1
|
Shama SM, Elissawy AM, Salem MA, Youssef FS, Elnaggar MS, El-Seedi HR, Khalifa SAM, Briki K, Hamdan DI, Singab ANB. Comparative metabolomics study on the secondary metabolites of the red alga, Corallina officinalis and its associated endosymbiotic fungi. RSC Adv 2024; 14:18553-18566. [PMID: 38903055 PMCID: PMC11187739 DOI: 10.1039/d4ra01055h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Marine endosymbionts have gained remarkable interest in the last three decades in terms of natural products (NPs) isolated thereof, emphasizing the chemical correlations with those isolated from the host marine organism. The current study aimed to conduct comparative metabolic profiling of the marine red algae Corallina officinalis, and three fungal endosymbionts isolated from its inner tissues namely, Aspergillus nidulans, A. flavipes and A. flavus. The ethyl acetate (EtOAc) extracts of the host organism as well as the isolated endosymbionts were analyzed using ultra-high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-MS/MS)in both positive and negative ion modes, applying both full scan (FS) and all ion fragmentation (AIF) modes. Extensive interpretation of the LC-MS/MS spectra had led to the identification of 76 metabolites belonging to different phytochemical classes including alkaloids, polyketides, sesquiterpenes, butyrolactones, peptides, fatty acids, isocoumarins, quinones, among others. Metabolites were tentatively identified by comparing the accurate mass and fragmentation pattern with metabolites previously reported in the literature, as well as bioinformatics analysis using GNPS. A relationship between the host C. officinalis and its endophytes (A. flavus, A. nidulans, and A. flavipes) was discovered. C. officinalis shares common metabolites with at least one of the three endosymbiotic fungi. Some metabolites have been identified in endophytes and do not exist in their host. Multivariate analysis (MVA) revealed discrimination of A. flavipes from Corallina officinalis and other associated endophytic Aspergillus fungi (A. flavus and A. nidulans).
Collapse
Affiliation(s)
- Sherif M Shama
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University Shibin Elkom 32511 Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
- Center of Drug Discovery Research and Development, Ain-Shams University Cairo 11566 Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University Shibin Elkom 32511 Egypt
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
| | - Mohamed S Elnaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
| | - Hesham R El-Seedi
- Chemistry Department, Faculty of Science, Islamic University of Madinah P. O. Box: 170 Madinah 42351 Saudi Arabia
| | - Shaden A M Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University Zhenjiang 212013 China
- Psychiatry and Neurology Department, Capio Saint Göran's Hospital Sankt Göransplan 1 112 19 Stockholm Sweden
| | - Khaled Briki
- Laboratory of Organic Chemistry and Natural Substance, University Ziane Achour Djelfa Algeria
| | - Dalia Ibrahim Hamdan
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University Shibin Elkom 32511 Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
- Center of Drug Discovery Research and Development, Ain-Shams University Cairo 11566 Egypt
| |
Collapse
|
2
|
Xie C, Leeming MG, Lee ZJ, Yao S, van de Meene A, Suleria HAR. Physiochemical changes, metabolite discrepancies of brown seaweed-derived sulphated polysaccharides in the upper gastrointestinal tract and their effects on bioactive expression. Int J Biol Macromol 2024; 272:132845. [PMID: 38830495 DOI: 10.1016/j.ijbiomac.2024.132845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Brown seaweed-derived polysaccharides, notably fucoidan and laminarin, are known for their extensive array of bioactivities and physicochemical properties. However, the effects of upper digestive tract modification on the bioactive performance of fucoidan and laminarin fractions (FLFs) sourced from Australian native species are largely unknown. Here, the digestibility and bioaccessibility of FLFs were evaluated by tracking the dynamic changes in reducing sugar content (CR), profiling the free monosaccharide composition using LC-MS, and comparing high-performance gel permeation chromatography profile variation via LC-SEC-RI. The effects of digestive progression on bioactive performance were assessed by comparing the antioxidant and antidiabetic potential of FLFs and FLF digesta. We observed that molecular weight (Mw) decreased during gastric digestion indicating that FLF aggregates were disrupted in the stomach. During intestinal digestion, Mw gradually decreased and CR increased indicating cleavage of glycosidic bonds releasing free sugars. Although the antioxidant and antidiabetic capacities were not eliminated by the digestion progression, the bioactive performance of FLFs under a digestive environment was reduced contrasting with the same concentration level of the undigested FLFs. These data provide comprehensive information on the digestibility and bioaccessibility of FLFs, and shed light on the effects of digestive progression on bioactive expression.
Collapse
Affiliation(s)
- Cundong Xie
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Michael G Leeming
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Zu Jia Lee
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Shenggen Yao
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Allison van de Meene
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Hafiz A R Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
3
|
Qi Z, Duan A, Ng K. Selenosugar, selenopolysaccharide, and putative selenoflavonoid in plants. Compr Rev Food Sci Food Saf 2024; 23:e13329. [PMID: 38551194 DOI: 10.1111/1541-4337.13329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
Selenium (Se) is a naturally occurring essential micronutrient that is required for human health. Selenium supports cellular antioxidant defense and possesses bioeffects such as anti-inflammation, anti-cancer, anti-diabetic, and cardiovascular and liver protective effects arising from Se-enhanced cellular antioxidant activity. Past studies on Se have focused on elucidating Se speciation in foods, biofortification strategies to produce Se-enriched foods to address Se deficiency in the population, and the biochemical activities of Se in health. The bioavailability and toxicity of Se are closely correlated to its chemical forms and may exhibit varying effects on body physiology. Selenium exists in inorganic and organic forms, in which inorganic Se such as sodium selenite and sodium selenate is more widely available. However, it is a challenge for safe and effective supplementation considering inorganic Se low bioavailability and high cytotoxicity. Organic Se, by contrast, exhibits higher bioavailability and lower toxicity and has a more diverse composition and structure. Organic Se exists as selenoamino acids and selenoproteins, but recent research has provided evidence that it also exists as selenosugars, selenopolysaccharides, and possibly as selenoflavonoids. Different food categories contain various Se compounds, and their Se profiles vary significantly. Therefore, it is necessary to delineate Se speciation in foods to understand their impact on health. This comprehensive review documents our knowledge of the recent uncovering of the existence of selenosugars and selenopolysaccharides and the putative evidence for selenoflavonoids. The bioavailability and bioactivities of these food-derived organic Se compounds are highlighted, in addition to their composition, structural features, and structure-activity relationships.
Collapse
Affiliation(s)
- Ziqi Qi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Alex Duan
- Melbourne TrACEES Platform, School of Chemistry, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Kong H, Xu T, Wang S, Zhang Z, Li M, Qu S, Li Q, Gao P, Cong Z. The molecular mechanism of polysaccharides in combating major depressive disorder: A comprehensive review. Int J Biol Macromol 2024; 259:129067. [PMID: 38163510 DOI: 10.1016/j.ijbiomac.2023.129067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Major depressive disorder (MDD) is a complex psychiatric condition with diverse etiological factors. Typical pathological features include decreased cerebral cortex, subcortical structures, and grey matter volumes, as well as monoamine transmitter dysregulation. Although medications exist to treat MDD, unmet needs persist due to limited efficacy, induced side effects, and relapse upon drug withdrawal. Polysaccharides offer promising new therapies for MDD, demonstrating antidepressant effects with minimal side effects and multiple targets. These include neurotransmitter, neurotrophin, neuroinflammation, hypothalamic-pituitary-adrenal axis, mitochondrial function, oxidative stress, and intestinal flora regulation. This review explores the latest advancements in understanding the pharmacological actions and mechanisms of polysaccharides in treating major depression. We discuss the impact of polysaccharides' diverse structures and properties on their pharmacological actions, aiming to inspire new research directions and facilitate the discovery of novel anti-depressive drugs.
