1
|
Fu L, Mou J, Deng Y, Ren X. Structural modifications of berberine and their binding effects towards polymorphic deoxyribonucleic acid structures: A review. Front Pharmacol 2022; 13:940282. [PMID: 36016553 PMCID: PMC9395745 DOI: 10.3389/fphar.2022.940282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/14/2022] [Indexed: 11/19/2022] Open
Abstract
Berberine (BBR) is a plant derived quaternary benzylisoquinoline alkaloid, which has been widely used in traditional medicines for a long term. It possesses broad pharmacological effects and is widely applied in clinical. In recent years, the anti-tumor effects of BBR have attracted more and more attention of the researchers. The canonical right-handed double-stranded helical deoxyribonucleic acid (B-DNA) and its polymorphs occur under various environmental conditions and are involved in a plethora of genetic instability-related diseases especially tumor. BBR showed differential binding effects towards various polymorphic DNA structures. But its poor lipophilicity and fast metabolism limited its clinical utility. Structural modification of BBR is an effective approach to improve its DNA binding activity and bioavailability in vivo. A large number of studies dedicated to improving the binding affinities of BBR towards different DNA structures have been carried out and achieved tremendous advancements. In this article, the main achievements of BBR derivatives in polymorphic DNA structures binding researches in recent 20 years were reviewed. The structural modification strategy of BBR, the DNA binding effects of its derivatives, and the structure activity relationship (SAR) analysis have also been discussed.
Collapse
Affiliation(s)
| | - Jiajia Mou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
2
|
Ekeuku SO, Pang KL, Chin KY. Palmatine as an Agent Against Metabolic Syndrome and Its Related Complications: A Review. Drug Des Devel Ther 2020; 14:4963-4974. [PMID: 33235437 PMCID: PMC7680161 DOI: 10.2147/dddt.s280520] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Palmatine is a naturally occurring isoquinoline alkaloid with various pharmacological properties. Given its antioxidant and anti-inflammatory properties, palmatine may be able to impede the effects of metabolic syndrome (MetS) and its related diseases triggered by inflammation and oxidative stress. This review summarises the existing literature about the effects of palmatine supplementation on MetS and its complications. The evidence shows that palmatine could protect against MetS, and cardiovascular diseases, osteoporosis and osteoarthritis, which might be associated with MetS. These protective effects are mediated by the antioxidant and anti-inflammatory properties of palmatine. Although preclinical experiments have demonstrated the efficacy of palmatine against MetS and its related diseases, no human clinical trials have been performed to validate these effects. This research gap should be bridged to validate the efficacy and safety of palmatine supplementation in protecting humans against MetS and its related diseases.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Shan PH, Kan JL, Deng XY, Redshaw C, Bian B, Fan Y, Tao Z, Xiao X. A fluorescent probe based on cucurbit[7]uril for the selective recognition of phenylalanine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118177. [PMID: 32151986 DOI: 10.1016/j.saa.2020.118177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Herein we describe a simple fluorescence quenching method for the selective recognition and determination of the amino acid phenylalanine (Phe). The use of 1H NMR spectroscopy revealed that the alkaloid palmatine (PAL) can encapsulated partially into the cavity of cucurbit[7]uril (Q[7]) in aqueous solution to form a stable 1:1 host-guest inclusion complex. This host-guest complex exhibits fluorescence of moderate intensity. Interestingly, the addition of the Phe results in a dramatic quenching of the fluorescence intensity associated with the inclusion complex. By contrast, the addition of other natural amino acids resulted in no change in the fluorescence. Based on the linear relationship between the fluorescence intensity and the concentration of Phe, the detection of the concentration of Phe in aqueous solution is facile. Thus, a new fluorescence quenching method for the recognition and determination of the Phe has established herein.
Collapse
Affiliation(s)
- Pei-Hui Shan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xin-Yu Deng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Carl Redshaw
- Department of Chemistry and Biochemistry, University of Hull, Hull HU6 7RX, UK
| | - Bing Bian
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Ying Fan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Shan PH, Zhao J, Deng XY, Lin RL, Bian B, Tao Z, Xiao X, Liu JX. Selective recognition and determination of phenylalanine by a fluorescent probe based on cucurbit[8]uril and palmatine. Anal Chim Acta 2020; 1104:164-171. [PMID: 32106948 DOI: 10.1016/j.aca.2020.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 01/06/2023]
Abstract
This paper demonstrated a simple and validated fluorescence enhancing method to selectively recognize and discriminate the amino acid phenylalanine (Phe). 1H NMR spectroscopy reveal that the palmatine (PAL) can be encapsulated into the cucurbit [8]uril (Q [8]) in aqueous solution to form stable 1:2 host-guest inclusion complex PAL2@Q [8], which exhibits moderate intensity fluorescence property. Interestingly, the addition of the Phe into the inclusion complex PAL2@Q [8] leads to dramatically enhancing of the fluorescence intensity. In contrast, the addition of any other natural amino acids into the inclusion complex PAL2@Q [8] gives no fluorescence variation. Furthermore, it is easy to detect the concentration of Phe in target aqueous solution according to the linear relationship between fluorescence intensity and concentration of the Phe.
Collapse
Affiliation(s)
- Pei-Hui Shan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Jie Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Xin-Yu Deng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Rui-Lian Lin
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China
| | - Bing Bian
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Xin Xiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China.
| | - Jing-Xin Liu
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China.
| |
Collapse
|
5
|
Tarabasz D, Kukula-Koch W. Palmatine: A review of pharmacological properties and pharmacokinetics. Phytother Res 2019; 34:33-50. [PMID: 31496018 DOI: 10.1002/ptr.6504] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/18/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
The aim of this review is to collect together the results of the numerous studies over the last two decades on the pharmacological properties of palmatine published in scientific databases like Scopus and PubMed, which are scattered across different publications. Palmatine, an isoquinoline alkaloid from the class of protoberberines, is a yellow compound present in the extracts from different representatives of Berberidaceae, Papaveraceae, Ranunculaceae, and Menispermaceae. It has been extensively used in traditional medicine of Asia in the treatment of jaundice, liver-related diseases, hypertension, inflammation, and dysentery. New findings describe its possible applications in the treatment of civilization diseases like central nervous system-related problems. This review intends to let this alkaloid come out from the shade of a more frequently described alkaloid: berberine. The toxicity, pharmacokinetics, and biological activities of this protoberberine alkaloid will be developed in this work.
