1
|
Santhoshkumar P, Ramu D, Mahalakshmi L, Moses JA. 3D printed edible electronics: Components, fabrication approaches and applications. Biosens Bioelectron 2025; 272:117059. [PMID: 39752889 DOI: 10.1016/j.bios.2024.117059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
A recently minted field of 3D-printed edible electronics (EEs) represents a cutting-edge convergence of edible electronic devices and 3D printing technology. This review presents a comprehensive view of this emerging discipline, which has gathered significant scientific attention for its potential to create a safe, environmentally friendly, economical, and naturally degraded inside the human body. EEs have the potential to be used as medical and health devices to monitor physiological conditions and possibly treat diseases. These edible devices include different components, such as sensors, actuators, and other electronic elements, all made from edible ingredients such as sugars, proteins, polysaccharides, polymers, and others. Among the different fabrication approaches, 3D printing can provide reliable solutions to specific requirements. The concept of EEs has the potential to transform healthcare, providing more convenient, less invasive alternatives and personalized, customizable products for patients that beat traditional manufacturing methods. While the potential is enormous, there are critical challenges, notably ensuring the long-term stability, and regulatory and safety of these devices within the human body. Accordingly, a detailed understanding of the underlying concepts, fabrication approaches, design considerations, and action in the body/application range has been presented. As an evolving field, there is ample scope for research and multiple challenges must be addressed; these are elaborated towards the concluding sections of this article.
Collapse
Affiliation(s)
- P Santhoshkumar
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - Dheetchanya Ramu
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - L Mahalakshmi
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Department of Food Process Engineering, National Institute of Food Technology Entrepreneurship and Management, Thanjavur (NIFTEM-T), Ministry of Food Processing Industries, Government of India, Thanjavur, 613005, Tamil Nadu, India.
| |
Collapse
|
2
|
Chen Y, Bera H, Si L, Xiu F, Liu P, Li J, Xu X, Zhu X, Li Y, Cun D, Guo X, Yang M. Tailor-made curdlan based nanofibrous dressings enable diabetic wound healing. Carbohydr Polym 2025; 348:122876. [PMID: 39567119 DOI: 10.1016/j.carbpol.2024.122876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/25/2024] [Accepted: 10/13/2024] [Indexed: 11/22/2024]
Abstract
The development and application of novel polysaccharides that can improve diabetic wound healing is crucial. Dressings containing curdlan have the potential to promote healing in diabetic wounds, but the underlying mechanism remain unclear. In addition, the functional modifications that could further enhance the activity of curdlan in promoting diabetic wound healing have not been explored. Herein, we investigated the capabilities of curdlan (CU) and its four derivatives i.e., sulfated curdlan (SC), amino-curdlan (AC) carboxymethyl curdlan (CMC) and CMC/ZnO nanocomposites for diabetic wound healing. Pristine CU and its derivatives were blended with polyvinyl alcohol (PVA) to fabricate electrospun nanofiber dressings (ENDs) with uniform appearances. The PVA/CU, PVA/CMC and PVA/CMC-ZnO ENDs were more compatible with keratinocytes, fibroblasts, and macrophages than that of PVA/AC ENDs. Notably, PVA/CMC ENDs and PVA/CMC-ZnO ENDs exhibited superior wound healing efficiencies than other ENDs. Among various dressings, PVA/CU, PVA/SC, PVA/CMC ENDs effectively reduced M1 macrophages and facilitated M2 phenotype at early stage of diabetic wound healing. Collectively, the PVA/CMC ENDs demonstrated greater therapeutic potential against diabetic wounds compared to other modified scaffolds via regulating macrophage polarization.
Collapse
Affiliation(s)
- Yang Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Hriday Bera
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Durgapur 713206, India
| | - Liangwei Si
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Fangfang Xiu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Peixin Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jiahui Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Xueying Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Xiaoxuan Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Yuxin Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China; Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
3
|
Li J, Yang H, Cai Y, Gu R, Chen Y, Wang Y, Dong Y, Zhao Q. Ag quantum dots-doped poly (vinyl alcohol)/chitosan hydrogel coatings to prevent catheter-associated urinary tract infections. Int J Biol Macromol 2024; 282:136405. [PMID: 39423980 DOI: 10.1016/j.ijbiomac.2024.136405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
The prevention of catheter-associated urinary tract infections (CAUTIs) significantly impacts the reduction of morbidity and mortality associated with the use of indwelling urinary catheters. This study focused on developing an antibacterial double network hydrogel coating for latex urinary catheters, which incorporated Ag quantum dots (Ag QDs) in a polyvinyl alcohol (PVA)-chitosan (CS) double network hydrogel matrix. The PVA-CS-Ag QDs, referred to as the PCA hydrogel coating exhibited excellent mechanical and physiochemical properties with controlled release of Ag QDs. The antibacterial properties of the PCA hydrogel-coated urinary catheters were studied against both gram-negative Escherichia coli (E. coli, ATCC25922) and gram-positive Staphylococcus aureus (S. aureus, ATCC29213). The continuous release of CS oligomers and Ag QDs from the hydrogel coating contributed to the synergistic antibacterial and antiadhesion effects. Measurements of the Ag release rate revealed that even after 30 days, the concentration of Ag QDs from the PCA hydrogel-coated urinary catheters remained significantly higher than the effective antibacterial concentration of the total Ag (0.1 μg·L-1). These results indicated that the PCA hydrogel coating not only efficiently prevented bacteria attachment, but also exhibited long-term antibacterial activity, thereby inhibiting biofilm formation. Furthermore, the PCA hydrogel-coated urinary catheter demonstrated excellent biocompatibility and hemocompatibility. Overall, this novel PCA hydrogel-coated urinary catheter, with its exceptional antibacterial properties, holds great potential in reducing the incidence of CAUTIs.
Collapse
Affiliation(s)
- Jianxiang Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yongwei Cai
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Ronghua Gu
- Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yao Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yimeng Wang
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Yuhang Dong
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Qi Zhao
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK.
| |
Collapse
|
4
|
Chicea D, Nicolae-Maranciuc A. A Review of Chitosan-Based Materials for Biomedical, Food, and Water Treatment Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5770. [PMID: 39685206 DOI: 10.3390/ma17235770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Chitosan, a natural biopolymer with excellent biocompatibility, biodegradability, and modifiable structure, has broad applications in regenerative medicine, tissue engineering, food packaging, and environmental technology. Its abundance, solubility in acidic solutions, and capacity for chemical modification make it highly adaptable for creating specialized derivatives with enhanced properties. Recent advances have demonstrated chitosan's efficacy in composite systems for tissue regeneration, drug delivery, and antimicrobial applications. This review examines chitosan's unique properties, with a focus on its antibacterial activity as influenced by factors like pH, concentration, molecular weight, and deacetylation degree. Additionally, chitosan's potential as a sustainable, non-toxic material for eco-friendly packaging and water treatment is explored, highlighting the growing interest in chitosan composites with other polymers and metallic nanoparticles for enhanced biomedical and environmental applications.