Collapse
Affiliation(s)
- Hongwei Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianren Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shengguang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyuan Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Min Li
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Suyan Qu
- Tai 'an Taishan District People's Hospital, China
| | - Qinqing Li
- Shanxi University of Chinese Medicine, China
| | - Peng Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhufeng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Affiliated Cancer Hospital of Shandong First Medical University, China.
| |
Collapse
|
5
|
Tesvichian S, Sangtanoo P, Srimongkol P, Saisavoey T, Buakeaw A, Puthong S, Thitiprasert S, Mekboonsonglarp W, Liangsakul J, Sopon A, Prawatborisut M, Reamtong O, Karnchanatat A. Sulfated polysaccharides from Caulerpa lentillifera: Optimizing the process of extraction, structural characteristics, antioxidant capabilities, and anti-glycation properties. Heliyon 2024; 10:e24444. [PMID: 38293411 PMCID: PMC10826829 DOI: 10.1016/j.heliyon.2024.e24444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The polysaccharides found in Caulerpa lentillifera (sea grape algae) are potentially an important bioactive resource. This study makes use of RSM (response surface methodology) to determine the optimal conditions for the extraction of valuable SGP (sea grape polysaccharides). The findings indicated that a water/raw material ratio of 10:1 mL/g, temperature of 90 °C, and extraction time of 45 min would maximize the yield, with experimentation achieving a yield of 21.576 %. After undergoing purification through DEAE-52 cellulose and Sephacryl S-100 column chromatography, three distinct fractions were obtained, namely SGP11, SGP21, and SGP31, each possessing average molecular weights of 38.24 kDa, 30.13 kDa, and 30.65 kDa, respectively. Following characterization, the fractions were shown to comprise glucose, galacturonic acid, xylose, and mannose, while the sulfate content was in the range of 12.2-21.8 %. Using Fourier transform infrared spectroscopy (FT-IR) it was possible to confirm with absolute certainty the sulfate polysaccharide attributes of SGP11, SGP21, and SGP31. NMR (nuclear magnetic resonance) findings made it clear that SGP11 exhibited α-glycosidic configurations, while the configurations of SGP21 and SGP31 were instead β-glycosidic. The in vitro antioxidant assays which were conducted revealed that each of the fractions was able to demonstrate detectable scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cations. All fractions were also found to exhibit the capacity to scavenge NO radicals in a dose-dependent manner. SGP11, SGP21, and SGP31 were also able to display cellular antioxidant activity (CAA) against the human adenocarcinoma colon (Caco-2) cell line when oxidative damage was induced. The concentration levels were found to govern the extent of such activity. Moreover, purified SGP were found to exert strong inhibitory effects upon glycation, with the responses dependent upon dosage, thus confirming the potential for SGP to find a role as a natural resource for the production of polysaccharide-based antioxidant drugs, or products to promote improved health.
Collapse
Affiliation(s)
- Suphaporn Tesvichian
- Program in Biotechnology, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Papassara Sangtanoo
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Piroonporn Srimongkol
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Tanatorn Saisavoey
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Anumart Buakeaw
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Songchan Puthong
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Sitanan Thitiprasert
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Centre, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Jatupol Liangsakul
- Scientific and Technological Research Equipment Centre, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Anek Sopon
- Aquatic Resources Research Institute, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Mongkhol Prawatborisut
- Bruker Switzerland AG, 175, South Sathorn Road, 10th Floor, Sathorn City Tower, Thungmahamek, Sathorn, Bangkok, 10120, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Aphichart Karnchanatat
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
6
|
Fan XZ, Yao F, Yin CM, Shi DF, Gao H. Mycelial biomass and intracellular polysaccharides production, characterization, and activities in Auricularia auricula-judae cultured with different carbon sources. Int J Biol Macromol 2023:125426. [PMID: 37330093 DOI: 10.1016/j.ijbiomac.2023.125426] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/27/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
The carbon source, an essential factor for submerged culture, affects fungal polysaccharides production, structures, and activities. This study investigated the impact of carbon sources, including glucose, fructose, sucrose, and mannose, on mycelial biomass and the production, structural characterization, and bioactivities of intracellular polysaccharides (IPS) produced by submerged culture of Auricularia auricula-judae. Results showed that mycelial biomass and IPS production varied with different carbon sources, where using glucose as the carbon source produced the highest mycelial biomass (17.22 ± 0.29 g/L) and IPS (1.62 ± 0.04 g/L). Additionally, carbon sources were found to affect the molecular weight (Mw) distributions, monosaccharide compositions, structural characterization, and activities of IPSs. IPS produced with glucose as the carbon source exhibited the best in vitro antioxidant activities and had the strongest protection against alloxan-damaged islet cells. Correlation analysis revealed that Mw correlated positively with mycelial biomass (r = 0.97) and IPS yield (r = 1.00), while IPS antioxidant activities correlated positively with Mw and negatively with mannose content; the protective activity of IPS was positively related to its reducing power. These findings indicate a critical structure-function relationship for IPS and lay the foundation for utilizing liquid-fermented A. aruicula-judae mycelia and the IPS in functional food production.
Collapse
Affiliation(s)
- Xiu-Zhi Fan
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Fen Yao
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chao-Min Yin
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - De-Fang Shi
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Jinzhong 030801, China
| | - Hong Gao
- Institute of Agro-Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Provincial Engineering Research Center of Under-forest Economy, Wuhan 430064, China.
| |
Collapse
|
7
|
Humayun S, Premarathna AD, Rjabovs V, Howlader MM, Darko CNS, Mok IK, Tuvikene R. Biochemical Characteristics and Potential Biomedical Applications of Hydrolyzed Carrageenans. Mar Drugs 2023; 21:md21050269. [PMID: 37233463 DOI: 10.3390/md21050269] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 05/27/2023] Open
Abstract
Seaweed contains a variety of bioactive compounds; the most abundant of them are polysaccharides, which have significant biological and chemical importance. Although algal polysaccharides, especially the sulfated polysaccharides, have great potential in the pharmaceutical, medical and cosmeceutical sectors, the large molecular size often limits their industrial applications. The current study aims to determine the bioactivities of degraded red algal polysaccharides by several in vitro experiments. The molecular weight was determined by size-exclusion chromatography (SEC), and the structure was confirmed by FTIR and NMR. In comparison to the original furcellaran, the furcellaran with lower molecular weight had higher OH scavenging activities. The reduction in molecular weight of the sulfated polysaccharides resulted in a significant decrease in anticoagulant activities. Tyrosinase inhibition improved 2.5 times for hydrolyzed furcellaran. The alamarBlue assay was used to determine the effects of different Mw of furcellaran, κ-carrageenan and ι-carrageenan on the cell viability of RAW264.7, HDF and HaCaT cell lines. It was found that hydrolyzed κ-carrageenan and ι-carrageenan enhanced cell proliferation and improved wound healing, whereas hydrolyzed furcellaran did not affect cell proliferation in any of the cell lines. Nitric oxide (NO) production decreased sequentially as the Mw of the polysaccharides decreased, which indicates that hydrolyzed κ-Carrageenan, ι-carrageenan and furcellaran have the potential to treat inflammatory disease. These findings suggested that the bioactivities of polysaccharides were highly dependent on their Mw, and the hydrolyzed carrageenans could be used in new drug development as well as cosmeceutical applications.
Collapse
Affiliation(s)
- Sanjida Humayun
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia
| | - Amal D Premarathna
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia
| | - Vitalijs Rjabovs
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Institute of Technology of Organic Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| | - Md Musa Howlader
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia
| | | | - Il-Kyoon Mok
- Green-bio Research Facility Center, Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun 25354, Gangwon-do, Republic of Korea
| | - Rando Tuvikene
- School of Natural Sciences and Health, Tallinn University, Narva mnt 29, 10120 Tallinn, Estonia
| |
Collapse
|
8
|
Dhaouafi J, Abidi A, Nedjar N, Romdhani M, Tounsi H, Sebai H, Balti R. Protective Effect of Tunisian Red Seaweed ( Corallina officinalis) Against Bleomycin-Induced Pulmonary Fibrosis and Oxidative Stress in Rats. Dose Response 2023; 21:15593258231179906. [PMID: 37275392 PMCID: PMC10236256 DOI: 10.1177/15593258231179906] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a chronic and progressive respiratory disease whose diagnosis and physiopathogenesis are still poorly understood and for which, until recently, there were no effective treatments. Over the past few decades, many studies have demonstrated that marine macroalgae such as red seaweeds are potential alternative sources of useful bioactive compounds possessing various physiological and biological activities. The present study was aimed to investigate the effect of Corallina officinalis aqueous extract (COAE) against bleomycin (BLM)-induced lung fibrosis in rat. Thus, Wistar rats were divided into 4 groups of 10 each: control, BLM (2 mg/kg), BLM/COAE-150 mg/kg and BLM/COAE-300 mg/kg once a day for 21 days. Obtained results showed that COAE is rich in phenolic compounds and exhibited relatively high antioxidant activity. COAE might significantly reduce the damage caused by BLM by rewarding the decline in weight and pulmonary index in rats given only BLM. Moreover, lungs, liver and kidneys lipid peroxidation, and sulfhydryl group levels were reversed significantly in a dose-dependent manner in the COAE-treated groups. BLM decreased superoxide dismutase (SOD) and catalase (CAT) activities, while COAE administration increased the antioxidant enzyme activities. Histopathologically, COAE attenuates the severity of the inflammatory lungs state caused by instillation of BLM in rats. These findings suggest that COAE can be a potential therapeutic candidate against BLM-induced lung fibrosis.