Collapse
Affiliation(s)
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
6
|
Basu A, Suresh Kumar G. Interaction of proflavine with the RNA polynucleotide polyriboadenylic acid-polyribouridylic acid: photophysical and calorimetric studies. J Biomol Struct Dyn 2019; 38:1590-1597. [PMID: 31057051 DOI: 10.1080/07391102.2019.1615001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The binding of proflavine, an acriflavine derivative, with the RNA polynucletodide polyadenylic acid-polyuridylic acid is investigated here to understand the structural and thermodynamic basis of the binding process. Such binding data are crucial for designing viable theraperutic agents. Spectroscopic studies clearly suggest a strong binding interaction between proflavine and polyadenylic acid-polyuridylic acid leading to efficient energy transfer between the poly AU base pairs and proflavine. The stoichiometry of proflavine polyadenylic acid-polyuridylic acid binding was independently estimated by continuous variation analysis of Job. An intercalative binding model is envisaged for the binding from hydrodynamic studies. Circular dichroism experiments revealed that the binding induced conformational changes in the RNA, and also led to induction of optical activity in the bound dye molecules. The binding affinity of the complex was deduced to be (6.57 ± 0.75) 105 M-1 at (298.15 ± 0.10) K from isothermal titration calorimetry experiment. Positive entropy and negative enthalpy changes characterized the complexation. The binding was observed to be weaker both at higher temperatures and increased [Na+]. The affinity of binding decreased with increasing [Na+]. When the Gibbs energy was parsed between polyelectrolytic and nonpolyelectropytic components, it surprisingly revealed a higher role for the non-polyelectrolytic forces. These results present new data for developing RNA targeted ligands.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anirban Basu
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, India
| | - Gopinatha Suresh Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
7
|
Thakur Y, Tripathi M, Verma B, Khilari R, Agrawal R, Likheshwari, Pande R, Mohapatra E. New insight into the DNA binding studies, In-Vitro anti-cancer activity and molecular modelling of dioxo complexes of Molybdenum(VI) and Tungsten(VI) hydroxamic acids. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1578615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yamini Thakur
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Mamta Tripathi
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Bharati Verma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Rubi Khilari
- CSIR-Central Institute of Mining and Fuel Research, Bilaspur Unit, Chhattisgarh, India
| | - Rainy Agrawal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Likheshwari
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Rama Pande
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Eli Mohapatra
- Biochemistry Department, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| |
Collapse
|
8
|
Thakur Y, Tripathi M, Verma B, Khilari R, Agrawal R, Likheshwari, Khursheed Siddiqi M, Pande R, Mohapatra E, Khan RH. Interaction of cobalt(II) and copper(II) hydroxamates with polyriboadenylic acid: An insight into RNA based drug designing. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:481-508. [PMID: 30732529 DOI: 10.1080/15257770.2018.1562074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The polyadenylic acid [poly(A)] tail of mRNA plays a noteworthy role in the initiation of the translation, maturation, and stability of mRNA. It also significantly contributes to the production of alternate proteins in eukaryotic cells. Hence, it has recently been recognized as a prospective drug target. Binding affinity of bis(N-p-tolylbenzohydroxamato)Cobalt(II), [N-p-TBHA-Co(II)] (1) and bis(N-p-naphthylbenzohydroxamato)Copper(II), [N-p-NBHA-Cu(II)] (2) complexes with poly(A) have been investigated by biophysical techniques namely, absorption spectroscopy, fluorescence spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, circular dichroism spectroscopy, viscometric measurements and through molecular docking studies. The intrinsic binding constants (Kb) of complexes were determined following the order of N-p-TBHA-Co(II)] > N-p-NBHA-Cu(II), along with hyperchromism and a bathochromic shift for both complexes. The fluorescence quenching method revealed an interaction between poly(A)-N-p-TBHA-Co(II)/poly(A)-N-p-NBHA-Cu(II). The mode of binding was also determined via the fluorescence ferrocyanide quenching method. The increase in the viscosity of poly(A) that occurred from increasing the concentration of the N-p-TBHA-Co(II)/N-p-NBHA-Cu(II) complex was scrutinized. The characteristics of the interaction site of poly(A) with N-p-TBHA-Co(II)/N-p-NBHA-Cu(II) were adenine and phosphate groups, as revealed by DRS-FTIR spectroscopy. Based on these observations, a partial intercalative mode of the binding of poly(A) has been proposed for both complexes. Circular dichroism confirmed the interaction of both the complexes with poly(A). The molecular docking results illustrated that complexes strongly interact with poly(A) via the relative binding energies of the docked structure as -259.39eV and -226.30eV for N-p-TBHA-Co(II) and N-p-NBHA-Cu(II) respectively. Moreover, the binding affinity of N-p-TBHA-Co(II) is higher in all aspects than N-p-NBHA-Cu(II) for poly(A).
Collapse
Affiliation(s)
- Yamini Thakur
- a School of Studies in Chemistry , Pt. Ravishankar Shukla University, Raipur , Chhattisgarh - 492010
| | - Mamta Tripathi
- a School of Studies in Chemistry , Pt. Ravishankar Shukla University, Raipur , Chhattisgarh - 492010
| | - Bharati Verma
- a School of Studies in Chemistry , Pt. Ravishankar Shukla University, Raipur , Chhattisgarh - 492010
| | - Rubi Khilari
- a School of Studies in Chemistry , Pt. Ravishankar Shukla University, Raipur , Chhattisgarh - 492010
| | - Rainy Agrawal
- a School of Studies in Chemistry , Pt. Ravishankar Shukla University, Raipur , Chhattisgarh - 492010
| | - Likheshwari
- a School of Studies in Chemistry , Pt. Ravishankar Shukla University, Raipur , Chhattisgarh - 492010
| | - Mohammad Khursheed Siddiqi
- b Interdisciplinary Biotechnology Unit, Aligarh Muslim University , Aligarh - 202002 , Uttar Pradesh , India
| | - Rama Pande
- a School of Studies in Chemistry , Pt. Ravishankar Shukla University, Raipur , Chhattisgarh - 492010
| | - Eli Mohapatra
- c Biochemistry Department , All India Institute of Medical Sciences, Raipur , Chhattisgarh - 492099
| | - Rizwan Hasan Khan
- b Interdisciplinary Biotechnology Unit, Aligarh Muslim University , Aligarh - 202002 , Uttar Pradesh , India
| |
Collapse
|
9
|
Basu A, Kumar GS. Nucleic acids binding strategies of small molecules: Lessons from alkaloids. Biochim Biophys Acta Gen Subj 2018; 1862:1995-2016. [DOI: 10.1016/j.bbagen.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023]
|
10
|
Kumar GS, Basu A. The use of calorimetry in the biophysical characterization of small molecule alkaloids binding to RNA structures. Biochim Biophys Acta Gen Subj 2015; 1860:930-944. [PMID: 26522497 DOI: 10.1016/j.bbagen.2015.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/06/2015] [Accepted: 10/27/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND RNA has now emerged as a potential target for therapeutic intervention. RNA targeted drug design requires detailed thermodynamic characterization that provides new insights into the interactions and this together with structural data, may be used in rational drug design. The use of calorimetry to characterize small molecule-RNA interactions has emerged as a reliable and sensitive tool after the recent advancements in biocalorimetry. SCOPE OF THE REVIEW This review summarizes the recent advancements in thermodynamic characterization of small molecules, particularly some natural alkaloids binding to various RNA structures. Thermodynamic characterization provides information that can supplement structural data leading to more effective drug development protocols. MAJOR CONCLUSIONS This review provides a concise report on the use of isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) techniques in characterizing small molecules, mostly alkaloids-RNA interactions with particular reference to binding of tRNA, single stranded RNA, double stranded RNA, poly(A), triplex RNA. GENERAL SIGNIFICANCE It is now apparent that a combination of structural and thermodynamic data is essential for rational design of specific RNA targeted drugs. Recent advancements in biocalorimetry instrumentation have led to detailed understanding of the thermodynamics of small molecules binding to various RNA structures paving the path for the development of many new natural and synthetic molecules as specific binders to various RNA structures. RNA targeted drug design, that remained unexplored, will immensely benefit from the calorimetric studies leading to the development of effective drugs for many diseases.