Collapse
Affiliation(s)
- Dan Chicea
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Alexandra Nicolae-Maranciuc
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
- Institute for Interdisciplinary Studies and Research (ISCI), Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| |
Collapse
|
5
|
Asl ZR, Rezaee K, Ansari M, Zare F, Roknabadi MHA. A review of biopolymer-based hydrogels and IoT integration for enhanced diabetes diagnosis, management, and treatment. Int J Biol Macromol 2024; 280:135988. [PMID: 39322132 DOI: 10.1016/j.ijbiomac.2024.135988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/10/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
The prevalence of diabetes has been increasing globally, necessitating innovative approaches beyond conventional blood sugar monitoring and insulin control. Diabetes is associated with complex health complications, including cardiovascular diseases. Continuous Glucose Monitoring (CGM) devices, though automated, have limitations such as irreversibility and interference with bodily fluids. Hydrogel technologies provide non-invasive alternatives to traditional methods, addressing the limitations of current approaches. This review explores hydrogels as macromolecular biopolymeric materials capable of absorbing and retaining a substantial amount of water within their structure. Due to their high-water absorption properties, these macromolecules are utilized as coating materials for wound care and diabetes management. The study emphasizes the need for early diagnosis and monitoring, especially during the COVID-19 pandemic, where heightened attention to diabetic patients is crucial. Additionally, the article examines the role of the Internet of Things (IoT) and machine learning-based systems in enhancing diabetes management effectiveness. By leveraging these technologies, there is potential to revolutionize diabetes care, providing more personalized and proactive solutions. This review explores cutting-edge hydrogel-based systems as a promising avenue for diabetes diagnosis, management, and treatment, highlighting key biopolymers and technological integrations.
Collapse
Affiliation(s)
- Zahra Rahmani Asl
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Khosro Rezaee
- Department of Biomedical Engineering, Meybod University, Meybod, Iran.
| | - Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Fatemeh Zare
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
6
|
Pati AR, Ko YS, Bae C, Choi I, Heo YJ, Lee C. Highly porous hydrogels for efficient solar water evaporation. SOFT MATTER 2024; 20:4988-4997. [PMID: 38884450 DOI: 10.1039/d4sm00388h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Solar energy is a plentiful renewable resource on Earth, with versatile applications in both domestic and industrial settings, particularly in solar steam generation (SSG). However, current SSG processes encounter challenges such as low efficiency and the requirement for extremely high concentrations of solar irradiation. Interfacial evaporation technology has emerged as a solution to these issues, offering improved solar performance compared to conventional SSG processes. Nonetheless, its implementation introduces additional complexities and costs to system construction. In this study, we present the development of hydrophilic, three-dimensional network-structured hydrogels with high porosity and swelling ratio using a facile fabrication technique. We systematically varied the mixing ratios of four key ingredients (polyethylene glycol diacrylate, PEGDA; polyethylene glycol methyl-ether acrylate, PEGMA; phosphate-buffered saline, PBS; and 2-hydroxy-2-methylpropiophenone, PI) to control the mean pore size and swelling ratio of the hydrogel. Additionally, plasmonic gold nanoparticles were incorporated into the hydrogel using a novel methodology to enhance solar light absorption and subsequent evaporation efficiency. The resulting material exhibited a remarkable solar efficiency of 77% and an evaporation rate of 1.6 kg m-2 h-1 under standard solar illumination (one sun), comparable to those of state-of-the-art SSG devices. This high efficiency can be attributed to the synergistic effects of the hydrogel's unique composition and nanoparticle concentration. These findings offer a promising avenue for the development of highly efficient solar-powered evaporation applications.
Collapse
Affiliation(s)
- Akash Ranjan Pati
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
| | - Young-Su Ko
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
| | - Changwoo Bae
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
| | - Inhee Choi
- Department of Life Sciences, University of Seoul, Seoul 02504, Republic of Korea
| | - Yun Jung Heo
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Choongyeop Lee
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin-si 17104, Republic of Korea.
| |
Collapse
|
7
|
Huët MAL, Phul IC, Goonoo N, Li Z, Li X, Bhaw-Luximon A. Lignin-cellulose complexes derived from agricultural wastes for combined antibacterial and tissue engineering scaffolds for cutaneous leishmaniasis wounds. J Mater Chem B 2024; 12:5496-5512. [PMID: 38742807 DOI: 10.1039/d4tb00458b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Bacterial infections in wounds significantly impair the healing process. The use of natural antibacterial products over synthetic antibiotics has emerged as a new trend to address antimicrobial resistance. An ideal tissue engineering scaffold to treat infected wounds should possess antibacterial properties, while simultaneously promoting tissue regrowth. Synthesis of hydrogel scaffolds with antibacterial properties using hemp shive (HT1/HT2) lignin, sugarcane bagasse (SCB) lignin and cellulose was carried out. All lignin samples had low molecular weights and were constituted of G-type β-5 dimers, linked by β-O-4 bonds, as determined by MALDI-TOF-MS. Hemp lignin was more cytotoxic to mouse fibroblasts (L929) compared to SCB lignin. All lignin samples demonstrated antibacterial properties against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecalis, with greater efficiency against Gram-negative strains. 3D hydrogels were engineered by crosslinking SCB lignin with SCB cellulose in varying weight ratios in the presence of epichlorohydrin. The stiffness of the hydrogels could be tailored by varying the lignin concentration. All hydrogels were biocompatible; however, better fibroblast adhesion was observed on the blended hydrogels compared to the 100% cellulose hydrogel, with the cellulose : lignin 70 : 30 hydrogel showing the highest L929 proliferation and best antibacterial properties with a 24-hour bacterial growth reduction ranging from 30.8 to 57.3%.
Collapse
Affiliation(s)
- Marie Andrea Laetitia Huët
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius.
| | - Itisha Chummun Phul
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius.
| | - Nowsheen Goonoo
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius.
| | - Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius, Réduit 80837, Mauritius.
| |
Collapse
|
8
|
Quintero V, Osma JF, Azimov U, Nabarlatz D. Multifunctional Eco-Friendly Adsorbent Cryogels Based on Xylan Derived from Coffee Residues. MEMBRANES 2024; 14:108. [PMID: 38786942 PMCID: PMC11123184 DOI: 10.3390/membranes14050108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Agricultural and animal farming practices contribute significantly to greenhouse gas (GHG) emissions such as NH3, CH4, CO2, and NOx, causing local environmental concerns involving health risks and water/air pollution. A growing need to capture these pollutants is leading to the development of new strategies, including the use of solid adsorbents. However, commonly used adsorbent materials often pose toxicity and negative long-term environmental effects. This study aimed to develop responsive eco-friendly cryogels using xylan extracted from coffee parchment, a typical residue from coffee production. The crosslinking in cryogels was accomplished by "freeze-thawing" and subsequent freeze-drying. Cryogels were characterized in terms of morphology by using scanning electron microscopy, porosity, and density by the liquid saturation method and also moisture adsorption and ammonia adsorption capacity. The analysis showed that the porosity in the cryogels remained around 0.62-0.42, while the apparent densities varied from 0.14 g/cm3 to 0.25 g/cm3. The moisture adsorption capacity was the highest at the highest relative humidity level (80%), reaching 0.25-0.43 g of water per gram of sample; the amount of water adsorbed increased when the xylan content in the cryogel increased up to 10% w/v, which was consistent with the hygroscopic nature of xylan. The ammonia adsorption process was modeled accurately by a pseudo-second-order equation, where the maximum adsorption capacity in equilibrium reached 0.047 mg NH3/g when xylan reached 10% w/v in cryogels, indicating a chemisorption process. The cryogels under investigation hold promise for ammonia adsorption applications and GHG separation, offering a sustainable alternative for gas-capturing processes.