Collapse
Affiliation(s)
- Jihen Dhaouafi
- Laboratory of Functional Physiology
and Bio-Resources Valorization, Higher Institute of Biotechnology of Beja, University of Jendouba, Jendouba, Tunisia
- UMR Transfrontalière BioEcoAgro
N1158, Université Lille, INRAE, Université Liège, UPJV, YNCREA, Université
Artois, Université Littoral Côte
D’Opale, ICV-Institut Charles Viollette, Lille, France
| | - Anouar Abidi
- Laboratory of Functional Physiology
and Bio-Resources Valorization, Higher Institute of Biotechnology of Beja, University of Jendouba, Jendouba, Tunisia
| | - Naima Nedjar
- UMR Transfrontalière BioEcoAgro
N1158, Université Lille, INRAE, Université Liège, UPJV, YNCREA, Université
Artois, Université Littoral Côte
D’Opale, ICV-Institut Charles Viollette, Lille, France
| | - Montassar Romdhani
- Laboratory of Functional Physiology
and Bio-Resources Valorization, Higher Institute of Biotechnology of Beja, University of Jendouba, Jendouba, Tunisia
- UMR Transfrontalière BioEcoAgro
N1158, Université Lille, INRAE, Université Liège, UPJV, YNCREA, Université
Artois, Université Littoral Côte
D’Opale, ICV-Institut Charles Viollette, Lille, France
| | - Haifa Tounsi
- Laboratory of Human and
Experimental Pathological Anatomy, Pasteur Institute of
Tunis, Tunis, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology
and Bio-Resources Valorization, Higher Institute of Biotechnology of Beja, University of Jendouba, Jendouba, Tunisia
| | - Rafik Balti
- Laboratory of Functional Physiology
and Bio-Resources Valorization, Higher Institute of Biotechnology of Beja, University of Jendouba, Jendouba, Tunisia
- Université Paris-Saclay,
CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et
de Bioéconomie (CEBB), Pomacle, France
| |
Collapse
|
9
|
Yadavalli R, Valluru P, Raj R, Reddy CN, Mishra B. Biological detoxification of mycotoxins: Emphasizing the role of algae. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Scientific basis for the use of minimally processed homogenates of Kappaphycus alvarezii (red) and Sargassum wightii (brown) seaweeds as crop biostimulants. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Hu TG, Zhu WL, Yu YS, Zou B, Xu YJ, Xiao GS, Wu JJ. The variation on structure and immunomodulatory activity of polysaccharide during the longan pulp fermentation. Int J Biol Macromol 2022; 222:599-609. [PMID: 36170929 DOI: 10.1016/j.ijbiomac.2022.09.195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022]
Abstract
In the current study, the effects of fermentation manners on the structure and immunomodulatory activity of polysaccharide in longan wine or vinegar were investigated. Compared to longan polysaccharide (CP1), polysaccharide in longan wine (CP2) or vinegar (CP3 and CP4) had smaller molecular weights, and was consisted of more mannose, arabinose, rhamnose, galactose and less glucose. After purification, the major fraction (P1-P4) was obtained from CP1-CP4, respectively. The structures and immunoregulatory activities of P1-P4 were characterized. Fermentation and purification were favorable to increase the immunoregulatory activities of P2-P4, which were contributed to their different structural features. The structure-activity relationship analysis indicated that molecular weight, mannose, rhamnose, glucuronic acid, glucose and arabinose were significantly associated with the cytokines secretion. Compared with other polysaccharides, P3 displayed better immunomodulatory activity due to its lower molecular weight, lower contents of rhamnose and glucose, and higher levels of mannose and arabinose by activating MAPK and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, China; Huagongliya (Foshan) Technology Industry Co., Ltd, China
| | - Wei-Lin Zhu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, China
| | - Yuan-Shan Yu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, China; Huagongliya (Foshan) Technology Industry Co., Ltd, China.
| | - Bo Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, China; Huagongliya (Foshan) Technology Industry Co., Ltd, China
| | - Yu-Juan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, China
| | | | - Ji-Jun Wu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, China.
| |
Collapse
|
12
|
Structural Characterization and Rheological and Antioxidant Properties of Novel Polysaccharide from Calcareous Red Seaweed. Mar Drugs 2022; 20:md20090546. [PMID: 36135735 PMCID: PMC9504466 DOI: 10.3390/md20090546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
A novel sulfated xylogalactan (JASX) was extracted and purified from the rhodophyceae Jania adhaerens. JASX was characterized by chromatography (GC/MS-EI and SEC/MALLS) and spectroscopy (ATR-FTIR and 1H/13C NMR) techniques. Results showed that JASX was constituted by repeating units of (→3)-β-d-Galp-(1,4)-3,6-α-l-AnGalp-(1→)n and (→3)-β-d-Galp-(1,4)-α-l-Galp-(1→)n substituted on O-2 and O-3 of the α-(1,4)-l-Galp units by methoxy and/or sulfate groups but also on O-6 of the β-(1,3)-d-Galp mainly by β-xylosyl side chains and less by methoxy and/or sulfate groups. The Mw, Mn, Đ, [η] and C* of JASX were respectively 600 and 160 kDa, 3.7, 102 mL.g−1 and 7.0 g.L−1. JASX exhibited pseudoplastic behavior influenced by temperature and monovalent salts and highly correlated to the power-law model and the Arrhenius relationship. JASX presented thixotropic characteristics, a gel-like viscoelastic behavior and a great viscoelasticity character. JASX showed important antioxidant activities, outlining its potential as a natural additive to produce functional foods.
Collapse
|
13
|
Gaspar-Pintiliescu A, Mihai E, Ciucan T, Popescu AF, Luntraru C, Tomescu J, Craciunescu O. Antioxidant and acetylcholinesterase inhibition capacity of hyrosols from lamiaceae plants for biopesticide use: role of phenolics. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2071289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexandra Gaspar-Pintiliescu
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, Bucharest, Romania
| | - Elena Mihai
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, Bucharest, Romania
| | - Teodora Ciucan
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, Bucharest, Romania
| | | | | | | | - Oana Craciunescu
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, Bucharest, Romania
| |
Collapse
|
14
|
Li C, Peng Y, Tang W, Li T, Gatasheh MK, Ahmed Rasheed R, Fu J, He J, Wang WD, Shen Y, Yang Y, Chen Y, Mehmood Abbasi A. Antioxidant, Anti-lipidemic, Hypoglycemic and Antiproliferative Effects of phenolics from Cortex Mori Radicis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
15
|
Bharathi M, Sivamaruthi BS, Kesika P, Thangaleela S, Chaiyasut C. In Silico Screening of Bioactive Compounds of Representative Seaweeds to Inhibit SARS-CoV-2 ACE2-Bound Omicron B.1.1.529 Spike Protein Trimer. Mar Drugs 2022; 20:md20020148. [PMID: 35200677 PMCID: PMC8877529 DOI: 10.3390/md20020148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Omicron is an emerging SARS-CoV-2 variant, evolved from the Indian delta variant B.1.617.2, which is currently infecting worldwide. The spike glycoprotein, an important molecule in the pathogenesis and transmissions of SARS-CoV-2 variants, especially omicron B.1.1.529, shows 37 mutations distributed over the trimeric protein domains. Notably, fifteen of these mutations reside in the receptor-binding domain of the spike glycoprotein, which may alter transmissibility and infectivity. Additionally, the omicron spike evades neutralization more efficiently than the delta spike. Most of the therapeutic antibodies are ineffective against the omicron variant, and double immunization with BioNTech-Pfizer (BNT162b2) might not adequately protect against severe disease induced by omicron B.1.1.529. So far, no efficient antiviral drugs are available against omicron. The present study identified the promising inhibitors from seaweed’s bioactive compounds to inhibit the omicron variant B.1.1.529. We have also compared the seaweed’s compounds with the standard drugs ceftriaxone and cefuroxime, which were suggested as beneficial antiviral drugs in COVID-19 treatment. Our molecular docking analysis revealed that caffeic acid hexoside (−6.4 kcal/mol; RMSD = 2.382 Å) and phloretin (−6.3 kcal/mol; RMSD = 0.061 Å) from Sargassum wightii (S. wightii) showed the inhibitory effect against the crucial residues ASN417, SER496, TYR501, and HIS505, which are supported for the inviolable omicron and angiotensin-converting enzyme II (ACE2) receptor interaction. Cholestan-3-ol, 2-methylene-, (3beta, 5 alpha) (CMBA) (−6.0 kcal/mol; RMSD = 3.074 Å) from Corallina officinalis (C. officinalis) manifested the strong inhibitory effect against the omicron RBD mutated residues LEU452 and ALA484, was magnificently observed as the essential residues in Indian delta variant B.1.617.2 previously. The standard drugs (ceftriaxone and cefuroxime) showed no or less inhibitory effect against RBD of omicron B.1.1.529. The present study also emphasized the pharmacological properties of the considered chemical compounds. The results could be used to develop potent seaweed-based antiviral drugs and/or dietary supplements to treat omicron B.1.1529-infected patients.