Collapse
Affiliation(s)
- Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| | - Anirban Basu
- Biophysical Chemistry Laboratory, Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
11
|
Khilari R, Thakur Y, Pardhi M, Pande R. RNA-Binding Efficacy of N-Phenylbenzohydroxamic Acid: An Invitro and Insilico Approach. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:332-47. [PMID: 25874942 DOI: 10.1080/15257770.2014.1001073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
RNA has attracted recent attention for its key role in gene expression and hence targeting by small molecules for therapeutic intervention. This study is aimed to elucidate the specificity of RNA binding affinity of parent compound of N-arylhydroxamic acids series, N-phenylbenzohydroxamic acid trivially named as PBHA,C6H5NOH.C6H5C˭O. The binding behavior was examined by various biophysical methods such as absorption, fluorescence, and viscosity measurements. Molecular docking was also done. The value of affinity constant and overall binding constant was calculated 5.79±0.03×10(4) M(-1) and K'=1.09±0.03×10(5) M(-1), respectively. The Stern-Volmer constant Ksv obtained was 2.28±0.04×10(4) M(-1). The compound (PBHA) shows a concentration-based enhancement of fluorescence intensity with increasing RNA concentration. Fluorescence quenching of PBHA-RNA complex in presence of K4 [Fe(CN)6] was also observed. Viscometric studies complimented the UV results where a continuous increase in relative viscosity of the RNA solution was observed with added optimal PBHA concentration. All the experimental evidences indicate that PBHA can strongly bind to RNA through an intercalative mode.
Collapse
Affiliation(s)
- Rubi Khilari
- a School of Studies in Chemistry, Pt. Ravishankar Shukla University , Raipur , Chhattisgarh , India
| | | | | | | |
Collapse
|
12
|
Roviello GN, Musumeci D, Roviello V, Pirtskhalava M, Egoyan A, Mirtskhulava M. Natural and artificial binders of polyriboadenylic acid and their effect on RNA structure. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1338-1347. [PMID: 26199837 PMCID: PMC4505092 DOI: 10.3762/bjnano.6.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/22/2015] [Indexed: 06/10/2023]
Abstract
The employment of molecular tools with nucleic acid binding ability to specifically control crucial cellular functions represents an important scientific area at the border between biochemistry and pharmaceutical chemistry. In this review we describe several molecular systems of natural or artificial origin, which are able to bind polyriboadenylic acid (poly(rA)) both in its single-stranded or structured forms. Due to the fundamental role played by the poly(rA) tail in the maturation and stability of mRNA, as well as in the initiation of the translation process, compounds able to bind this RNA tract, influencing the mRNA fate, are of special interest for developing innovative biomedical strategies mainly in the field of anticancer therapy.
Collapse
Affiliation(s)
- Giovanni N Roviello
- Istituto di Biostrutture e Bioimmagini - CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Domenica Musumeci
- Istituto di Biostrutture e Bioimmagini - CNR, via Mezzocannone 16, 80134 Napoli, Italy
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Valentina Roviello
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMaPI), Università di Napoli “Federico II”, 80125 Napoli, Italy
| | | | | | | |
Collapse
|
13
|
Abstract
The binding of small molecules to non-canonical nucleic acid structures has been a major focus of rational drug design. Among the non-canonical nucleic acid structures, targeting poly(A) using small molecules has attracted a special interest due to the cellular functions of poly(A) tails. Here, the methods for determining the binding of a small molecule to poly(A) using UV-visible(UV-Vis) and Circular Dichroism (CD) Spectroscopy are described. Experiments used in determining the melting temperature, binding stoichiometry and dissociation constant of poly(A)-small molecule systems are depicted.
Collapse
|
14
|
Khan AY, Saha B, Kumar GS. Interaction of phenazinium dyes with double-stranded poly(A): spectroscopy and isothermal titration calorimetry studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 131:615-624. [PMID: 24861262 DOI: 10.1016/j.saa.2014.04.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/19/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
A comprehensive study on the binding of phenazinium dyes viz. janus green B, indoine blue, safranine O and phenosafranine with double stranded poly(A) using various spectroscopic and calorimetric techniques is presented. A higher binding of janus green B and indoine blue over safranine O and phenosafranine to poly(A) was observed from all experiments. Intercalative mode of binding of the dyes was inferred from fluorescence polarization anisotropy, iodide quenching and viscosity experiments. Circular dichroism study revealed significant perturbation of the secondary structure of poly(A) on binding of these dyes. Results from isothermal titration calorimetry experiments suggested that the binding was predominantly entropy driven with a minor contribution of enthalpy to the standard molar Gibbs energy. The results presented here may open new opportunities in the application of these dyes as RNA targeted therapeutic agents.
Collapse
Affiliation(s)
- Asma Yasmeen Khan
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Baishakhi Saha
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India.
| |
Collapse
|
15
|
Elbashir AA, Aboul-Enein HY. Supramolecular Analytical Application of Cucurbit[n]urils Using Fluorescence Spectroscopy. Crit Rev Anal Chem 2014. [DOI: 10.1080/10408347.2013.876354] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Tan K, Li J, Li H, Wang Y, Yuan R. A highly sensitive dual-readout assay based on poly(A) and gold nanoparticles for palmatine hydrochloride. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 122:198-203. [PMID: 24316533 DOI: 10.1016/j.saa.2013.11.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 06/02/2023]
Abstract
This report presents a highly sensitive, poly(A)-stabilized gold nanoparticle-based assay with dual readouts (resonance light scattering and colorimetric) for detecting palmatine hydrochloride (PaH) in real samples. The detection mechanism is based on the fact that palmatine hydrochloride has strong affinity to poly(A), which can stabilize gold nanoparticles at high ionic strength, and cause the aggregation of poly(A)-stabilized AuNPs, resulting in the enhanced resonance light scattering (RLS). At the same time, the color change of poly(A)-stabilized AuNPs solution is from red to blue via purple. Thus a highly sensitive RLS assay for PaH has been developed with a linear range of 0.023-2.5 μg/mL. The limit of detection (LOD, 3σ) is 2.3 ng/mL. In this work, the reaction mechanism of this system was investigated by scanning electron microscope (SEM), dark-field light scattering images (DLSI), dynamiclight scattering (DLS) and circular dichroism (CD). This proposed method was also applied successfully for the determination of PaH in pharmaceutical preparations and urine samples with RSD⩽4.0%. The results are in good agreement with those from the official method.
Collapse
Affiliation(s)
- Kejun Tan
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Jiayu Li
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Huachun Li
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yingying Wang
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Rui Yuan
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
17
|
Pradhan AB, Haque L, Bhuiya S, Das S. Induction of self-structure in polyriboadenylic acid by the benzophenanthridine plant alkaloid chelerythrine: a spectroscopic approach. RSC Adv 2014. [DOI: 10.1039/c4ra07075e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Induction of self-structure in polyriboadenylic acid by chelerythrine.
Collapse
Affiliation(s)
| | - Lucy Haque
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032, India
| | - Sutanwi Bhuiya
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032, India
| | - Suman Das
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032, India
| |
Collapse
|
18
|
Paul P, Suresh Kumar G. Self-structure formation in polyadenylic acid by small molecules: new insights from the binding of planar dyes thionine and toluidine blue O. RSC Adv 2014. [DOI: 10.1039/c4ra02671c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Thionine and toluidine blue targeting poly(A).