Collapse
Affiliation(s)
- Valentina Quintero
- Grupo de Investigación en Tecnologías de Valorización de Residuos y Fuentes Agrícolas e Industriales para la Sustentabilidad Energética (INTERFASE), Escuela de Ingeniería Química, Universidad Industrial de Santander, Cra. 27 N°9, Bucaramanga 680002, Colombia;
| | - Johann F. Osma
- BioAgro Center, Innovation and Technology Inc., Guasca 251217, Colombia;
| | - Ulugbek Azimov
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK;
| | - Debora Nabarlatz
- Grupo de Investigación en Tecnologías de Valorización de Residuos y Fuentes Agrícolas e Industriales para la Sustentabilidad Energética (INTERFASE), Escuela de Ingeniería Química, Universidad Industrial de Santander, Cra. 27 N°9, Bucaramanga 680002, Colombia;
| |
Collapse
|
9
|
Kazemi N, Javad Mahalati M, Kaviani Y, Al-Musawi MH, Varshosaz J, Soleymani Eil Bakhtiari S, Tavakoli M, Alizadeh M, Sharifianjazi F, Salehi S, Najafinezhad A, Mirhaj M. Core-shell nanofibers containing L-arginine stimulates angiogenesis and full thickness dermal wound repair. Int J Pharm 2024; 653:123931. [PMID: 38387821 DOI: 10.1016/j.ijpharm.2024.123931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Despite the advances in medicine, wound healing is still challenging and piques the interest of biomedical engineers to design effective wound dressings using natural and artificial polymers. In present study, coaxial electrospinning was employed to fabricate core-shell nanofiber-based wound dressing, with core composed of polyacrylamide (PAAm) and shell comprising 0.5 % solution of L-Arginine (L-Arg) in aloe vera and keratin (AloKr). Aloe vera and keratin were added as natural polymers to promote angiogenesis, reduce inflammation, and provide antibacterial activity, whereas PAAm in core was used to improve the tensile properties of the wound dressing. Moreover, L-Arg was incorporated in shell to promote angiogenesis and collagen synthesis. The fiber diameter of PAAm/(AloKr/L-Arg) core-shell fibers was (93.33 ± 35.11 nm) with finer and straighter fibers and higher water holding capacity due to increased surface area to volume ratio. In terms of tensile properties, the PAAm/(AloKr/L-Arg) core-shell nanofibers with tensile strength and elastic modulus of 2.84 ± 0.27 MPa and 62.15 ± 5.32 MPa, respectively, showed the best mechanical performance compared to other nanofibers tested. Furthermore, PAAm/(AloKr/L-Arg) exhibited the highest L-Arg release (87.62 ± 3.02 %) and viability of L929 cells in vitro compared to other groups. In addition, the highest rate of in vivo full thickness wound healing was observed in PAAm/(AloKr/L-Arg) group compared to other groups. It significantly enhanced the angiogenesis, neovascularization, and cell proliferation. The prepared PAAm/(AloKr/L-Arg) core-shell nanofibrous dressing could be promising for full-thickness wound healing.
Collapse
Affiliation(s)
- Nafise Kazemi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Mohammad Javad Mahalati
- Organic Chemistry, Department of Chemistry, Faculty of Basic Sciences, Shahrekord University, Iran.
| | - Yeganeh Kaviani
- Department of Biomedical Engineering, University of Meybod, Yazd, Iran.
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sanaz Soleymani Eil Bakhtiari
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mansoor Alizadeh
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi 0171, Georgia.
| | - Saeideh Salehi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Aliakbar Najafinezhad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
10
|
Zheng Y, Yang D, Gao B, Huang S, Tang Y, Wa Q, Dong Y, Yu S, Huang J, Huang S. A DNA-inspired injectable adhesive hydrogel with dual nitric oxide donors to promote angiogenesis for enhanced wound healing. Acta Biomater 2024; 176:128-143. [PMID: 38278340 DOI: 10.1016/j.actbio.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Chronic diabetic wounds are a severe complication of diabetes, often leading to high treatment costs and high amputation rates. Numerous studies have revealed that nitric oxide (NO) therapy is a promising option because it favours wound revascularization. Here, base-paired injectable adhesive hydrogels (CAT) were prepared using adenine- and thymine-modified chitosan (CSA and CST). By further introducing S-nitrosoglutathione (GSNO) and binary l-arginine (bArg), we obtained a NO sustained-release hydrogel (CAT/bArg/GSON) that was more suitable for the treatment of chronic wounds. The results showed that the expression of HIF-1α and VEGF was upregulated in the CAT/bArg/GSON group, and improved blood vessel regeneration was observed, indicating an important role of NO. In addition, the research findings revealed that following treatment with the CAT/bArg/GSON hydrogel, the viability of Staphylococcus aureus and Escherichia coli decreased to 14 ± 2 % and 6 ± 1 %, respectively. Moreover, the wound microenvironment was improved, as evidenced by a 60 ± 1 % clearance of DPPH. In particular, histological examination and immunohistochemical staining results showed that wounds treated with CAT/bArg/GSNO exhibited denser neovascularization, faster epithelial tissue regeneration, and thicker collagen deposition. Overall, this study proposes an effective strategy to prepare injectable hydrogel dressings with dual NO donors. The functionality of CAT/bArg/GSON has been thoroughly demonstrated in research on chronic wound vascular regeneration, indicating that CAT/bArg/GSON could be a potential option for promoting chronic wound healing. STATEMENT OF SIGNIFICANCE: This article prepares a chitosan hydrogel utilizing the principle of complementary base pairing, which offers several advantages, including good adhesion, biocompatibility, and flow properties, making it a good material for wound dressings. Loaded GSNO and bArg can steadily release NO and l-arginine through the degradation of the gel. Then, the released l-arginine not only possesses antioxidant properties but can also continue to generate a small amount of NO under the action of NOS. This design achieves a sustained and stable supply of NO at the wound site, maximizing the angiogenesis-promoting and antibacterial effects of NO. More neovascularization and abundant collagen were observed in the regenerated tissues. This study provides an effective repair hydrogel material for diabetic wound.