Collapse
Affiliation(s)
- Muruganantham Bharathi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.B.); (B.S.S.); (S.T.)
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.B.); (B.S.S.); (S.T.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (P.K.); (C.C.); Tel.: +66-53-944-340 (C.C.)
| | - Subramanian Thangaleela
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.B.); (B.S.S.); (S.T.)
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (M.B.); (B.S.S.); (S.T.)
- Correspondence: (P.K.); (C.C.); Tel.: +66-53-944-340 (C.C.)
| |
Collapse
|
16
|
Kang J, Jia X, Wang N, Xiao M, Song S, Wu S, Li Z, Wang S, Cui SW, Guo Q. Insights into the structure-bioactivity relationships of marine sulfated polysaccharides: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Xia D, Qiu W, Wang X, Liu J. Recent Advancements and Future Perspectives of Microalgae-Derived Pharmaceuticals. Mar Drugs 2021; 19:703. [PMID: 34940702 PMCID: PMC8703604 DOI: 10.3390/md19120703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
Microalgal cells serve as solar-powered factories that produce pharmaceuticals, recombinant proteins (vaccines and drugs), and valuable natural byproducts that possess medicinal properties. The main advantages of microalgae as cell factories can be summarized as follows: they are fueled by photosynthesis, are carbon dioxide-neutral, have rapid growth rates, are robust, have low-cost cultivation, are easily scalable, pose no risk of human pathogenic contamination, and their valuable natural byproducts can be further processed. Despite their potential, there are many technical hurdles that need to be overcome before the commercial production of microalgal pharmaceuticals, and extensive studies regarding their impact on human health must still be conducted and the results evaluated. Clearly, much work remains to be done before microalgae can be used in the large-scale commercial production of pharmaceuticals. This review focuses on recent advancements in microalgal biotechnology and its future perspectives.
Collapse
Affiliation(s)
- Donghua Xia
- State Key Laboratory of Food Science and Technology, The Engineering Research Center for Biomass Conversion, Nanchang University, Nanchang 330047, China;
| | - Wen Qiu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Xianxian Wang
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany;
| | - Junying Liu
- State Key Laboratory of Food Science and Technology, The Engineering Research Center for Biomass Conversion, Nanchang University, Nanchang 330047, China;
- Pharmaceutical Manufacturing Technology Centre (PMTC), Bernal Institute, University of Limerick, V94T9PX Limerick, Ireland
| |
Collapse
|
18
|
Hafez HG, Mohareb RM, Salem SM, Matloub AA, Eskander EF, Ahmed HH. Molecular Mechanisms Underlying the Anti-Breast Cancer Stem Cell Activity of Pterocladia capillacea and Corallina officinalis Polysaccharides. Anticancer Agents Med Chem 2021; 22:1213-1225. [PMID: 34315394 DOI: 10.2174/1871520621666210727122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed to appraise the activity of Pterocladia capillacea and Corallina officinalis polysaccharides against breast cancer stem cells (BCSCs). P. capillacea and C. officinalis polysaccharides were characterized to be sulfated polysaccharide-protein complexes. METHODS Cytotoxicity of the polysaccharides against MDA-MB-231 and MCF-7 cell lines along with their impact on CD44+/CD24- and aldehyde dehydrogenase 1(ALDH1) positive BCSC population were determined. Their effect on gene expression of CSC markers, Wnt/β-catenin and Notch signaling pathways was evaluated. RESULTS P. capillacea and C. officinalis polysaccharides inhibited the growth of breast cancer cells and reduced BCSC subpopulation. P. capillacea polysaccharides significantly down-regulated OCT4, SOX2, ALDH1A3 and vimentin in MDA-MB-231 as well as in MCF-7 cells except for vimentin that was up-regulated in MCF-7 cells. C. officinalis polysaccharides exhibited similar effects except for OCT4 that was up-regulated in MDA-MB-231 cells. Significant suppression of Cyclin D1 gene expression was noted in MDA-MB-231 and MCF-7 cells treated with P. capillacea or C. officinalis polysaccharides. β-catenin and c-Myc genes were significantly down-regulated in MDA-MB-231 cells treated with C. officinalis and P. capillacea polysaccharides, respectively, while being up-regulated in MCF-7 cells treated with either of them. Additionally, P. capillacea and C. officinalis polysaccharides significantly down-regulated Hes1 gene in MCF-7 cells despite increasing Notch1 gene expression level. However, significant down-regulation of Notch1 gene was observed in MDA-MB-231 cells treated with P. capillacea polysaccharides. CONCLUSION Collectively, this study provides evidence for the effectiveness of P. capillacea and C. officinalis polysaccharides in targeting BCSCs through interfering with substantial signaling pathways contributing to their functionality.
Collapse
Affiliation(s)
- Hebatallah G Hafez
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Rafat M Mohareb
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Sohair M Salem
- Molecular Genetics and Enzymology Department, National Research Centre, Dokki, Giza, Egypt
| | - Azza A Matloub
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Emad F Eskander
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
19
|
Li C, Chen S, Sha J, Cui J, He J, Fu J, Shen Y. Extraction and purification of total flavonoids from Eupatorium lindleyanum DC. and evaluation of their antioxidant and enzyme inhibitory activities. Food Sci Nutr 2021; 9:2349-2363. [PMID: 34026054 PMCID: PMC8116873 DOI: 10.1002/fsn3.1999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 11/18/2022] Open
Abstract
The health benefits and promising medical treatment potential of total flavonoids from Eupatorium lindleyanum DC. (TFELDC) have been recognized. The process parameters of extracting total flavonoids from Eupatorium lindleyanum DC. by ultrasonic-microwave synergistic extraction (UMSE) were optimized, and they were purified by AB-8 macroporous resin in the current study. In addition, the antioxidant and enzyme inhibitory activities of the purified TFELDC (PTFELDC) were evaluated. The results showed that the optimal parameters of UMSE were as follows: ethanol volume fraction 71.5%, L/S ratio 12.2 ml/g, microwave power 318 W, and extraction time 143 s. After TFELDC were purified by AB-8 macroporous resin, the total flavonoid contents of PTFELDC increased from 208.18 ± 1.60 to 511.19 ± 3.21 mg RE/g FDS. Compared with TFELDC, the content of total flavonoids in PTFELDC was increased by 2.46 times. The antioxidant activities of PTFELDC were assessed using DPPH radical, superoxide anion radical, reducing power, and ferric reducing antioxidant power assays, and the IC50 values were found to be 37.13, 19.62, 81.22, and 24.72 μg/ml, respectively. The enzyme inhibitory activities of PTFELDC were measured using lipase, α-amylase, α-glucosidase, and acetylcholinesterase assays with the IC50 values 1.38, 2.08, 1.63, and 0.58 mg/ml, respectively. By comparing with their positive controls, it was found that PTFELDC had good antioxidant activities, and lipase, α-amylase, and α-glucosidase inhibitory activities, However, the acetylcholinesterase inhibitory activity was relatively weaker. These results suggested that PTFELDC have a promising potential as natural antioxidant, antilipidemic, and hypoglycemic drugs used in functional foods or pharmaceuticals.