Collapse
Affiliation(s)
- Puja Paul
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032, India
| |
Collapse
|
19
|
Basu A, Jaisankar P, Suresh Kumar G. Binding of the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs to tRNA(phe.). PLoS One 2013; 8:e58279. [PMID: 23526972 PMCID: PMC3602459 DOI: 10.1371/journal.pone.0058279] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/01/2013] [Indexed: 12/19/2022] Open
Abstract
Background Three new analogs of berberine with aryl/arylalkyl amino carbonyl methyl substituent at the 9-position of the isoquinoline chromophore along with berberrubine were studied for their binding to tRNAphe by wide variety of biophysical techniques like spectrophotometry, spectrofluorimetry, circular dichroism, thermal melting, viscosity and isothermal titration calorimetry. Methodology/Principal Findings Scatchard binding isotherms revealed that the cooperative binding mode of berberine was propagated in the analogs also. Thermal melting studies showed that all the 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs stabilized the tRNAphe more in comparison to berberine. Circular dichroism studies showed that these analogs perturbed the structure of tRNAphe more in comparison to berberine. Ferrocyanide quenching studies and viscosity results proved the intercalative binding mode of these analogs into the helical organization of tRNAphe. The binding was entropy driven for the analogs in sharp contrast to the enthalpy driven binding of berberine. The introduction of the aryl/arylalkyl amino carbonyl methyl substituent at the 9-position thus switched the enthalpy driven binding of berberine to entropy dominated binding. Salt and temperature dependent calorimetric studies established the involvement of multiple weak noncovalent interactions in the binding process. Conclusions/Significance The results showed that 9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogs exhibited almost ten folds higher binding affinity to tRNAphe compared to berberine whereas the binding of berberrubine was dramatically reduced by about twenty fold in comparison to berberine. The spacer length of the substitution at the 9-position of the isoquinoline chromophore appears to be critical in modulating the binding affinities towards tRNAphe.
Collapse
Affiliation(s)
- Anirban Basu
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Gopinatha Suresh Kumar
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail:
| |
Collapse
|
20
|
Kumar GS. RNA targeting by small molecules: Binding of protoberberine, benzophenanthridine and aristolochia alkaloids to various RNA structures. J Biosci 2012; 37:539-52. [DOI: 10.1007/s12038-012-9217-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Shi S, Zhao J, Gao X, Lv C, Yang L, Hao J, Huang H, Yao J, Sun W, Yao T, Ji L. Molecular “light switch” for G-quadruplex DNA: cycling the switch on and off. Dalton Trans 2012; 41:5789-93. [DOI: 10.1039/c2dt30076a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Xi H, Davis E, Ranjan N, Xue L, Hyde-Volpe D, Arya DP. Thermodynamics of nucleic acid "shape readout" by an aminosugar. Biochemistry 2011; 50:9088-113. [PMID: 21863895 PMCID: PMC3673541 DOI: 10.1021/bi201077h] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recognition of nucleic acids is important for our understanding of nucleic acid structure as well as for our understanding of nucleic acid-protein interactions. In addition to the direct readout mechanisms of nucleic acids such as H-bonding, shape recognition of nucleic acids is being increasingly recognized as playing an equally important role in DNA recognition. Competition dialysis, UV, flourescent intercalator displacement (FID), computational docking, and calorimetry studies were conducted to study the interaction of neomycin with a variety of nucleic acid conformations (shapes). At pH 5.5, the results suggest the following. (1) Neomycin binds three RNA structures [16S A site rRNA, poly(rA)·poly(rA), and poly(rA)·poly(rU)] with high affinities (K(a) ~ 10(7) M(-1)). (2) The binding of neomycin to A-form GC-rich oligomer d(A(2)G(15)C(15)T(2))(2) has an affinity comparable to those of RNA structures. (3) The binding of neomycin to DNA·RNA hybrids shows a 3-fold variance that can be attributed to their structural differences [for poly(dA)·poly(rU), K(a) = 9.4 × 10(6) M(-1), and for poly(rA)·poly(dT), K(a) = 3.1 × 10(6) M(-1)]. (4) The interaction of neomycin with DNA triplex poly(dA)·2poly(dT) yields a binding affinity (K(a)) of 2.4 × 10(5) M(-1). (5) Poly(dA-dT)(2) shows the lowest association constant for all nucleic acids studied (K(a) < 10(5)). (6) Neomycin binds to G-quadruplexes with K(a) values of ~10(4)-10(5) M(-1). (7) Computational studies show that the decrease in major groove width in the B to A transition correlates with increasing neomycin affinity. Neomycin's affinity for various nucleic acid structures can be ranked as follows: RNAs and GC-rich d(A(2)G(15)C(15)T(2))(2) structures > poly(dA)·poly(rU) > poly(rA)·poly(dT) > T·A-T triplex, G-quadruplex, B-form AT-rich, or GC-rich DNA sequences. The results illustrate the first example of a small molecule-based "shape readout" of different nucleic acid conformations.
Collapse
Affiliation(s)
- Hongjuan Xi
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Erik Davis
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Nihar Ranjan
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Liang Xue
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - David Hyde-Volpe
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| | - Dev P. Arya
- Laboratory of Medicinal Chemistry, Department of Chemistry, Clemson University, Clemson, South Carolina, 29634
| |
Collapse
|
23
|
Lin YH, Tseng WL. Fluorescence detection of coralyne and polyadenylation reaction using an oligonucleotide-based fluorogenic probe. Chem Commun (Camb) 2011; 47:11134-6. [PMID: 21897954 DOI: 10.1039/c1cc14429d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study describes the development of a simple, sensitive, and selective-detection system for coralyne and polyadenylation reaction based on the fact that coralyne induces a conformational change of the polyadenosine [poly(A)] oligonucleotide through A-coralyne-A coordination, thereby enhancing the fluorescence of SYBR Green I.
Collapse
Affiliation(s)
- Yen-Hsiu Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | |
Collapse
|
24
|
Das A, Bhadra K, Suresh Kumar G. Targeting RNA by small molecules: comparative structural and thermodynamic aspects of aristololactam-β-D-glucoside and daunomycin binding to tRNA(phe). PLoS One 2011; 6:e23186. [PMID: 21858023 PMCID: PMC3156712 DOI: 10.1371/journal.pone.0023186] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/11/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Interaction of aristololactam-β-D-glucoside and daunomycin with tRNA(phe) was investigated using various biophysical techniques. METHODOLOGY/PRINCIPAL FINDINGS Absorption and fluorescence studies revealed that both the compounds bind tRNA(phe) non-cooperatively. The binding of daunomycin was about one order of magnitude higher than that of aristololactam-β-D-glucoside. Stronger binding of the former was also inferred from fluorescence quenching data, quantum efficiency values and circular dichroic results. Results from isothermal titration calorimetry experiments suggested that the binding of both compounds was predominantly entropy driven with a smaller but favorable enthalpy term that increased with temperature. A large favorable electrostatic contribution to the binding of daunomycin to tRNA(phe) was revealed from salt dependence data and the dissection of the free energy values. The electrostatic component to the free energy change for aristololactam-β-D-glucoside-tRNA(phe) interaction was smaller than that of daunomycin. This was also inferred from the slope of log K versus [Na(+)] plots. Both compounds enhanced the thermal stability of tRNA(phe). The small heat capacity changes of -47 and -99 cal/mol K, respectively, observed for aristololactam-β-D-glucoside and daunomycin, and the observed enthalpy-entropy compensation phenomenon confirmed the involvement of multiple weak noncovalent interactions. Molecular aspects of the interaction have been revealed. CONCLUSIONS/SIGNIFICANCE This study presents the structural and energetic aspects of the binding of aristololactam-β-D-glucoside and daunomycin to tRNA(phe).