Collapse
Affiliation(s)
- Yongsheng Zheng
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Dong Yang
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Shuai Huang
- Department of Orthopedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Qingde Wa
- Department of Orthopedics, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Yong Dong
- Department of Oncology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, 523106, China
| | - Shan Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China.
| | - Sheng Huang
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
11
|
Tavakoli M, Salehi H, Emadi R, Varshosaz J, Labbaf S, Seifalian AM, Sharifianjazi F, Mirhaj M. 3D printed polylactic acid-based nanocomposite scaffold stuffed with microporous simvastatin-loaded polyelectrolyte for craniofacial reconstruction. Int J Biol Macromol 2024; 258:128917. [PMID: 38134992 DOI: 10.1016/j.ijbiomac.2023.128917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Critical sized craniofacial defects are among the most challenging bone defects to repair, due to the anatomical complexity and aesthetic importance. In this study, a polylactic acid/hardystonite-graphene oxide (PLA/HTGO) scaffold was fabricated through 3D printing. In order to upgrade the 3D printed scaffold to a highly porous scaffold, its channels were filled with pectin-quaternized chitosan (Pec-QCs) polyelectrolyte solution containing 0 or 20 mg/mL of simvastatin (Sim) and then freeze-dried. These scaffolds were named FD and FD-Sim, respectively. Also, similar PLA/HTGO scaffolds were prepared and dip coated with Pec-QCs solution containing 0 or 20 mg/mL of Sim and were named DC and DC-Sim, respectively. The formation of macro/microporous structure was confirmed by morphological investigations. The release of Sim from DC-Sim and FD-Sim scaffolds after 28 days was measured as 77.40 ± 5.25 and 86.02 ± 3.63 %, respectively. Cytocompatibility assessments showed that MG-63 cells had the highest proliferation, attachment and spread on the Sim containing scaffolds, especially FD-Sim. In vivo studies on a rat calvarial defect model revealed that an almost complete recovery occurred in the group treated with FD-Sim scaffold after 8 weeks and the defect was filled with newly formed bone. The results of this study acknowledge that the FD-Sim scaffold can be a perfect candidate for calvarial defect repair.
Collapse
Affiliation(s)
- Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd, Nanoloom Ltd, Liberum Health Ltd), London BioScience Innovation Centre, London, United Kingdom
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi, Georgia.
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
12
|
Saharan R, Kaur J, Dhankhar S, Garg N, Chauhan S, Beniwal S, Sharma H. Hydrogel-based Drug Delivery System in Diabetes Management. Pharm Nanotechnol 2024; 12:289-299. [PMID: 37818559 DOI: 10.2174/0122117385266276230928064235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND It is estimated that there are over 200 million people living with diabetes mellitus (DM) all over the world. It is a metabolic condition caused by decreased insulin action or secretion. Diabetes Mellitus is also known as Type 2 Diabetes Mellitus. Type 1 diabetes mellitus and type 2 diabetes mellitus are the two most common types of DM. Treatment for type 1 diabetes often consists of insulin replacement therapy, while treatment for type 2 diabetes typically consists of oral hypoglycemics. OBJECTIVES Conventional dosing schedules for the vast majority of these medications come with a number of drawbacks, the most common of which are frequent dosing, a short half-life, and low bioavailability. Thus, innovative and regulated oral hypoglycemic medication delivery methods have been developed to reduce the limitations of standard dose forms. METHODS The studies and reviews published under the title were looked up in several databases (including PubMed, Elsevier, and Google Scholar). RESULTS Hydrogels made from biopolymers are three-dimensional polymeric networks that can be physically or chemically crosslinked. These networks are based on natural polymers and have an inherent hydrophilic quality because of the functional groups they contain. They have a very high affinity for biological fluids in addition to a high water content, softness, flexibility, permeability, and biocompatibility. The fact that these features are similar to those of a wide variety of soft living tissues paves the way for several potentials in the field of biomedicine. In this sense, hydrogels offer excellent platforms for the transport of medications and the controlled release of those drugs. Additionally, biopolymer-based hydrogels can be put as coatings on medical implants in order to improve the biocompatibility of the implants and to prevent medical diseases. CONCLUSION The current review focuses on the most recent advancements made in the field of using biopolymeric hydrogels that are physically and chemically crosslinked, in addition to hydrogel coatings, for the purpose of providing sustained drug release of oral hypoglycemics and avoiding problems that are associated with the traditional dosage forms of oral hypoglycemics.
Collapse
Affiliation(s)
- Renu Saharan
- Department of Pharmaceutical sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala (Haryana), India
| | - Jaspreet Kaur
- Department of Pharmaceutical sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala (Haryana), India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
- Ganpati Institute of Pharmacy, Bilaspur, 135102, Yamunanagar, Haryana, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Suresh Beniwal
- Ganpati Institute of Pharmacy, Bilaspur, 135102, Yamunanagar, Haryana, India
| | - Himanshu Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
13
|
Seth P, Mukherjee A, Sarkar N. Formation of hen egg white lysozyme derived amyloid-based hydrogels using different gelation agents: A potential tool for drug delivery. Int J Biol Macromol 2023; 253:127177. [PMID: 37783247 DOI: 10.1016/j.ijbiomac.2023.127177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Amyloids are highly stable protein fibrillar aggregates that get deposited in various parts of our body and cause detrimental diseases. But in nature, the presence of functional amyloids is also noted in bacteria that help them by forming hyphae, biofilm, protein reservoirs, signalling messengers, etc. Keeping this perspective in mind, the idea behind this research was to develop functional amyloids in the form of hydrogel and analyse its potential in the biomedical sector as a drug-delivery tool. The synthesis and characterisation of three types of amyloid-based hydrogels have been reported in this work. Hen Egg-White Lysozyme (HEWL) protein was chosen as the principal ingredient as it is extensively used as a standard protein for studying amyloidogenesis and has inherent antibacterial properties. Comparative studies of different hydrogel properties exhibited variations in the hydrogels based on compositional differences in them. Finally, a drug release assay was done on the synthesized hydrogels to explore their potential as drug delivery tools.
Collapse
Affiliation(s)
- Prakriti Seth
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Aniket Mukherjee
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
14
|
Tehrany PM, Rahmanian P, Rezaee A, Ranjbarpazuki G, Sohrabi Fard F, Asadollah Salmanpour Y, Zandieh MA, Ranjbarpazuki A, Asghari S, Javani N, Nabavi N, Aref AR, Hashemi M, Rashidi M, Taheriazam A, Motahari A, Hushmandi K. Multifunctional and theranostic hydrogels for wound healing acceleration: An emphasis on diabetic-related chronic wounds. ENVIRONMENTAL RESEARCH 2023; 238:117087. [PMID: 37716390 DOI: 10.1016/j.envres.2023.117087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Hydrogels represent intricate three-dimensional polymeric structures, renowned for their compatibility with living systems and their ability to naturally degrade. These networks stand as promising and viable foundations for a range of biomedical uses. The practical feasibility of employing hydrogels in clinical trials has been well-demonstrated. Among the prevalent biomedical uses of hydrogels, a significant application arises in the context of wound healing. This intricate progression involves distinct phases of inflammation, proliferation, and remodeling, often triggered by trauma, skin injuries, and various diseases. Metabolic conditions like diabetes have the potential to give rise to persistent wounds, leading to delayed healing processes. This current review consolidates a collection of experiments focused on the utilization of hydrogels to expedite the recovery of wounds. Hydrogels have the capacity to improve the inflammatory conditions at the wound site, and they achieve this by diminishing levels of reactive oxygen species (ROS), thereby exhibiting antioxidant effects. Hydrogels have the potential to enhance the growth of fibroblasts and keratinocytes at the wound site. They also possess the capability to inhibit both Gram-positive and Gram-negative bacteria, effectively managing wounds infected by drug-resistant bacteria. Hydrogels can trigger angiogenesis and neovascularization processes, while also promoting the M2 polarization of macrophages, which in turn mitigates inflammation at the wound site. Intelligent and versatile hydrogels, encompassing features such as pH sensitivity, reactivity to reactive oxygen species (ROS), and responsiveness to light and temperature, have proven advantageous in expediting wound healing. Furthermore, hydrogels synthesized using environmentally friendly methods, characterized by high levels of biocompatibility and biodegradability, hold the potential for enhancing the wound healing process. Hydrogels can facilitate the controlled discharge of bioactive substances. More recently, there has been progress in the creation of conductive hydrogels, which, when subjected to electrical stimulation, contribute to the enhancement of wound healing. Diabetes mellitus, a metabolic disorder, leads to a slowdown in the wound healing process, often resulting in the formation of persistent wounds. Hydrogels have the capability to expedite the healing of diabetic wounds, facilitating the transition from the inflammatory phase to the proliferative stage. The current review sheds light on the biological functionalities of hydrogels, encompassing their role in modulating diverse mechanisms and cell types, including inflammation, oxidative stress, macrophages, and bacteriology. Additionally, this review emphasizes the significance of smart hydrogels with responsiveness to external stimuli, as well as conductive hydrogels for promoting wound healing. Lastly, the discussion delves into the advancement of environmentally friendly hydrogels with high biocompatibility, aimed at accelerating the wound healing process.