Collapse
Affiliation(s)
- Chao Li
- College of Food and BioengineeringXuzhou University of TechnologyXuzhouChina
| | - Shanglong Chen
- College of Food and BioengineeringXuzhou University of TechnologyXuzhouChina
| | - Jin Sha
- College of Food and BioengineeringXuzhou University of TechnologyXuzhouChina
| | - Jue Cui
- College of Food and BioengineeringXuzhou University of TechnologyXuzhouChina
| | - Juping He
- College of Food and BioengineeringXuzhou University of TechnologyXuzhouChina
| | - Junning Fu
- Department of Food Science and EngineeringJinan UniversityGuangzhouChina
| | - Yingbin Shen
- School of Life SciencesGuangzhou UniversityGuangzhouChina
| |
Collapse
|
20
|
Dawood DH, Darwish MS, El-Awady AA, Mohamed AH, Zaki AA, Taher MA. Chemical characterization of Cassia fistula polysaccharide (CFP) and its potential application as a prebiotic in synbiotic preparation. RSC Adv 2021; 11:13329-13340. [PMID: 35423880 PMCID: PMC8697528 DOI: 10.1039/d1ra00380a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/23/2021] [Indexed: 01/23/2023] Open
Abstract
Prebiotics are non-digestible food ingredients that are selectively fermented by probiotics. The aim of this study was to investigate the chemical properties of a polysaccharide extracted from Cassia fistula mature fruit pulp and to evaluate its effects on probiotic strains: L. casei, L. rhamnosus, E. coli Nissle 1917 (EcN), and E. faecalis. These strains were compared for their growth behavior in culture media supplemented with different Cassia fistula polysaccharide (CFP) concentrations. The molecular weight of CFP was approximately 8.707 × 105 Da. The recovered polysaccharide contained a low percentage of crude protein (4.4%). Aspartic acid, glutamic acid, and proline were the most abundant amino acids. Glucose and mannose were the predominant sugars followed by arabinose and rhamnose. L. casei grew faster at high CFP concentrations (2%) compared with the lower concentrations of CFP. The highest values for the prebiotic index and prebiotic activity score were observed for L. casei treated with 2% CFP, and it may be considered a prebiotic due to its high resistance against α-amylase and acidic conditions. CFP provides two ways to adjust nitric oxide (NO) synthesis in macrophages. Finally, the use of 1.5 and 2% CFP for cultured milk production significantly shortened the fermentation period from 210 min to 180 min and 150 min, respectively.
Collapse
Affiliation(s)
- Dawood Hosni Dawood
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University Mansoura 35516 Egypt
| | - Mohamed Samir Darwish
- Dairy Department, Faculty of Agriculture, Mansoura University Mansoura 35516 Egypt +20 1005838367
| | - Asmaa A El-Awady
- Dairy Department, Faculty of Agriculture, Mansoura University Mansoura 35516 Egypt +20 1005838367
| | - Azza H Mohamed
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University Mansoura 35516 Egypt
- University of Florida, IFAS, Citrus Research & Education Center 700 Experiment Station Road Lake Alfred FL 33850 USA
| | - Ahmed A Zaki
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Mohamed A Taher
- Agricultural Chemistry Department, Faculty of Agriculture, Mansoura University Mansoura 35516 Egypt
| |
Collapse
|
21
|
Antioxidative study of polysaccharides extracted from red (Kappaphycus alvarezii), green (Kappaphycus striatus) and brown (Padina gymnospora) marine macroalgae/seaweed. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04477-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AbstractSterile and fresh tissues of three marine macroalgae red, green and brown (Kappaphycus alvarezii, Kappaphycus striatus and Padina gymnospora) collected from Malaysia east costal seas were compared for the antioxidants and polysaccharide composition of sugars as well as the active components. Results obtained showed that polysaccharides isolated from Kappaphycus alvarezii, Kappaphycus striatus and Padina gymnospora) can be used as a source of natural antioxidant compounds as they possess antioxidant potential in which the Padina gymnospora showed 15.56 ± 0.12 mg/mL to be the best antioxidants among all the polysaccharides studied. The hot water extraction method is effective in isolating polysaccharides from studied seaweeds. The GC–MS analysis revealed that there is presence of chemical compounds such as furfural was 25.53% in Kappaphycus alvarezii and 21.04% in Kappaphycus striatus also Padina gymnospora incorporates n- Hexadecanoic acid about 26.31% in seaweed polysaccharides that contribute to their antioxidant activities. Further studies can be done on determining the seaweed species that are available abundantly with the best source of natural antioxidant compounds.
Collapse
|
22
|
Hajji M, Falcimaigne-Gordin A, Ksouda G, Merlier F, Thomasset B, Nasri M. A water-soluble polysaccharide from Anethum graveolens seeds: Structural characterization, antioxidant activity and potential use as meat preservative. Int J Biol Macromol 2020; 167:516-527. [PMID: 33279565 DOI: 10.1016/j.ijbiomac.2020.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
A novel water-soluble polysaccharide named AGP1 was successfully isolated from seeds of Anethum graveolens by hot water extraction and further purified by DEAE-Sepharose chromatography. AGP1 has a relative molecular weight of 2.1 104 Da determined by Ultra-high-performance liquid chromatography (UHPLC). The AGP1 characterization was investigated by chemical and instrumental analysis including gas chromatography mass spectrometry (GC-MS), Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction. Results showed that AGP1 was mainly composed of glucose, galactose, mannose and arabinose in a molar percent of 54.3, 23.8, 14.7 and 7.2, respectively. The thermogravimetry analysis (TGA) and the differential scanning calorimetry (DSC) were used and showed that AGP1 has good thermal stability until 275 °C. Moreover, the purified polysaccharide demonstrated an appreciable in vitro antioxidant potential. The addition of the AGP1, particularly at 0.3% (w/w), in turkey sausages instead of ascorbic acid, as preservative, reduced the lipid peroxidation, preserved the pH and color and improved the bacterial stability during cold storage at 4 °C for 12 days. Overall, the results showed that the AGP1 deserves to be developed as functional and bioactive components for the food and nutraceutical industries.
Collapse
Affiliation(s)
- Mohamed Hajji
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
| | - Aude Falcimaigne-Gordin
- Sorbonne Univerties, Compiègne Technology University, UMR-CNRS 7025, Enzymatic and Cellular Engineering, CS 60319, 60203 Compiegne Cedex, France
| | - Ghada Ksouda
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia
| | - Franck Merlier
- Sorbonne Univerties, Compiègne Technology University, UMR-CNRS 7025, Enzymatic and Cellular Engineering, CS 60319, 60203 Compiegne Cedex, France
| | - Brigitte Thomasset
- Sorbonne Univerties, Compiègne Technology University, UMR-CNRS 7025, Enzymatic and Cellular Engineering, CS 60319, 60203 Compiegne Cedex, France
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia
| |
Collapse
|
23
|
The modifications of a fructan from Anemarrhena asphodeloides Bunge and their antioxidant activities. Int J Biol Macromol 2020; 164:4435-4443. [DOI: 10.1016/j.ijbiomac.2020.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/23/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
|
24
|
Polysaccharides from Hemp Seed Protect against Cyclophosphamide-Induced Intestinal Oxidative Damage via Nrf2-Keap1 Signaling Pathway in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1813798. [PMID: 32908623 PMCID: PMC7468657 DOI: 10.1155/2020/1813798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/14/2020] [Indexed: 02/04/2023]
Abstract
Hemp seed has been used as a traditional oriental medicine and health food in China for centuries. Polysaccharides from hemp seed (HSP) exhibit important properties of intestinal protection, but there are limited data on the specific underlying mechanism. The primary objective of this study was to investigate the protective effect of HSP on intestinal oxidative damage induced by cyclophosphamide (Cy) in mice. The results showed that pretreatment with HSP significantly increased the average daily gain, thymus index, spleen index, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity in serum and ileal homogenate and significantly reduced malondialdehyde (MDA) content in ileal homogenate. In addition, the expression levels of SOD, GSH-Px, Nrf2, heme oxidase-1 (HO-1), and quinoneoxidoreductase-1 (NQO1) mRNA in ileal homogenate were significantly increased. Western blot results showed that HSP significantly upregulated the expression of Nrf2 protein and downregulated the expression of Keap1 protein in the ileum. Collectively, our findings indicated that HSP had protective effects on intestinal oxidative damage induced by Cy in mice, and its mechanism might be related to the activation of Nrf2-Keap1 signaling pathway.