Collapse
MESH Headings
- Algorithms
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Aristolochic Acids/chemistry
- Aristolochic Acids/metabolism
- Aristolochic Acids/pharmacology
- Binding Sites
- Binding, Competitive
- Calorimetry
- Circular Dichroism
- Daunorubicin/chemistry
- Daunorubicin/metabolism
- Daunorubicin/pharmacology
- Entropy
- Glucosides/chemistry
- Glucosides/metabolism
- Glucosides/pharmacology
- Kinetics
- Molecular Structure
- Nucleic Acid Conformation/drug effects
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- Spectrometry, Fluorescence
- Thermodynamics
Collapse
Affiliation(s)
- Abhi Das
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| | - Kakali Bhadra
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| |
Collapse
|
25
|
Wu WY, Yang JY, Du LM, Wu H, Li CF. Determination of ethambutol by a sensitive fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 79:418-422. [PMID: 21536491 DOI: 10.1016/j.saa.2011.02.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 02/20/2011] [Accepted: 02/22/2011] [Indexed: 05/30/2023]
Abstract
The competitive reaction between ethambutol and two fluorescent probes (i.e., berberine and palmatine) for occupancy of the cucurbit[7]uril (CB[7]) cavity was studied by spectrofluorometry. The CB[7] reacts with these probes to form stable complexes, and the fluorescence intensity of the complexes is greatly enhanced. In addition, the excitation and emission wavelengths of their complexes moved to wavelengths of 343 nm and 495 nm, respectively. However, the addition of ethambutol dramatically quenches the fluorescence intensity of the two complexes. Accordingly, a couple of new fluorescence quenching methods for the determination of ethambutol were established. The methods can be applied for quantifying ethambutol. A linear relationship between the fluorescence quenching values (ΔF) and ethambutol concentration exists in the range of 5.0-1000.0 ng mL(-1), with a correlation coefficient (r) of 0.9997. The detection limit is 1.7 ng mL(-1). The fluorescent probe of berberine has higher sensitivity than palmatine. This paper also discusses the mechanism of fluorescence indicator probes.
Collapse
Affiliation(s)
- Wen-Ying Wu
- Analytical and Testing Center, Shanxi Normal University, Shanxi, Linfen 041004, PR China
| | | | | | | | | |
Collapse
|
26
|
Das A, Bhadra K, Achari B, Chakraborty P, Kumar GS. Interaction of aristololactam-β-D-glucoside and daunomycin with poly(A): spectroscopic and calorimetric studies. Biophys Chem 2011; 155:10-9. [PMID: 21392880 DOI: 10.1016/j.bpc.2011.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/11/2011] [Accepted: 01/30/2011] [Indexed: 11/19/2022]
Abstract
The binding of two sugar containing antibiotics viz. aristololactam-β-D-glucoside and daunomycin with single and double stranded poly(A) was investigated by spectroscopic and calorimetric studies. The binding affinity of daunomycin to ss poly(A) was of the order of 10⁶ M⁻¹ and that to ds poly(A) was of the order of 10⁵ M⁻¹. Aristololactam-β-D-glucoside showed a relatively weaker binding with an affinity of the order of 10⁴ M⁻¹ with both the conformations of poly(A). Fluorescence studies showed maximum quenching for daunomycin-ss poly(A) complexes. The binding constants calculated from fluorescence spectroscopy were in good agreement with that obtained from UV spectroscopy. Moderate perturbation of circular dichroic spectra of both the conformations of poly(A) in presence of these molecules with concomitant formation of prominent extrinsic CD bands in the 300-450 nm region further revealed the association. Isothermal titration calorimetry results showed an overall entropy driven binding in all the four systems though the entropy change was maximum in daunomycin-ss poly(A) binding. The binding affinity was also maximum for daunomycin-ss poly(A) and varied as daunomycin-ds poly(A) > aristololactam-β-D-glucoside-ds poly(A) > aristololactam-β-D-glucoside-ss poly(A). A 1:1 binding stoichiometry was observed in all the cases, as confirmed by Job plot analysis, indicating the interaction to consist of a single binding mode. Ferrocyanide quenching studies showed good stacking interaction in all cases but was best for daunomycin-ss poly(A) interaction. No self-structure formation was observed in poly(A) with both daunomycin and aristololactam-β-D-glucoside suggesting the hindrance of the sugar moiety for such structural organization.
Collapse
Affiliation(s)
- Abhi Das
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, CSIR, Kolkata 700032, India
| | | | | | | | | |
Collapse
|
27
|
Rolim LADMM, Macêdo MFS, Sisenando HA, Napoleão TH, Felzenszwalb I, Aiub CAF, Coelho LCBB, Medeiros SRB, Paiva PMG. Genotoxicity evaluation of Moringa oleifera seed extract and lectin. J Food Sci 2011; 76:T53-8. [PMID: 21535795 DOI: 10.1111/j.1750-3841.2010.01990.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UNLABELLED This article reports the genotoxicity assessment of an extract of M. oleifera seed powder and the water-soluble Moringa oleifera lectin (WSMoL) isolated from seeds. The lectin isolated by chitin chromatography showed hemagglutinating activity with different erythrocytes, activity in a broad pH range (4.5 to 9.5), and retention of hemagglutinating activity after being heated to 100 °C. Genotoxicity of the seed extract and WSMoL were assessed using the cell-free plasmid DNA as well as the Salmonella typhimurium (Ames and Kado) assays with TA97, TA98, TA100, and TA102 in the presence or absence of hepatic metabolization. Seed extract at concentration (0.2 μg/μL) recommended to treat water was not genotoxic by Ames, Kado, and cell-free plasmid DNA assays. S. typhimurium strains showed to be sensitive to M. oleifera extract revealing a mutagenic effect at doses higher than 0.6 μg/μL with hepatic metabolization. The extract at doses higher than 0.4 μg/μL, without hepatic metabolization, was mutagenic for TA100 and TA102. WSMoL was nonmutagenic by used assays. The use of high concentrations of the extract may pose a risk to human health and the safe use of M. oleifera seed powder to treat water for human consumption requires more study; however, the purified lectin could be an alternative for water treatment. PRACTICAL APPLICATION The concentration 0.2 μg/μL of M. oleifera seed extract recommended to treat water for humans did not pose a risk to human health. The mutagenicity detected at concentrations higher than 0.4 μg/μL was not due to WSMoL, lectin isolated from extract.
Collapse
Affiliation(s)
- Lucíola A D M M Rolim
- Lab de Glicoproteínas, Dept de Bioquímica, Centro de Ciências Biológicas, Univ Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chang YX, Qiu YQ, Du LM, Li CF, Guo M. Determination of ranitidine, nizatidine, and cimetidine by a sensitive fluorescent probe. Analyst 2011; 136:4168-73. [DOI: 10.1039/c1an15078b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Bhadra K, Kumar GS. Therapeutic potential of nucleic acid-binding isoquinoline alkaloids: Binding aspects and implications for drug design. Med Res Rev 2010; 31:821-62. [DOI: 10.1002/med.20202] [Citation(s) in RCA: 219] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Song G, Ren J. Recognition and regulation of unique nucleic acid structures by small molecules. Chem Commun (Camb) 2010; 46:7283-94. [DOI: 10.1039/c0cc01312a] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Maiti M, Kumar GS. Polymorphic nucleic Acid binding of bioactive isoquinoline alkaloids and their role in cancer. J Nucleic Acids 2009; 2010. [PMID: 20814427 PMCID: PMC2915887 DOI: 10.4061/2010/593408] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 12/20/2022] Open
Abstract
Bioactive alkaloids occupy an important position in applied chemistry and play an indispensable role in medicinal chemistry. Amongst them, isoquinoline alkaloids like berberine, palmatine and coralyne of protoberberine group, sanguinarine of the benzophenanthridine group, and their derivatives represent an important class of molecules for their broad range of clinical and pharmacological utility. In view of their extensive occurrence in various plant species and significantly low toxicities, prospective development and use of these alkaloids as effective anticancer agents are matters of great current interest. This review has focused on the interaction of these alkaloids with polymorphic nucleic acid structures (B-form, A-form, Z-form, HL-form, triple helical form, quadruplex form) and their topoisomerase inhibitory activity reported by several research groups using various biophysical techniques like spectrophotometry, spectrofluorimetry, thermal melting, circular dichroism, NMR spectroscopy, electrospray ionization mass spectroscopy, viscosity, isothermal titration calorimetry, differential scanning calorimetry, molecular modeling studies, and so forth, to elucidate their mode and mechanism of action for structure-activity relationships. The DNA binding of the planar sanguinarine and coralyne are found to be stronger and thermodynamically more favoured compared to the buckled structure of berberine and palmatine and correlate well with the intercalative mechanism of sanguinarine and coralyne and the partial intercalation by berberine and palmatine. Nucleic acid binding properties are also interpreted in relation to their anticancer activity.