Collapse
Affiliation(s)
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Golnaz Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farima Sohrabi Fard
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajedeh Asghari
- Faculty of Veterinary Medicine, Islamic Azad University, Babol Branch, Babol, Iran
| | - Nazanin Javani
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alireza Motahari
- Board-Certified in Veterinary Surgery, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
15
|
Huynh N, Valle-Delgado JJ, Fang W, Arola S, Österberg M. Tuning the water interactions of cellulose nanofibril hydrogels using willow bark extract. Carbohydr Polym 2023; 317:121095. [PMID: 37364945 DOI: 10.1016/j.carbpol.2023.121095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Cellulose nanofibrils (CNFs) are increasingly used as precursors for foams, films and composites, where water interactions are of great importance. In this study, we used willow bark extract (WBE), an underrated natural source of bioactive phenolic compounds, as a plant-based modifier for CNF hydrogels, without compromising their mechanical properties. We found that the introduction of WBE into both native, mechanically fibrillated CNFs and TEMPO-oxidized CNFs increased considerably the storage modulus of the hydrogels and reduced their swelling ratio in water up to 5-7 times. A detailed chemical analysis revealed that WBE is composed of several phenolic compounds in addition to potassium salts. Whereas the salt ions reduced the repulsion between fibrils and created denser CNF networks, the phenolic compounds - which adsorbed readily on the cellulose surfaces - played an important role in assisting the flowability of the hydrogels at high shear strains by reducing the flocculation tendency, often observed in pure and salt-containing CNFs, and contributed to the structural integrity of the CNF network in aqueous environment. Surprisingly, the willow bark extract exhibited hemolysis activity, which highlights the importance of more thorough investigations of biocompatibility of natural materials. WBE shows great potential for managing the water interactions of CNF-based products.
Collapse
Affiliation(s)
- Ngoc Huynh
- FinnCERES Materials Bioeconomy Cluster, Finland; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Juan José Valle-Delgado
- FinnCERES Materials Bioeconomy Cluster, Finland; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Wenwen Fang
- FinnCERES Materials Bioeconomy Cluster, Finland; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Suvi Arola
- FinnCERES Materials Bioeconomy Cluster, Finland; Sustainable Products and Materials, Functional Cellulose Team, VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Monika Österberg
- FinnCERES Materials Bioeconomy Cluster, Finland; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland.
| |
Collapse
|
16
|
Alioghli Ziaei A, Erfan-Niya H, Fathi M, Amiryaghoubi N. In situ forming alginate/gelatin hybrid hydrogels containing doxorubicin loaded chitosan/AuNPs nanogels for the local therapy of breast cancer. Int J Biol Macromol 2023; 246:125640. [PMID: 37394211 DOI: 10.1016/j.ijbiomac.2023.125640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
In this study, pH-sensitive in situ gelling hydrogels based on oxidized alginate and gelatin-containing doxorubicin (DOX) loaded chitosan/gold nanoparticles (CS/AuNPs) nanogels were fabricated via Schiff-base bond formation. The obtained CS/AuNPs nanogels indicated a size distribution of about 209 nm with a zeta potential of +19.2 mV and an encapsulation efficiency of around 72.6 % for DOX. The study of the rheological properties of hydrogels showed that the value of G' is higher than G″ for all hydrogels, which confirms the elastic behavior of hydrogels in the applied frequency range. The rheological and texture analysis demonstrated the higher mechanical properties of hydrogels containing β-GP and CS/AuNPs nanogels. The release profile of DOX after 48 h indicates the 99 % and 73 % release amount at pH = 5.8 and pH = 7.4, respectively. MTT cytotoxicity study showed that the prepared hydrogels are cytocompatible on MCF-7 cells. By the Live/Dead assay, it was demonstrated that the cultured cells on DOX-free hydrogels were almost alive in the presence of CS/AuNPs nanogels. However, the hydrogel-containing drug and free DOX in the same concentration caused high death of MCF-7 cells as expected, which showed the potential of the developed hydrogels for application in the local treatment of breast cancer.
Collapse
Affiliation(s)
- Anahita Alioghli Ziaei
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Hamid Erfan-Niya
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nazanin Amiryaghoubi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Maji S, Lee M, Lee J, Lee J, Lee H. Development of lumen-based perfusable 3D liver in vitro model using single-step bioprinting with composite bioinks. Mater Today Bio 2023; 21:100723. [PMID: 37502830 PMCID: PMC10368928 DOI: 10.1016/j.mtbio.2023.100723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Hepatic sinusoids are uniquely organized structures that help maintain a spectrum of hepatic functions. Although several in vitro liver models have been developed to replicate liver sinusoids, most of these platforms require complex, multi-step fabrication methods making it difficult to achieve truly three-dimensional (3D) channel geometries. In this study, a single-step bioprinting technique was demonstrated to simultaneously print a chip platform and develop a perfusable vascularized liver sinusoid in vitro model. The integrated system uses a co-axial-based bioprinting approach to develop a liver sinusoid-like model that consists of a sacrificial core compartment containing a perfusable pre-vascular structure and an alginate-collagen-based shell compartment containing hepatocytes. The lumen-based perfusable 3D liver sinusoid-on-a-chip (LSOC-P) demonstrated significantly better hepatocyte viability, proliferation, and liver-specific gene and protein expression compared to a 3D hepatocyte-based core/shell model with static media and the standard hepatocyte-based 2D sandwich culture system. A drug toxicity evaluation of hepatotoxins highlighted the comparatively higher sensitivity of the LSOC system with a close estimation of the therapeutic range of safe drug concentrations for humans. In conclusion, the current findings indicate that the combinatorial single-step co-axial bioprinting technique is a promising fabrication approach for the development of a perfusable LSOC platform for drug screening applications.