Collapse
|
25
|
Liu Y, Ma Y, Chen Z, Li D, Liu W, Huang L, Zou C, Cao MJ, Liu GM, Wang Y. Antibacterial Activity of Sulfated Galactans from Eucheuma serra and Gracilari verrucosa against Diarrheagenic Escherichia coli via the Disruption of the Cell Membrane Structure. Mar Drugs 2020; 18:E397. [PMID: 32751049 PMCID: PMC7459719 DOI: 10.3390/md18080397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
Seaweed sulfated polysaccharides have attracted significant attention due to their antibacterial activity. This work investigated the antibacterial activity and mechanism of depolymerized sulfated galactans from Eucheuma serra (E. serra) and Gracilaria verrucosa (G. verrucosa) against enterotoxigenic Escherichia coli (ETEC) K88. The results show that removing the metal ions improves the anti-ETEC K88 activity of the galactans. The fluorescence labeling study confirmed that the sulfated galactans penetrated the cell walls and eventually reached the interior of the ETEC K88. Nucleic acid staining and intracellular protein leakage were also observed, indicating the destruction of permeability and integrity of the cell membrane. Interestingly, the two polysaccharides exhibited no effect on the proliferation of the selected Gram-positive bacteria and yeast. This indicates that the cell wall structure of the microorganisms could influence the bacteriostatic activity of the sulfated polysaccharides, as well. These results suggest that the sulfated seaweed polysaccharides might have potential application value in antibacterial diarrhea.
Collapse
Affiliation(s)
- Yixiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, Fujian, China
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Xiamen 361021, Fujian, China
| | - Yu Ma
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
| | - Zhaohua Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
| | - Donghui Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
| | - Wenqiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
| | - Ling Huang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
| | - Chao Zou
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
| | - Min-Jie Cao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Xiamen 361021, Fujian, China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, Fujian, China
| | - Yanbo Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China;
| |
Collapse
|
26
|
Comparison on characterization and biological activities of Mentha haplocalyx polysaccharides at different solvent extractions. Int J Biol Macromol 2020; 154:916-928. [DOI: 10.1016/j.ijbiomac.2020.03.169] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 01/18/2023]
|
27
|
Pozharitskaya ON, Obluchinskaya ED, Shikov AN. Mechanisms of Bioactivities of Fucoidan from the Brown Seaweed Fucus vesiculosus L. of the Barents Sea. Mar Drugs 2020; 18:E275. [PMID: 32456047 PMCID: PMC7281726 DOI: 10.3390/md18050275] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to elucidate some mechanisms of radical scavenging and the anti-inflammatory, anti-hyperglycemic, and anti-coagulant bioactivities of high molecular weight fucoidan from Fucus vesiculosus in several in vitro models. Fucoidan has displayed potent 1, 1-diphenyl-2-picryl hydrazil radical scavenging and reduction power activities. It significantly inhibits the cyclooxygenase-2 (COX-2) enzyme (IC50 4.3 μg mL-1) with a greater selectivity index (lg(IC80 COX-2/IC80COX-1), -1.55) than the synthetic non-steroidal anti-inflammatory drug indomethacin (lg(IC80 COX-2/IC80COX-1), -0.09). A concentration-dependent inhibition of hyaluronidase enzyme with an IC50 of 2.9 μg mL-1 was observed. Fucoidan attenuated the lipopolysaccharide-induced expression of mitogen-activated protein kinase p38. Our findings suggest that the inhibition of dipeptidyl peptidase-IV (DPP-IV) (IC50 1.11 μg mL-1) is one of the possible mechanisms involved in the anti-hyperglycemic activity of fucoidan. At a concentration of 3.2 μg mL-1, fucoidan prolongs the activated partial thromboplastin time and thrombin time by 1.5-fold and 2.5-fold compared with a control, respectively. A significant increase of prothrombin time was observed after the concentration of fucoidan was increased above 80 μg mL-1. This evidenced that fucoidan may have an effect on intrinsic/common pathways and little effect on the extrinsic mechanism. This study sheds light on the multiple pathways of the bioactivities of fucoidan. As far as we know, the inhibition of hyaluronidase and DPP-IV by high molecular fucoidan was studied for the first time in this work. Our results and literature data suggest that molecular weight, sulfate content, fucose content, and polyphenols may contribute to these activities. It seems that high molecular weight fucoidan has promising therapeutic applications in different pharmacological settings. Anti-oxidant, anti-inflammatory and anti-coagulant drugs have been used for the management of complications of COVID19. Taken as a whole, fucoidan could be considered as a prospective candidate for the treatment of patients with COVID19; however, additional research in this field is required.
Collapse
Affiliation(s)
- Olga N. Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010 Murmansk, Russia; (O.N.P.); (E.D.O.)
| | - Ekaterina D. Obluchinskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010 Murmansk, Russia; (O.N.P.); (E.D.O.)
| | - Alexander N. Shikov
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010 Murmansk, Russia; (O.N.P.); (E.D.O.)
- St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia
| |
Collapse
|
28
|
Structural Features and Rheological Properties of a Sulfated Xylogalactan-Rich Fraction Isolated from Tunisian Red Seaweed Jania adhaerens. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051655] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel sulfated xylogalactan-rich fraction (JSP for J. adhaerens Sulfated Polysaccharide) was extracted from the red Tunisian seaweed Jania adhaerens. JSP was purified using an alcoholic precipitation process and characterized by Attenuated Total Reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR), high-pressure size exclusion chromatography (HPSEC) with a multi-angle laser light scattering (MALLS), gas chromatography coupled to mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR, 1D and 2D). JSP was then evaluated regarding its physicochemical and rheological properties. Results showed that JSP was mainly composed of an agar-like xylogalactan sharing the general characteristics of corallinans. The structure of JSP was mainly composed of agaran disaccharidic repeating units (→3)-β-d-Galp-(1,4)-α-l-Galp-(1→)n and (→3)-β-d-Galp-(1,4)-3,6-α-l-AnGalp-(1→)n, mainly substituted on O-6 of (1,3)-β-d-Galp residues by β-xylosyl side chains, and less with sulfate or methoxy groups. (1,4)-α-l-Galp residues were also substituted by methoxy and/or sulfate groups in the O-2 and O-3 positions. Mass-average and number-average molecular masses (Mw) and (Mn), intrinsic viscosity ([η]) and hydrodynamic radius (Rh) for JSP were, respectively, 8.0 × 105 g/mol, 1.0 × 105 g/mol, 76 mL/g and 16.8 nm, showing a flexible random coil conformation in solution. The critical overlap concentration C* of JSP was evaluated at 7.5 g/L using the Williamson model. In the semi-diluted regime, JSP solutions displayed a shear-thinning behavior with a great viscoelasticity character influenced by temperature and monovalent salts. The flow characteristics of JSP were described by the Ostwald model.
Collapse
|
29
|
Mirzadeh M, Arianejad MR, Khedmat L. Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydr Polym 2020; 229:115421. [DOI: 10.1016/j.carbpol.2019.115421] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
|
30
|
Devi S, Kumar V. Comprehensive structural analysis of cis- and trans-tiliroside and quercetrin from Malvastrum coromandelianum and their antioxidant activities. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
31
|
Vaishnu Devi D, Viswanathan P. Sulphated polysaccharide from Sargassum myriocystum confers protection against gentamicin-induced nephrotoxicity in adult zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103269. [PMID: 31585298 DOI: 10.1016/j.etap.2019.103269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 09/15/2019] [Accepted: 09/21/2019] [Indexed: 02/08/2023]
Abstract
The beneficial effect of purified fraction of sulphated polysaccharide extracted from Sargassum myriocystum (SMP) was examined on the gentamicin-induced nephrotoxicity in adult zebrafish. The major purified fractions (SMP1, SMP2 and SMP3) were obtained by anion-exchange and size-exclusion chromatography and characterized by FTIR, GCMS and NMR. The in vitro antioxidant activities of all purified SMP fractions were analysed. The SMP2 showed maximum carbohydrate, sulphate and fucose content with strong antioxidant activity than other fractions. Further, we evaluated the efficacy of SMP2 against gentamicin-induced nephrotoxicity in zebrafish model. The SMP2 administered group showed a significant attenuation in oxidative stress and histopathological alterations observed in renal tissues of gentamicin treated group. Moreover, the SMP2 supressed renal mRNA expression levels of KIM-1, NF-κB, TNF-α and IL-6 in dose-dependent manner. Thus, the present study suggests that the SMP2 is a potent antioxidant with anti-inflammatory and renoprotective properties that ameliorated the GEN induced nephrotoxicity in adult zebrafish.