Collapse
Affiliation(s)
- Motilal Maiti
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology (CSIR), Kolkata 700032, India
| | | |
Collapse
|
32
|
Joung IS, Persil Çetinkol Ö, Hud NV, Cheatham TE. Molecular dynamics simulations and coupled nucleotide substitution experiments indicate the nature of A{middle dot}A base pairing and a putative structure of the coralyne-induced homo-adenine duplex. Nucleic Acids Res 2009; 37:7715-27. [PMID: 19850721 PMCID: PMC2794157 DOI: 10.1093/nar/gkp730] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 08/17/2009] [Accepted: 08/19/2009] [Indexed: 01/18/2023] Open
Abstract
Coralyne is an alkaloid drug that binds homo-adenine DNA (and RNA) oligonucleotides more tightly than it does Watson-Crick DNA. Hud's laboratory has shown that poly(dA) in the presence of coralyne forms an anti-parallel duplex, however attempts to determine the structure by NMR spectroscopy and X-ray crystallography have been unsuccessful. Assuming adenine-adenine hydrogen bonding between the two poly(dA) strands, we constructed 40 hypothetical homo-(dA) anti-parallel duplexes and docked coralyne into the six most favorable duplex structures. The two most stable structures had trans glycosidic bonds, but distinct pairing geometries, i.e. either Watson-Crick Hoogsteen (transWH) or Watson-Crick Watson-Crick (transWW) with stability of transWH > transWW. To narrow down the possibilities, 7-deaza adenine base substitutions (dA-->7) were engineered into homo-(dA) sequences. These substitutions significantly reduced the thermal stability of the coralyne-induced homo-(dA) structure. These experiments strongly suggest the involvement of N7 in the coralyne-induced A.A base pairs. Moreover, due to the differential effect on melting as a function of the location of the dA-->7 mutations, these results are consistent with the N1-N7 base pairing of the transWH pairs. Together, the simulation and base substitution experiments predict that the coralyne-induced homo-(dA) duplex structure adopts the transWH geometry.
Collapse
Affiliation(s)
- In Suk Joung
- Department of Bioengineering, College of Engineering, University of Utah, Salt Lake City, UT 84112, School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, Department of Medicinal Chemistry and Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Özgül Persil Çetinkol
- Department of Bioengineering, College of Engineering, University of Utah, Salt Lake City, UT 84112, School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, Department of Medicinal Chemistry and Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Nicholas V. Hud
- Department of Bioengineering, College of Engineering, University of Utah, Salt Lake City, UT 84112, School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, Department of Medicinal Chemistry and Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas E. Cheatham
- Department of Bioengineering, College of Engineering, University of Utah, Salt Lake City, UT 84112, School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, Department of Medicinal Chemistry and Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
33
|
Giri P, Suresh Kumar G. Molecular recognition of poly(A) targeting by protoberberine alkaloids: in vitro biophysical studies and biological perspectives. MOLECULAR BIOSYSTEMS 2009; 6:81-8. [PMID: 20024069 DOI: 10.1039/b910706a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The use of small molecules to specifically control important cellular functions through binding to nucleic acids is an area of major current interest at the interface of chemical biology and medicinal chemistry. The polyadenylic acid [poly(A)] tail of mRNA has been recently established as a potential drug target due to its significant role in the initiation of translation, maturation and stability of mRNA as well as in the production of alternate proteins in eukaryotic cells. Very recently some small molecule alkaloids of the isoquinoline group have been found to bind poly(A) with remarkably high affinity leading to self-structure formation. Plant alkaloids are small molecules known to have important traditional roles in medicinal chemistry due to their extensive biological activity. Especially, noteworthy are the protoberberine alkaloids that are widely distributed in several botanical families exhibiting myriad therapeutic applications. This review focuses on the structural and biological significance of poly(A) and interaction of protoberberine alkaloids with this RNA structure for the development of new small molecule alkaloids targeted to poly(A) structures as futuristic therapeutic agents.
Collapse
Affiliation(s)
- Prabal Giri
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology (CSIR), 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India.
| | | |
Collapse
|
34
|
Hossain M, Suresh Kumar G. DNA intercalation of methylene blue and quinacrine: new insights into base and sequence specificity from structural and thermodynamic studies with polynucleotides. MOLECULAR BIOSYSTEMS 2009; 5:1311-22. [PMID: 19823747 DOI: 10.1039/b909563b] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding of the known DNA intercalators methylene blue and quinacrine with four sequence specific polynucleotides, viz. poly(dG-dC).poly(dG-dC), poly(dG).poly(dC), poly(dA-dT).poly(dA-dT) and poly(dA).poly(dT), have been compared using absorbance, fluorescence, competition dialysis and thermal melting and the thermodynamic aspects of the interaction studied. In all the cases, non-cooperative binding phenomena obeying neighbor exclusion principle was observed though the affinity was remarkably higher for quinacrine and the nature of the binding was characterized to be true intercalation. The data on the salt dependence of binding derived from the plot of log Kvs. log[Na(+)] revealed a slope of around 1.0, consistent with the values predicted by the theories for the binding of monovalent cations, and contained contributions from polyelectrolytic and non-polyelectrolytic forces. The bindings were characterized by strong stabilization of the polynucleotides against thermal strand separation in both optical melting as well as differential scanning calorimetry studies. The data analyzed from the thermal melting and isothermal titration calorimetry studies were in close proximity to those obtained from absorption spectral titration data. Isothermal titration calorimetry results revealed the bindings to poly(dG-dC).poly(dG-dC), poly(dG).poly(dC) and poly(dA-dT).poly(dA-dT) to be exothermic and favoured by both negative enthalpy and large favourable positive entropy changes, while that to poly(dA).poly(dT) was endothermic and entropy driven. The heat capacity changes obtained from temperature dependence of enthalpy gave negative values to all polynucleotides. New insights on the molecular aspects of interaction of these molecules to DNA have emerged from these studies.