Collapse
Affiliation(s)
- Somnath Maji
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Minkyoung Lee
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jooyoung Lee
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jaehee Lee
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyungseok Lee
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
18
|
Zhang K, Liu Y, Shi X, Zhang R, He Y, Zhang H, Wang W. Application of polyvinyl alcohol/chitosan copolymer hydrogels in biomedicine: A review. Int J Biol Macromol 2023:125192. [PMID: 37276897 DOI: 10.1016/j.ijbiomac.2023.125192] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/20/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Hydrogels is a hydrophilic, cross-linked polymer of three-dimensional network structures. The application of hydrogels prepared from a single polymer in the biomedical field has many drawbacks. The functional blend of polyvinyl alcohol and chitosan allows hydrogels to have better and more desirable properties than those produced from a single polymer, which is a good biomaterial for development and design. In this paper, we have reviewed the progress in the application of polyvinyl alcohol/chitosan composite hydrogels in various medical fields, the different cross-linking agents and cross-linking methods, and the research progress in the optimization of composite hydrogels for their subsequent wide range of biomedical applications.
Collapse
Affiliation(s)
- Kui Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| | - Yan Liu
- Department of Gynecology, First Affiliated Hospital of Xi 'an Medical College, Xi'an 710000, China
| | - Xuewen Shi
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Ruihao Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Yixiang He
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Huaibin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Wenji Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
19
|
Mankotia P, Sharma K, Sharma V, Mishra YK, Kumar V. Curcumin-loaded Butea monosperma gum-based hydrogel: A new excipient for controlled drug delivery and anti-bacterial applications. Int J Biol Macromol 2023; 242:124703. [PMID: 37141967 DOI: 10.1016/j.ijbiomac.2023.124703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023]
Abstract
The wide spectrum of applications provided by curcumin has attracted researchers worldwide to identify its molecular targets and employ it in various biomedical applications. The present research work focuses on the development of a Butea monosperma gum-based hydrogel encapsulated with curcumin and further employing it for two diverse applications, i.e., drug delivery and anti-bacterial application. A central composite design was utilized for the optimization of significant process variables to achieve maximum swelling. A maximum of 662 % swelling was attained at the initiator (0.06 g), monomer (3 ml), crosslinker (0.08 g), solvent (14 ml), and time (60 s). Furthermore, the characterization of the synthesized hydrogel was performed via FTIR, SEM, TGA, H1-NMR, and XRD analysis. Various important properties like swelling rate under different solutions, water retention capacity, re-swelling capability, porosity, and density measurement suggested that the prepared hydrogel exhibited a highly stable crosslinked network with high porosity (0.23) and density (62.5 g/cm3) values. The encapsulation efficiency of curcumin in the hydrogel was reported to be 93 % and 87.3 %, respectively, wherein BM-g-poly(AA) ~ Cur exhibited excellent sustained pH-responsive site release of curcumin at two different pH values, with the maximum amount of release taking place at pH 7.4 (792 ppm) and a minimum at pH 5 (550 ppm) due to the lesser ionization of the functional groups present in the hydrogel at a lower pH value. Additionally, the results from the pH shock studies indicated our material to be stable and efficient even with fluctuations in pH, resulting in the optimal amount of drug release at each pH range. Furthermore, anti-bacterial studies revealed that the synthesized BM-g-poly(AA) ~ Cur was effective against both gram-negative and gram-positive bacteria, with maximum values of zones of inhibition of 16 mm in diameter, thereby showing the best results in comparison to the already developed matrices to date. As a result, the newly discovered BM-g-poly(AA) ~ Cur properties reflect the hydrogel network's suitability for drug release and anti-bacterial applications.
Collapse
Affiliation(s)
- Priyanka Mankotia
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh, India
| | - Kashma Sharma
- Department of Chemistry, DAV College, Sector-10, Chandigarh, India
| | - Vishal Sharma
- Institute of Forensic Science & Criminology, Panjab University, Chandigarh, India.
| | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg 6400, Denmark.
| | - Vijay Kumar
- Department of Physics, National Institute of Technology, Hazratbal-19006, Srinagar, J&K, India; Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9300, South Africa.
| |
Collapse
|
20
|
Kaur M, Sharma A, Puri V, Aggarwal G, Maman P, Huanbutta K, Nagpal M, Sangnim T. Chitosan-Based Polymer Blends for Drug Delivery Systems. Polymers (Basel) 2023; 15:polym15092028. [PMID: 37177176 PMCID: PMC10181148 DOI: 10.3390/polym15092028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Polymers have been widely used for the development of drug delivery systems accommodating the regulated release of therapeutic agents in consistent doses over a long period, cyclic dosing, and the adjustable release of both hydrophobic and hydrophilic drugs. Nowadays, polymer blends are increasingly employed in drug development as they generate more promising results when compared to those of homopolymers. This review article describes the recent research efforts focusing on the utilization of chitosan blends with other polymers in an attempt to enhance the properties of chitosan. Furthermore, the various applications of chitosan blends in drug delivery are thoroughly discussed herein. The literature from the past ten years was collected using various search engines such as ScienceDirect, J-Gate, Google Scholar, PubMed, and research data were compiled according to the various novel carrier systems. Nanocarriers made from chitosan and chitosan derivatives have a positive surface charge, which allows for control of the rate, duration, and location of drug release in the body, and can increase the safety and efficacy of the delivery system. Recently developed nanocarriers using chitosan blends have been shown to be cost-effective, more efficacious, and prolonged release carriers that can be incorporated into suitable dosage forms.
Collapse
Affiliation(s)
- Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Geeta Aggarwal
- Department of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | | | | | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
21
|
Sugumar V, Hayyan M, Madhavan P, Wong WF, Looi CY. Current Development of Chemical Penetration Enhancers for Transdermal Insulin Delivery. Biomedicines 2023; 11:biomedicines11030664. [PMID: 36979643 PMCID: PMC10044980 DOI: 10.3390/biomedicines11030664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
The use of the transdermal delivery system has recently gained ample recognition due to the ability to deliver drug molecules across the skin membrane, serving as an alternative to conventional oral or injectable routes. Subcutaneous insulin injection is the mainstay treatment for diabetes mellitus which often leads to non-compliance among patients, especially in younger patients. Apart from its invasiveness, the long-term consequences of insulin injection cause the development of physical trauma, which includes lipohypertrophy at the site of administration, scarring, infection, and sometimes nerve damage. Hence, there is a quest for a better alternative to drug delivery that is non-invasive and easily adaptable. One of the potential solutions is the transdermal delivery method. However, the stratum corneum (the top layer of skin) is the greatest barrier in transporting large molecules like insulin. Therefore, various chemical enhancers have been proposed to promote stratum corneum permeability, or they are designed to increase the permeability of the full epidermis, such as the use of ionic liquid, peptides, chemical pre-treatment as well as packaging insulin with carriers or nanoparticles. In this review, the recent progress in the development of chemical enhancers for transdermal insulin delivery is discussed along with the possible mechanistic of action and the potential outlook on the proposed permeation approaches in comparison to other therapeutical drugs
Collapse
Affiliation(s)
- Vaisnevee Sugumar
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Maan Hayyan
- Chemical Engineering Program, Faculty of Engineering & Technology, Muscat University, P.O. Box 550, Muscat P.C.130, Oman
- Correspondence: (M.H.); (W.F.W.); (C.Y.L.)