Collapse
Affiliation(s)
- Durairaj Vaishnu Devi
- Renal Research Lab, Centre for Bio Medical Research, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Pragasam Viswanathan
- Renal Research Lab, Centre for Bio Medical Research, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
32
|
Rajasekar P, Palanisamy S, Anjali R, Vinosha M, Elakkiya M, Marudhupandi T, Tabarsa M, You S, Prabhu NM. Isolation and structural characterization of sulfated polysaccharide from Spirulina platensis and its bioactive potential: In vitro antioxidant, antibacterial activity and Zebrafish growth and reproductive performance. Int J Biol Macromol 2019; 141:809-821. [PMID: 31499110 DOI: 10.1016/j.ijbiomac.2019.09.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 01/19/2023]
Abstract
In this study, the sulfated polysaccharide (SPs) was isolated from Spirulina platensis. The isolated SPs contains carbohydrate, sulfate, protein and uronic acid at 38.7 ± 0.30%, 21.3 ± 0.87%, 7.1 ± 0.15% and 7.9 ± 0.4% respectively. The elemental analysis confirmed the presence of carbon (18.01 ± 0.10%), hydrogen (1.83 ± 0.02%) and nitrogen (3.43 ± 0.01%). The monosaccharide composition and molecular weight of SPs were analyzed by high-performance liquid chromatography and size exclusion chromatography respectively. The monosaccharide composition analysis showed the existence of glucose, rhamnose, xylose, fucose, mannose, galactose and the molecular weight of SPs was 1016 kDa. Further, the characterization of SPs was done by UV-visible spectroscopy, X-ray diffraction, FT-IR, 1H NMR and 13C NMR analysis. The obtained SPs exhibited potent antioxidant activity in DPPH (76.45 ± 0.49%), reducing power (absorbance: 1.3 ± 0.02), hydrogen peroxide scavenging (66.3 ± 1.16%), hydroxyl scavenging (68.6 ± 3.2%), nitric oxide (81.36 ± 1.85%) and total antioxidant (absorbance:1.66 ± 0.02) activities at 5 mg/ml. In addition, SPs revealed the highest antibacterial efficacy against the pathogenic bacteria Vibrio vulnificus in disc diffusion, agar bioassay and protein leakage assays at 100 μg/ml. Furthermore, the supplementation of 2% SPs through a feed to the Danio rerio fish enhances the growth and reproductive performances. This finding confirmed that the isolated SPs from S. platensis possess pharmaceutical as well as nutritional properties.
Collapse
Affiliation(s)
- Periyannan Rajasekar
- Disease Control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon 210-702, Republic of Korea
| | - Ravichandran Anjali
- Disease Control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Manoharan Vinosha
- Disease Control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Meyyanathan Elakkiya
- Disease Control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Thangapandi Marudhupandi
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Mehdi Tabarsa
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor, Iran
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon 210-702, Republic of Korea
| | - Narayanasamy Marimuthu Prabhu
- Disease Control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 003, Tamil Nadu, India.
| |
Collapse
|
33
|
Hemp seed polysaccharides protect intestinal epithelial cells from hydrogen peroxide-induced oxidative stress. Int J Biol Macromol 2019; 135:203-211. [DOI: 10.1016/j.ijbiomac.2019.05.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/07/2019] [Accepted: 05/13/2019] [Indexed: 12/22/2022]
|
34
|
Characterization and assessment of antioxidant and antibacterial activities of sulfated polysaccharides extracted from cuttlefish skin and muscle. Int J Biol Macromol 2019; 123:1221-1228. [DOI: 10.1016/j.ijbiomac.2018.11.170] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/18/2018] [Accepted: 11/17/2018] [Indexed: 01/16/2023]
|
35
|
Wang Y, Chen G, Peng Y, Rui Y, Zeng X, Ye H. Simulated digestion and fermentation in vitro with human gut microbiota of polysaccharides from Coralline pilulifera. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Seaweeds as Source of Bioactive Substances and Skin Care Therapy—Cosmeceuticals, Algotheraphy, and Thalassotherapy. COSMETICS 2018. [DOI: 10.3390/cosmetics5040068] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Riverine, estuarine, and coastal populations have always used algae in the development of home remedies that were then used to treat diverse health problems. The empirical knowledge of various generations originated these applications, and their mechanism of action is, in most cases, unknown, that is, few more scientific studies would have been described beyond simple collection and ethnographic recording. Nevertheless, recent investigations, carried out with the purpose of analyzing the components and causes that alter the functioning and the balance of our organism, are already giving their first results. Water, and especially sea water is considered as essential to life on our planet. It sings all the substances necessary and conducive to the development of the living being (minerals, catalysts, vitamins, amino acids, etc.). Oceans cover over 70% of Earth, being home to up to 90% of the organisms in the planet. Many rich resources and unique environments are provided by the ocean. Additionally, bioactive compounds that multiple marine organisms have a great potential to produce can be used as nutraceuticals, pharmaceuticals, and cosmeceuticals. Both primary and secondary metabolites are produced by algae. The first ones are directly implicated in development, normal growth, or reproduction conditions to perform physiological functions. Stress conditions, like temperature changes, salinity, environmental pollutants, or UV radiation exposure cause the performance of secondary metabolites. In algae, proteins, polysaccharides, fatty acids, and amino acids are primary metabolites and phenolic compounds, pigments, vitamins, sterols, and other bioactive agents, all produced in algae tissues, are secondary metabolites. These algal active constituents have direct relevance in cosmetics.
Collapse
|
37
|
Cui Y, Liu X, Li S, Hao L, Du J, Gao D, Kang Q, Lu J. Extraction, characterization and biological activity of sulfated polysaccharides from seaweed Dictyopteris divaricata. Int J Biol Macromol 2018; 117:256-263. [PMID: 29792963 DOI: 10.1016/j.ijbiomac.2018.05.134] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/15/2018] [Accepted: 05/19/2018] [Indexed: 12/15/2022]
Abstract
Dictyopteris divaricata is a kind of important brown algae with many biological activities. It has been receiving more and more attention, yet there are rarely studies done on its polysaccharides. In this study, the optimum extraction and biological activity of seaweed polysaccharides from Dictyopteris divaricata (DDSP) were investigated. Response surface methodology (RSM), based on a three-level, three-variable Box-Behnken design (BBD), was employed to obtain the best possible combinations for maximum polysaccharides yield. The optimum extraction conditions were as follows: liquid-solid ratio of 110 mL/g, extraction time of 6 h and extraction temperature of 100 °C. Under these conditions, the experimental yield was 3.05%, which was in close agreement with the predicted value of 3.15%. The average molecular weight of DDSP was 58.05 kDa. Gas chromatograph (GC) results showed that DDSP was composed of fucose, xylose, mannose, glucose and galactose with the corresponding molar ratio of 4.45:2.74:1.00:2.94:1.35. Biological activity showed that DDSP exhibited strong antioxidant activity in vitro and possessed the potential on stimulating immune response of RAW264.7 cells. So DDSP can be used as a natural ingredient in functional foods.
