7959882 DOI: 10.1016/j.clindermatol.2021.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
No pharmaceutical products have been demonstrated to be safe and effective to specifically treat coronavirus disease 2019 (COVID-19); therefore, the therapy administered to infected patients remains symptomatic and empiric. Alongside the development of new, often high-cost drugs, a different tactic is being applied in parallel, investigating long-established, inexpensive medications originally designed for a variety of diseases to study their potential in treating COVID-19. The skin is the largest organ of the human body. With more than 3,000 skin conditions identified, the specialty of dermatology offers a rich armamentarium of systemic therapeutic agents aimed to treat the various chronic immunologically mediated, metabolic, infectious, occupational, inherited, or paraneoplastic dermatoses. Dermatologists have extensive experience with many drugs that have demonstrated promising in vitro antiviral action (directly targeting the viral replication). Many of these drugs have been used as nonspecific immunosuppressive strategies, such as glucocorticoids, synthetic antimalarials, colchicine, or other immunomodulators, and a number of targeted therapeutics have been directed at controlling hyperinflammatory processes similar to the "cytokine storm" associated with COVID-19 infection. We discuss several dermatologic drugs that have already been used or may have a promising role in the treatment of COVID-19.
Collapse
Affiliation(s)
- Snejina Vassileva
- Department of Dermatology and Venereology, Medical University-Sofia, Sofia, Bulgaria.
| | - Valeria Mateeva
- Department of Dermatology and Venereology, Medical University-Sofia, Sofia, Bulgaria
| | - Kossara Drenovska
- Department of Dermatology and Venereology, Medical University-Sofia, Sofia, Bulgaria
| |
Collapse
|
37
|
Firestone T, Oyewole OO, Reid SP, Ng CL. Repurposing Quinoline and Artemisinin Antimalarials as Therapeutics for SARS-CoV-2: Rationale and Implications. ACS Pharmacol Transl Sci 2021; 4:613-623. [PMID: 33855275 PMCID: PMC8009099 DOI: 10.1021/acsptsci.0c00222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 12/23/2022]
Abstract
The coronavirus disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 116 million individuals globally and resulted in over 2.5 million deaths since the first report in December 2019. For most of this time, healthcare professionals have had few tools at their disposal. In December 2020, several vaccines that were shown to be highly effective have been granted emergency use authorization (EUA). Despite these remarkable breakthroughs, challenges include vaccine roll-out and implementation, in addition to deeply entrenched antivaccination viewpoints. While vaccines will prevent disease occurrence, infected individuals still need treatment options, and repurposing drugs circumvents the lengthy and costly process of drug development. SARS-CoV-2, like many other enveloped viruses, require the action of host proteases for entry. In addition, this novel virus employs a unique method of cell exit of deacidified lysosomes and exocytosis. Thus, inhibitors of lysosomes or other players in this pathway are good candidates to target SARS-CoV-2. Chemical compounds in the quinoline class are known to be lysomotropic and perturb pH levels. A large number of quinolines are FDA-approved for treatment of inflammatory diseases and antimalarials. Artemisinins are another class of drugs that have been demonstrated to be safe for use in humans and are widely utilized as antimalarials. In this Review, we discuss the use of antimalarial drugs in the class of quinolines and artemisinins, which have been shown to be effective against SARS-CoV-2 in vitro and in vivo, and provide a rationale in employing quinolines as treatment of SARS-CoV-2 in clinical settings.
Collapse
Affiliation(s)
- Tessa
M. Firestone
- Department
of Pathology & Microbiology, University
of Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Opeoluwa O. Oyewole
- Department
of Pathology & Microbiology, University
of Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - St Patrick Reid
- Department
of Pathology & Microbiology, University
of Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Caroline L. Ng
- Department
of Pathology & Microbiology, University
of Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| |
Collapse
|
38
|
Uckun FM, Saund S, Windlass H, Trieu V. Repurposing Anti-Malaria Phytomedicine Artemisinin as a COVID-19 Drug. Front Pharmacol 2021; 12:649532. [PMID: 33815126 PMCID: PMC8017220 DOI: 10.3389/fphar.2021.649532] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Artemisinin is an anti-inflammatory phytomedicine with broad-spectrum antiviral activity. Artemisinin and its antimalarial properties were discovered by the Chinese scientist Tu Youyu, who became one of the laureates of the 2015 Nobel Prize in Physiology or Medicine for this breakthrough in tropical medicine. It is a commonly used anti-malaria drug. Artemisinin has recently been repurposed as a potential COVID-19 drug. Its documented anti-SARS-CoV-2 activity has been attributed to its ability to inhibit spike-protein mediated and TGF-β-dependent early steps in the infection process as well as its ability to disrupt the post-entry intracellular events of the SARS-CoV-2 infection cycle required for viral replication. In addition, Artemisinin has anti-inflammatory activity and reduces the systemic levels of inflammatory cytokines that contribute to cytokine storm and inflammatory organ injury in high-risk COVID-19 patients. We postulate that Artemisinin may prevent the worsening of the health condition of patients with mild-moderate COVID-19 when administered early in the course of their disease.
Collapse
Affiliation(s)
| | - Saran Saund
- Oncotelic Inc., Agoura Hills, CA, United States
| | | | - Vuong Trieu
- Oncotelic Inc., Agoura Hills, CA, United States
| |
Collapse
|
39
|
Kshirsagar SG, Rao RV. Antiviral and Immunomodulation Effects of Artemisia. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:217. [PMID: 33673527 PMCID: PMC7997252 DOI: 10.3390/medicina57030217] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022]
Abstract
Background and Objectives: Artemisia is one of the most widely distributed genera of the family Astraceae with more than 500 diverse species growing mainly in the temperate zones of Europe, Asia and North America. The plant is used in Chinese and Ayurvedic systems of medicine for its antiviral, antifungal, antimicrobial, insecticidal, hepatoprotective and neuroprotective properties. Research based studies point to Artemisia's role in addressing an entire gamut of physiological imbalances through a unique combination of pharmacological actions. Terpenoids, flavonoids, coumarins, caffeoylquinic acids, sterols and acetylenes are some of the major phytochemicals of the genus. Notable among the phytochemicals is artemisinin and its derivatives (ARTs) that represent a new class of recommended drugs due to the emergence of bacteria and parasites that are resistant to quinoline drugs. This manuscript aims to systematically review recent studies that have investigated artemisinin and its derivatives not only for their potent antiviral actions but also their utility against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Materials andMethods: PubMed Central, Scopus and Google scholar databases of published articles were collected and abstracts were reviewed for relevance to the subject matter. Conclusions: The unprecedented impact that artemisinin had on public health and drug discovery research led the Nobel Committee to award the Nobel Prize in Physiology or Medicine in 2015 to the discoverers of artemisinin. Thus, it is clear that Artemisia's importance in indigenous medicinal systems and drug discovery systems holds great potential for further investigation into its biological activities, especially its role in viral infection and inflammation.
Collapse
Affiliation(s)
- Suhas G. Kshirsagar
- College of Ayurveda, Mount Madonna Institute, 445 Summit Road, Watsonville, CA 95076, USA
| | - Rammohan V. Rao
- California College of Ayurveda, 700 Zion Street, Nevada City, CA 95959, USA
| |
Collapse
|