| | - Priya Madhavan
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University, 1, Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (M.H.); (W.F.W.); (C.Y.L.)
| | - Chung Yeng Looi
- Medical Advancement for Better Quality of Life Impact Lab, Taylor’s University, 1, Jalan Taylors, Subang Jaya 47500, Malaysia
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
- Correspondence: (M.H.); (W.F.W.); (C.Y.L.)
| |
Collapse
|
22
|
Zamora-Mendoza L, Vispo SN, De Lima L, Mora JR, Machado A, Alexis F. Hydrogel for the Controlled Delivery of Bioactive Components from Extracts of Eupatorium glutinosum Lam. Leaves. Molecules 2023; 28:molecules28041591. [PMID: 36838578 PMCID: PMC9960609 DOI: 10.3390/molecules28041591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
This research reported a hydrogel loaded with the ethanolic and methanolic extracts of Eupatorium glutinosum Lam. The E. glutinosum extracts were characterized by phytochemical screening, Fourier-transform infrared spectroscopy (FTIR), thin-layer chromatography (TLC), and UV/Vis profile identification. This research also evaluated the pharmacological activity of the extracts using antimicrobial, antioxidant, and anti-inflammatory assays prior to polymeric encapsulation. Results indicate that extracts inhibit the Escherichia colii DH5-α (Gram negative) growth; excellent antioxidant activity was evaluated by the ferric reducing power and total antioxidant activity assays, and extracts showed an anti-hemolytic effect. Moreover, the cotton and microcrystalline cellulose hydrogels demonstrate successful encapsulation based on characterization and kinetics studies such as FTIR, extract release, and swelling degree. Moreover, effective antibacterial activity was registered by the loaded hydrogel. The overall results encourage and show that Eupatorium glutinosum-loaded hydrogel may find a wide range of bandage and wound healing applications in the biomedical area.
Collapse
Affiliation(s)
- Lizbeth Zamora-Mendoza
- School of Biological Sciences & Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Santiago Nelson Vispo
- School of Biological Sciences & Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
- Correspondence: (S.N.V.); (F.A.)
| | - Lola De Lima
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - José R. Mora
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - António Machado
- Laboratorio de Bacteriología, Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Frank Alexis
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
- Correspondence: (S.N.V.); (F.A.)
| |
Collapse
|
23
|
Yari K, Gharati G, Akbari I. Evaluating effect of salt leaching method on release and swelling rate of metformin nanoparticles loaded-chitosan/polyvinyl alcohol porous composite. Int J Biol Macromol 2023; 227:1282-1292. [PMID: 36464193 DOI: 10.1016/j.ijbiomac.2022.11.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
In this study, salt leaching (SL) technique was used to prepare a chitosan/polyvinyl alcohol (CS/PVA) polymeric composite in order to load metformin nanoparticles (METNPs). Sodium chloride was added to the CS/PVA (0.5:0.1) composite to create a porous hydrogel using the SL technique. METNPs were then prepared by water/oil (w/o) method and loaded into the hydrogel structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed that >80 % of the METNPs were in the range of 10 nm. As a result, encapsulation increased due to the increase in surface-to-volume ratio. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) results confirmed that creating porosity in the polymer composition by the SL method led to increased CS/PVA polymer chain mobility. The drug encapsulation increased due to more porosity, and the release in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was according to the controlled diffusion kinetics. Furthermore, the drug release from CS/PVA composite was anomalous carrier type that could be attributed to the addition of salt. However, due to the increase the amount of PVA and the creation of a monotonous composite structure, encapsulation of drug decreased, which is in accordance with the polymer relaxation mechanism.
Collapse
Affiliation(s)
- Kasra Yari
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, 1477893855 Tehran, Iran
| | - Gelareh Gharati
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, 1477893855 Tehran, Iran
| | - Iman Akbari
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, 1477893855 Tehran, Iran.
| |
Collapse
|
24
|
Pandey S, Makhado E, Kim S, Kang M. Recent developments of polysaccharide based superabsorbent nanocomposite for organic dye contamination removal from wastewater - A review. ENVIRONMENTAL RESEARCH 2023; 217:114909. [PMID: 36455632 DOI: 10.1016/j.envres.2022.114909] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
One of the main problems with water pollution is dye contamination of rivers, industrial effluents, and water sources. It has endangered the world's sources of drinking water. Several remediation strategies have been carefully developed and tested to minimize this ominous picture. Due to their appealing practical and financial benefits, adsorption methods in particular are often listed as one of the most popular solutions to remediate dye-contaminated water. Biopolymer-based hydrogel nanocomposites are a cutting-edge class of materials with a wide range of applications that are effective in removing organic dyes from the environment. Since the incorporation of various materials into hydrogel matrices generated composite materials with distinct characteristics, these unique materials were often alluded to as ideal adsorbents. The fundamental emphasis of the conceptual and critical review of the literature in this research is the significant potential of hydrogel nanocomposites (HNCs) to remediate dye-contaminated water (especially for articles from the previous five years). The review also provides knowledge for the development of biopolymer-based HNCs, prospects, and opportunities for future research. It is also focused on optimum conditions for dye adsorption processes along with their adsorption kinetics and isotherm models. In summary, the information gained in this review research may contribute to a strengthened scientific rationale for the practical and efficient application of these novel adsorbent materials.
Collapse
Affiliation(s)
- Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Edwin Makhado
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Sovenga, 0727, Polokwane, South Africa
| | - Sujeong Kim
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
25
|
Ko HS, Kim A, Wie JH, Yang DH, Kim SH, Jeong GJ, Hyun H, Shin JC, Chun HJ. Visible light-curable methacrylated glycol chitosan hydrogel patches for prenatal closure of fetal myelomeningocele. Carbohydr Polym 2023; 311:120620. [PMID: 37028865 DOI: 10.1016/j.carbpol.2023.120620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
In this study, we prepared visible light-curable methacrylated glycol chitosan (MGC) hydrogel patches for the prenatal treatment of fetal myelomeningocele (MMC) and investigated their feasibility using a retinoic acid-induced fetal MMC rat model. 4, 5, and 6 w/v% of MGC were selected as candidate precursor solutions, and photo-cured for 20 s, because the resulting hydrogels were found to possess concentration dependent tunable mechanical properties and structural morphologies. Moreover, these materials exhibited no foreign body reactions with good adhesive properties in animal studies. The inflammation scoring assessment in vivo exhibited the absence of foreign body reactions in MGC hydrogel treated lesion. The complete epithelial coverage of MMC was made with using 6 w/v% MGC hydrogel followed by well-organized granulation along with noticeable decrease of abortion rate and wound size that highlight the therapeutic potential for the prenatal treatment of fetal MMC.