Collapse
Affiliation(s)
- Yinxin Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Shufang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Limin Hao
- The Quartermaster Research Institute of Engineering and Technology, Academy of Military Sciences PLA China, Beijing 100010, China
| | - Juan Du
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - DaHai Gao
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
38
|
Structure characterization, modification through carboxymethylation and sulfation, and in vitro antioxidant and hypoglycemic activities of a polysaccharide from Lachnum sp. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Sulfated polysaccharides from Padina tetrastromatica induce apoptosis in HeLa cells through ROS triggered mitochondrial pathway. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Yuan Y, Xu X, Jing C, Zou P, Zhang C, Li Y. Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: Functional properties and bioactivities. Carbohydr Polym 2018; 181:902-910. [DOI: 10.1016/j.carbpol.2017.11.061] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 12/20/2022]
|
41
|
Purification and analysis of the composition and antioxidant activity of polysaccharides from Helicteres angustifolia L. Int J Biol Macromol 2018; 107:2262-2268. [DOI: 10.1016/j.ijbiomac.2017.10.095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 09/06/2017] [Accepted: 10/15/2017] [Indexed: 01/26/2023]
|
42
|
Seedevi P, Moovendhan M, Viramani S, Shanmugam A. Bioactive potential and structural chracterization of sulfated polysaccharide from seaweed (Gracilaria corticata). Carbohydr Polym 2017; 155:516-524. [DOI: 10.1016/j.carbpol.2016.09.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/02/2016] [Accepted: 09/04/2016] [Indexed: 11/26/2022]
|
43
|
Kolsi RBA, Fakhfakh J, Krichen F, Jribi I, Chiarore A, Patti FP, Blecker C, Allouche N, Belghith H, Belghith K. Structural characterization and functional properties of antihypertensive Cymodocea nodosa sulfated polysaccharide. Carbohydr Polym 2016; 151:511-522. [DOI: 10.1016/j.carbpol.2016.05.098] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/19/2016] [Accepted: 05/27/2016] [Indexed: 01/25/2023]
|
44
|
Zhu H, Zhang TJ, Zhang P, Peng CL. Pigment patterns and photoprotection of anthocyanins in the young leaves of four dominant subtropical forest tree species in two successional stages under contrasting light conditions. TREE PHYSIOLOGY 2016; 36:1092-1104. [PMID: 27255467 DOI: 10.1093/treephys/tpw047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
Light-driven subtropical forest succession is a dynamic process in which mesophytic climax communities replace heliophytic ones. Juvenile leaves (particularly mesophytic ones) are sensitive to high irradiances. To determine the photoprotection strategy that juvenile leaves use during subtropical forest succession, anthocyanin accumulation patterns were investigated in the young leaves of two mid-successional dominant trees (i.e., Schima superba and Castanopsis fissa) and two late-successional dominant trees (i.e., Cryptocarya concinna and Acmena acuminatissima) grown in 100% (FL) and 25% (LL) of full sunlight. All four tree species produced anthocyanins in their juvenile leaves when <50% of chlorophylls and carotenoids had developed. Higher anthocyanin concentrations accumulated in the young leaves grown in FL than in those grown in LL and in late-successional than in mid-successional trees. The juvenile leaves of late-successional trees were subjected to higher light-induced photoinhibition than those of mid-successional trees, despite of the fact that the leaves of late-successional trees showed greater non-photochemical quenching than those of mid-successional trees. Under LL conditions, photosystem II excitation pressure (1 - qP) was significantly higher in the juvenile leaves of late-successional trees than those of mid-successional trees. Under either FL or LL conditions, anthocyanin concentrations in juvenile leaves were negatively related to the light compensation point in mature leaves across species. However, anthocyanin concentrations were positively related to the antioxidant capacity of juvenile leaves. These results indicate that anthocyanin accumulation in the juvenile leaves of subtropical dominant trees during forest community succession is a flexible photoprotective response to ambient irradiances according to leaf sensitivity to light.
Collapse
Affiliation(s)
- H Zhu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou 510631, Guangdong Province, PR China School of Life Science & Food Technology, Hanshan Normal University, Chaozhou 521041, PR China
| | - T J Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou 510631, Guangdong Province, PR China
| | - P Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou 510631, Guangdong Province, PR China
| | - C L Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou 510631, Guangdong Province, PR China
| |
Collapse
|
45
|
Sulfated modification of the polysaccharide from Sphallerocarpus gracilis and its antioxidant activities. Int J Biol Macromol 2016; 87:180-90. [DOI: 10.1016/j.ijbiomac.2016.02.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/12/2016] [Accepted: 02/12/2016] [Indexed: 11/21/2022]
|
46
|
Yang J, Xie Q, Zhu J, Zou C, Chen L, Du Y, Li D. Preparation and in vitro antioxidant activities of 6-amino-6-deoxychitosan and its sulfonated derivatives. Biopolymers 2016; 103:539-49. [PMID: 25858489 DOI: 10.1002/bip.22656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/25/2015] [Accepted: 04/01/2015] [Indexed: 11/07/2022]
Abstract
The 6-amino-6-deoxychitosan (NC) and their 2, 6-di-N-sulfonated derivatives were prepared via N-phthaloylation, tosylation, azidation, hydrazinolysis, reduction of azide groups and N-sulfonation, and their structures were systematically characterized by FT-IR, 2D HSQC NMR, XRD, gel permeation chromatography (GPC), and elemental analysis. The 6-amino-6-deoxychitosan showed effect in three selected antioxidant essays, including reducing power, superoxide anion radical scavenging ability, and hydroxyl radical scavenging effect. But the factors affecting each activity were different. The reducing power and the superoxide anion radical scavenging ability of NC were strong and closely related to the amino groups in the molecular chains. Both introducing N-sulfonated groups into NC and the concentration reduction of NC and its sulfonated derivatives decreased these activities. For the superoxide anion radical, the molecular charge property was also a significant influence factor. For the hydroxyl radical, NC only showed weak scavenging activity in a special inverse concentration-dependent manner. However, the incorporation of N-sulfonated groups significantly improved the scavenging activity, and the more N-sulfonated groups, the higher the concentrations, the stronger the activity was. The results could be due to the different conformations of NC and its sulfonated derivatives in aqueous solution.
Collapse
Affiliation(s)
- Jianhong Yang
- Department of Environmental Engineering, School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Qinyue Xie
- Department of Environmental Engineering, School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Jianfeng Zhu
- Department of Environmental Engineering, School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Chang Zou
- Department of Environmental Science, College of Resource and Environmental Science, Wuhan University, Wuhan, 430079, Hubei, China
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - Yumin Du
- Department of Environmental Science, College of Resource and Environmental Science, Wuhan University, Wuhan, 430079, Hubei, China
| | - Dinglong Li
- Department of Environmental Engineering, School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| |
Collapse
|
47
|
Li X, Lu Y, Zhang W, Yuan S, Zhou L, Wang L, Ding Q, Wang D, Yang W, Cai Z, Chen Y. Antioxidant capacity and cytotoxicity of sulfated polysaccharide TLH-3 from Tricholoma lobayense. Int J Biol Macromol 2016; 82:913-9. [DOI: 10.1016/j.ijbiomac.2015.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/29/2022]
|
48
|
Reviews on Mechanisms of In Vitro Antioxidant Activity of Polysaccharides. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5692852. [PMID: 26682009 PMCID: PMC4670676 DOI: 10.1155/2016/5692852] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/29/2015] [Accepted: 08/06/2015] [Indexed: 11/18/2022]
Abstract
It is widely acknowledged that the excessive reactive oxygen species (ROS) or reactive nitrogen species (RNS) induced oxidative stress will cause significant damage to cell structure and biomolecular function, directly or indirectly leading to a number of diseases. The overproduction of ROS/RNS will be balanced by nonenzymatic antioxidants and antioxidant enzymes. Polysaccharide or glycoconjugates derived from natural products are of considerable interest from the viewpoint of potent in vivo and in vitro antioxidant activities recently. Particularly, with regard to the in vitro antioxidant systems, polysaccharides are considered as effective free radical scavenger, reducing agent, and ferrous chelator in most of the reports. However, the underlying mechanisms of these antioxidant actions have not been illustrated systematically and sometimes controversial results appeared among various literatures. To address this issue, we summarized the latest discoveries and advancements in the study of antioxidative polysaccharides and gave a detailed description of the possible mechanisms.
Collapse
|
49
|
Fleita D, El-Sayed M, Rifaat D. Evaluation of the antioxidant activity of enzymatically-hydrolyzed sulfated polysaccharides extracted from red algae; Pterocladia capillacea. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.04.024] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents. Int J Biol Macromol 2015; 81:912-9. [PMID: 26400737 DOI: 10.1016/j.ijbiomac.2015.09.030] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/07/2015] [Accepted: 09/17/2015] [Indexed: 11/22/2022]
Abstract
Ulva intestinalis, a tubular green seaweed, is a rich source of nutrient, especially sulphated polysaccharides. Sulphated polysaccharides from U. intestinalis were extracted with distilled water, 0.1N HCl, and 0.1N NaOH at 80°C for 1, 3, 6, 12, and 24h to study the effect of the extraction solvent and time on their chemical composition and antioxidant activity. Different types of solvents and extraction time had a significant influence on the chemical characteristics and antioxidant activity (p<0.05). Monosaccharide composition and FT-IR spectra analyses revealed that sulphated polysaccharides from all solvent extractions have a typical sugar backbone (glucose, rhamnose, and sulphate attached at C-2 or C-3 of rhamnose). Sulphated polysaccharides extracted with acid exhibited greater antioxidant activity than did those extracted with distilled water and alkali. The results indicated that solvent extraction could be an efficacious method for enhancing antioxidant activity by distinct molecular weight and chemical characteristic of sulphated polysaccharides.
Collapse
|