Collapse
Affiliation(s)
- Maidul Hossain
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology (Council of Scientific and Industrial Research), 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | | |
Collapse
|
35
|
Xi H, Gray D, Kumar S, Arya DP. Molecular recognition of single-stranded RNA: neomycin binding to poly(A). FEBS Lett 2009; 583:2269-75. [PMID: 19520078 DOI: 10.1016/j.febslet.2009.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/01/2009] [Accepted: 06/03/2009] [Indexed: 02/04/2023]
Abstract
Poly(A) is a relevant sequence in cell biology due to its importance in mRNA stability and translation initiation. Neomycin is an aminoglycoside antibiotic that is well known for its ability to target various nucleic acid structures. Here it is reported that neomycin is capable of binding tightly to a single-stranded oligonucleotide (A(30)) with a K(d) in the micromolar range. CD melting experiments support complex formation and indicate a melting temperature of 47 degrees C. The poly(A) duplex, which melts at 44 degrees C (pH 5.5), was observed to melt at 61 degrees C in the presence of neomycin, suggesting a strong stabilization of the duplex by the neomycin.
Collapse
Affiliation(s)
- Hongjuan Xi
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
36
|
Islam MM, Chowdhury SR, Kumar GS. Spectroscopic and calorimetric studies on the binding of alkaloids berberine, palmatine and coralyne to double stranded RNA polynucleotides. J Phys Chem B 2009; 113:1210-24. [PMID: 19132839 DOI: 10.1021/jp806597w] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The interaction of two natural protoberberine plant alkaloids berberine and palmatine and a synthetic derivative coralyne to three double stranded ribonucleic acids, poly(A). poly(U), poly(I).poly(C) and poly(C).poly(G) was studied using various biophysical techniques. Absorbance and fluorescence studies showed that the alkaloids bound cooperatively to these RNAs with the binding affinities of the order 10(4) M(-1). Circular dichroic results suggested that the conformation of poly(A). poly(U) was perturbed by all the three alkaloids, that of poly(I).poly(C) by coralyne only and that of poly(C).poly(G) by none. Fluorescence quenching studies gave evidence for partial intercalation of berberine and palmatine and complete intercalation of coralyne to these RNA duplexes. Isothermal titration calorimetric studies revealed that the binding was characterized by negative enthalpy and positive entropy changes and the affinity constants derived were in agreement with the overall binding affinity from spectral data. The binding of all the three alkaloids considerably stabilized the melting of poly(A). poly(U) and poly(I).poly(C) and the binding data evaluated from the melting data were in agreement with that obtained from other techniques. The overall binding affinity of the alkaloids to these double stranded RNAs varied in the order, berberine = palmatine < coralyne. The temperature dependence of the enthalpy changes afforded large negative values of heat capacity changes for the binding of palmatine and coralyne to poly(A).poly(U) and of coralyne to poly(I).poly(C), suggesting substantial hydrophobic contribution in the binding process. Further, enthalpy-entropy compensation was also seen in almost all the systems that showed binding. These results further advance our understanding on the binding of small molecules that are specific binders to double stranded RNA sequences.
Collapse
Affiliation(s)
- Md Maidul Islam
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata 700 032, India
| | | | | |
Collapse
|
37
|
Çetinkol ÖP, Hud NV. Molecular recognition of poly(A) by small ligands: an alternative method of analysis reveals nanomolar, cooperative and shape-selective binding. Nucleic Acids Res 2009; 37:611-21. [PMID: 19073699 PMCID: PMC2632892 DOI: 10.1093/nar/gkn977] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 11/18/2008] [Accepted: 11/19/2008] [Indexed: 11/13/2022] Open
Abstract
A few drug-like molecules have recently been found to bind poly(A) and induce a stable secondary structure (T(m) approximately 60 degrees C), even though this RNA homopolymer is single-stranded in the absence of a ligand. Here, we report results from experiments specifically designed to explore the association of small molecules with poly(A). We demonstrate that coralyne, the first small molecule discovered to bind poly(dA), binds with unexpectedly high affinity (K(a) >10(7) M(-1)), and that the crescent shape of coralyne appears necessary for poly(A) binding. We also show that the binding of similar ligands to poly(A) can be highly cooperative. For one particular ligand, at least six ligand molecules are required to stabilize the poly(A) self-structure at room temperature. This highly cooperative binding produces very sharp transitions between unstructured and structured poly(A) as a function of ligand concentration. Given the fact that junctions between Watson-Crick and A.A duplexes are tolerated, we propose that poly(A) sequence elements and appropriate ligands could be used to reversibly drive transitions in DNA and RNA-based molecular structures by simply diluting/concentrating a sample about the poly(A)-ligand 'critical concentration'. The ligands described here may also find biological or medicinal applications, owing to the 3'-polyadenylation of mRNA in living cells.
Collapse
Affiliation(s)
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| |
Collapse
|
38
|
Li C, Xu Q, Li J, Jia X. Highly effective binding and inverse fluorescent behavior of palmatine and l-tetrahydropalmatine alkaloids by p-sulfonatocalixarenes. J INCL PHENOM MACRO 2009. [DOI: 10.1007/s10847-009-9533-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Binding of DNA-binding alkaloids berberine and palmatine to tRNA and comparison to ethidium: Spectroscopic and molecular modeling studies. J Mol Struct 2008. [DOI: 10.1016/j.molstruc.2008.04.043] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Giri P, Kumar GS. Self-structure induction in single stranded poly(A) by small molecules: Studies on DNA intercalators, partial intercalators and groove binding molecules. Arch Biochem Biophys 2008; 474:183-92. [PMID: 18387354 DOI: 10.1016/j.abb.2008.03.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/13/2008] [Accepted: 03/15/2008] [Indexed: 11/17/2022]
Abstract
Self-structure induction in single stranded poly(A) has been one typical example of the various ways that could be used to modulate nucleic acid structural aspects through binding of small molecules. For the first time, the interaction between a series of small molecules and poly(A) has been investigated to understand the nature of the structural features in DNA binding small molecules that could be responsible for the formation of self-structure in single stranded poly(A) molecules. Classical intercalators like ethidium, coralyne, quinacrine and proflavine, partial intercalators like berberine and palmatine and classical minor groove binders like hoechst 33258 and DAPI have been chosen for this study. The binding of each of these molecules to poly(A) has been characterized by absorption spectral titration, job plot and isothermal titration calorimetry. Self-structure formation was monitored from circular dichroic melting, optical melting and differential scanning calorimetry. The results revealed that while all the intercalators studied induced self-structure formation, partial intercalators did not induce the same in poly(A). Of the two classical DNA minor groove binding molecules investigated, hoechst was effective in inducing self-structure while DAPI was ineffective. Self-structure induction in poly(A) was observed to be directly linked to the cooperative binding of the molecules to poly(A) in that all the molecules that bound cooperatively induced self-structure in poly(A). Structural and thermodynamic aspects of the interaction leading to self-structure formation are described.
Collapse
Affiliation(s)
- Prabal Giri
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | | |
Collapse
|
41
|
Islam MM, Suresh Kumar G. RNA targeting by small molecule alkaloids: Studies on the binding of berberine and palmatine to polyribonucleotides and comparison to ethidium. J Mol Struct 2008. [DOI: 10.1016/j.molstruc.2007.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Giri P, Kumar GS. Spectroscopic and calorimetric studies on the binding of the phototoxic and cytotoxic plant alkaloid sanguinarine with double helical poly(A). J Photochem Photobiol A Chem 2008. [DOI: 10.1016/j.jphotochem.2007.07.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Wu DZ, Yuan JY, Shi HL, Hu ZB. Palmatine, a protoberberine alkaloid, inhibits both Ca(2+)- and cAMP-activated Cl(-) secretion in isolated rat distal colon. Br J Pharmacol 2008; 153:1203-13. [PMID: 18204477 DOI: 10.1038/sj.bjp.0707684] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE The protoberberine alkaloid berberine has been reported to inhibit colonic Cl(-) secretion. However, it is not known if other protoberberine alkaloids share these effects. We have therefore selected another protoberberine alkaloid, palmatine, to assess its effects on active ion transport across rat colonic epithelium. EXPERIMENTAL APPROACH Rat colonic mucosa was mounted in Ussing chambers and short circuit current (I (SC)), apical Cl(-) current and basolateral K(+) current were recorded. Intracellular cAMP content was determined by an enzyme immunoassay. Intracellular Ca(2+) concentration was measured with Fura-2 AM. KEY RESULTS Palmatine inhibited carbachol-induced Ca(2+)-activated Cl(-) secretion and the carbachol-induced increase of intracellular Ca(2+) concentration. Palmatine also inhibited cAMP-activated Cl(-) secretion induced by prostaglandin E(2) (PGE(2)) or forskolin. Palmatine prevented the elevation of intracellular cAMP by forskolin. Determination of apical Cl(-) currents showed that palmatine suppressed the forskolin-stimulated, apical cAMP-activated Cl(-) current but not the carbachol-stimulated apical Ca(2+)-activated Cl(-) current. Following permeabilization of apical membranes with nystatin, we found that palmatine inhibited a carbachol-stimulated basolateral K(+) current that was sensitive to charybdotoxin and resistant to chromanol 293B. However, the forskolin-stimulated basolateral K(+) current inhibited by palmatine was specifically blocked by chromanol 293B and not by charybdotoxin. CONCLUSIONS AND IMPLICATIONS Palmatine attenuated Ca(2+)-activated Cl(-) secretion through inhibiting basolateral charybdotoxin-sensitive, SK4 K(+) channels, whereas it inhibited cAMP-activated Cl(-) secretion by inhibiting apical CFTR Cl(-) channels and basolateral chromanol 293B-sensitive, KvLQT1 K(+) channels.
Collapse
Affiliation(s)
- D Z Wu
- Laboratory of Pharmacology, Institute of Chinese Materia Medica, Shanghai University of TCM, Shanghai, PR China
| | | | | | | |
Collapse
|
44
|
Okhrimenko O, Jelesarov I. A survey of the year 2006 literature on applications of isothermal titration calorimetry. J Mol Recognit 2008; 21:1-19. [DOI: 10.1002/jmr.859] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Giri P, Kumar GS. Binding of protoberberine alkaloid coralyne with double stranded poly(A): a biophysical study. MOLECULAR BIOSYSTEMS 2008; 4:341-8. [DOI: 10.1039/b716356h] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Bhadra K, Maiti M, Kumar GS. Molecular recognition of DNA by small molecules: AT base pair specific intercalative binding of cytotoxic plant alkaloid palmatine. Biochim Biophys Acta Gen Subj 2007; 1770:1071-80. [PMID: 17434677 DOI: 10.1016/j.bbagen.2007.03.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Revised: 02/27/2007] [Accepted: 03/03/2007] [Indexed: 11/28/2022]
Abstract
The base dependent binding of the cytotoxic alkaloid palmatine to four synthetic polynucleotides, poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC) was examined by competition dialysis, spectrophotometric, spectrofluorimetric, thermal melting, circular dichroic, viscometric and isothermal titration calorimetric (ITC) studies. Binding of the alkaloid to various polynucleotides was dependent upon sequences of base pairs. Binding data obtained from absorbance measurements according to neighbour exclusion model indicated that the intrinsic binding constants decreased in the order poly(dA).poly(dT)>poly(dA-dT).poly(dA-dT)>poly(dG-dC).poly(dG-dC)>poly(dG).poly(dC). This affinity was also revealed by the competition dialysis, increase of steady state fluorescence intensity, increase in fluorescence quantum yield, stabilization against thermal denaturation and perturbations in circular dichroic spectrum. Among the polynucleotides, poly(dA).poly(dT) showed positive cooperativity at binding values lower than r=0.05. Viscosity studies revealed that in the strong binding region, the increase of contour length of DNA depended strongly on the sequence of base pairs being higher for AT polymers and induction of unwinding-rewinding process of covalently closed superhelical DNA. Isothermal titration calorimetric data showed a single entropy driven binding event in the AT homo polymer while that with the hetero polymer involved two binding modes, an entropy driven strong binding followed by an enthalpy driven weak binding. These results unequivocally established that the alkaloid palmatine binds strongly to AT homo and hetero polymers by mechanism of intercalation.
Collapse
Affiliation(s)
- Kakali Bhadra
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | | | | |
Collapse
|
47
|
Giri P, Kumar GS. Specific binding and self-structure induction to poly(A) by the cytotoxic plant alkaloid sanguinarine. Biochim Biophys Acta Gen Subj 2007; 1770:1419-26. [PMID: 17600625 DOI: 10.1016/j.bbagen.2007.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 05/17/2007] [Accepted: 05/21/2007] [Indexed: 11/24/2022]
Abstract
The cytotoxic plant alkaloid sanguinarine was found to bind preferentially and strongly to single stranded poly(A) with an association constant (K(a)) in the range 3.6-4.6 x 10(6) M(-1) in comparison to several nucleic acids. The binding induced unique self-structure formation in poly(A) that showed cooperative melting transition in circular dichroism, absorbance, and differential scanning calorimetry studies. The alkaloid binding was characterized to be intercalation as revealed from fluorescence quenching experiments and was predominantly enthalpy driven as revealed from isothermal titration calorimetry. Sanguinarine is the first and only natural product so far known to induce a self-structure formation in poly(A).
Collapse
Affiliation(s)
- Prabal Giri
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata 700032, India
| | | |
Collapse
|
48
|
Islam MM, Sinha R, Kumar GS. RNA binding small molecules: Studies on t-RNA binding by cytotoxic plant alkaloids berberine, palmatine and the comparison to ethidium. Biophys Chem 2007; 125:508-20. [PMID: 17156912 DOI: 10.1016/j.bpc.2006.11.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 11/30/2022]
Abstract
The interaction of two natural protoberberine plant alkaloids berberine and palmatine with t-RNA(phe) was studied using various biophysical techniques and the data was compared with the binding of the classical DNA intercalator, ethidium. The results of optical thermal melting, differential scanning calorimetry and circular dichroism characterized the native cloverleaf structure of t-RNA under the conditions of the study. The strong binding of the alkaloids and ethidium to t-RNA was revealed from the absorption and fluorescence studies. The salt dependence of the binding constants enabled the dissection of the binding free energy to electrostatic and non-electrostatic contributions. This analysis revealed a surprisingly large favourable component of the non-electrostatic contribution to the binding of these charged alkaloids and ethidium to t-RNA. Isothermal titration calorimetric studies revealed that the binding of both the alkaloids is driven by a moderately favourable enthalpy decrease and a moderately favourable entropy increase while that of ethidium is driven by a large favourable enthalpy decrease. Taken together, the results suggest that the binding of these alkaloid molecules on the t-RNA structure appears to be mostly by partial intercalation while ethidium intercalates to the t-RNA. These results reveal the molecular aspects on the interaction of these alkaloids to t-RNA.
Collapse
Affiliation(s)
- Md Maidul Islam
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | | | | |
Collapse
|
49
|
Protoberberine Alkaloids: Physicochemical and Nucleic Acid Binding Properties. TOPICS IN HETEROCYCLIC CHEMISTRY 2007. [DOI: 10.1007/7081_2007_071] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|