Collapse
|
26
|
França CG, Leme KC, Luzo ÂCM, Hernandez-Montelongo J, Santana MHA. Oxidized hyaluronic acid/adipic acid dihydrazide hydrogel as cell microcarriers for tissue regeneration applications. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Hyaluronic acid (HA) is a biopolymer present in various human tissues, whose degradation causes tissue damage and diseases. The oxidized hyaluronic acid/adipic acid dihydrazide (oxi-HA/ADH) hydrogels have attracted attention due to their advantages such as thermosensitivity, injectability, in situ gelation, and sterilization. However, studies are still scarce in the literature as microcarriers. In that sense, this work is a study of oxi-HA/ADH microparticles of 215.6 ± 2.7 µm obtained by high-speed shearing (18,000 rpm at pH 7) as cell microcarriers. Results showed that BALB/c 3T3 fibroblasts and adipose mesenchymal stem cells (h-AdMSC) cultured on the oxi-HA/ADH microcarriers presented a higher growth of both cells in comparison with the hydrogel. Moreover, the extrusion force of oxi-HA/ADH microparticles was reduced by 35% and 55% with the addition of 25% and 75% HA fluid, respectively, thus improving its injectability. These results showed that oxi-HA/ADH microcarriers can be a potential injectable biopolymer for tissue regeneration applications.
Collapse
Affiliation(s)
- Carla Giometti França
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas , 13083-852 , Campinas , SP , Brazil
| | - Krissia Caroline Leme
- Haematology & Hemotherapy Center, Umbilical Cord Blood Bank, University of Campinas , 13083-878 , Campinas , SP , Brazil
| | - Ângela Cristina Malheiros Luzo
- Haematology & Hemotherapy Center, Umbilical Cord Blood Bank, University of Campinas , 13083-878 , Campinas , SP , Brazil
| | | | - Maria Helena Andrade Santana
- Department of Materials and Bioprocess Engineering, School of Chemical Engineering, University of Campinas , 13083-852 , Campinas , SP , Brazil
| |
Collapse
|
27
|
Bozzer S, Dal Bo M, Grimaldi MC, Toffoli G, Macor P. Nanocarriers as a Delivery Platform for Anticancer Treatment: Biological Limits and Perspectives in B-Cell Malignancies. Pharmaceutics 2022; 14:1965. [PMID: 36145713 PMCID: PMC9502742 DOI: 10.3390/pharmaceutics14091965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Nanoparticle-based therapies have been proposed in oncology research using various delivery methods to increase selectivity toward tumor tissues. Enhanced drug delivery through nanoparticle-based therapies could improve anti-tumor efficacy and also prevent drug resistance. However, there are still problems to overcome, such as the main biological interactions of nanocarriers. Among the various nanostructures for drug delivery, drug delivery based on polymeric nanoparticles has numerous advantages for controlling the release of biological factors, such as the ability to add a selective targeting mechanism, controlled release, protection of administered drugs, and prolonging the circulation time in the body. In addition, the functionalization of nanoparticles helps to achieve the best possible outcome. One of the most promising applications for nanoparticle-based drug delivery is in the field of onco-hematology, where there are many already approved targeted therapies, such as immunotherapies with monoclonal antibodies targeting specific tumor-associated antigens; however, several patients have experienced relapsed or refractory disease. This review describes the major nanocarriers proposed as new treatments for hematologic cancer, describing the main biological interactions of these nanocarriers and the related limitations of their use as drug delivery strategies.
Collapse
Affiliation(s)
- Sara Bozzer
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | | | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
28
|
Jindal S, Awasthi R, Goyal K, Kulkarni GT. Hydrogels for localized drug delivery: A special emphasis on dermatologic applications. Dermatol Ther 2022; 35:e15830. [DOI: 10.1111/dth.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/06/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Shammy Jindal
- Laureate Institute of Pharmacy, Kathog Jawalamukhi Himachal Pradesh India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences School of Health Sciences & Technology, University of Petroleum and Energy Studies (UPES), Energy Acres, P.O. Bidholi, Via‐Prem Nagar Dehradun Uttarakhand India
| | - Kamya Goyal
- Laureate Institute of Pharmacy, Kathog Jawalamukhi Himachal Pradesh India
| | | |
Collapse
|
29
|
Li H, Wang J, Xu Q, Tian S, Yang W. Design and Evaluation of Glimepiride Hydrogel for Transdermal Delivery. Drug Dev Ind Pharm 2022; 48:397-405. [PMID: 36048002 DOI: 10.1080/03639045.2022.2120493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The solubility of glimepiride (GM) was improved from 1.6 μg/mL to 22.0 mg/mL when GM and meglumine (MU) complexes were prepared. Therefore, transdermal hydrogels of GM Carbopol (GM-CP) and GM hydroxypropyl methylcellulose pullulan (GM-HPMC-Pu) were prepared successfully utilizing the improved drug solubility by GM-MU. Based on single factor experiment and response surface methodology, two kinds of hydrogel formulations were optimized by drug release studies in vitro. The optimized GM-CP hydrogel was composed of GM, the mixture of azone and oleic acid (1:1, 2.6%, v/v) and carbopol 940 (1%, w/v). The GM-HPMC-Pu hydrogel was developed using GM, HPMC (3.5%, w/v), Pu (1.5%, w/v), glycerol (5%, v/v), azone (2.9%, v/v) and oleic acid (2.6%, v/v). The study of hydrogels in vivo was performed using rabbits. The results indicated that the drug could sustain release from GM-CP or GM-HPMC-Pu hydrogel and maintain the high plasma concentration for 48 h. Compared with commercial GM tablet, the relative bioavailability of GM-CP and GM-HPMC-Pu hydrogel reached up 48% and 133%, respectively. Moreover, the drug release in vitro could well predict its absorption in vivo. There was a good correlation (R2 ≥0.966) in GM hydrogel between the drug release in vitro and transdermal absorption in vivo. Therefore, a novel GM hydrogel dosage form may be considered to design.
Collapse
Affiliation(s)
- Haiying Li
- College of Pharmaceutical Sciences & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Jiajia Wang
- College of Pharmaceutical Sciences & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Qianru Xu
- College of Pharmaceutical Sciences & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Shuya Tian
- College of Pharmaceutical Sciences & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China
| | - Wenzhi Yang
- College of Pharmaceutical Sciences & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China
| |
Collapse
|
30
|
Preparation of a biomimetic bi-layer chitosan wound dressing composed of A-PRF/sponge layer and L-arginine/nanofiber. Carbohydr Polym 2022; 292:119648. [DOI: 10.1016/j.carbpol.2022.119648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/30/2022] [Accepted: 05/20/2022] [Indexed: 12/18/2022]
|
31
|
Bernal-Chávez SA, Alcalá-Alcalá S, Tapia-Guerrero YS, Magaña JJ, Del Prado-Audelo ML, Leyva-Gómez G. Cross-linked polyvinyl alcohol-xanthan gum hydrogel fabricated by freeze/thaw technique for potential application in soft tissue engineering. RSC Adv 2022; 12:21713-21724. [PMID: 36043115 PMCID: PMC9353671 DOI: 10.1039/d2ra02295h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
The search for materials and process parameters capable of generating hydrogels for soft tissue engineering applications, based on an experimental design strategy that allows the evaluation of several factors involved in their development and performance, has greatly increased. Nevertheless, the fabrication technique can influence their mechanical properties, swelling, crystallinity, and even their susceptibility to contamination by microorganisms, compromising their performance within the tissue or organ. This study aimed to evaluate the influence of the freeze/thaw technique on different characteristics of polyvinyl alcohol-xanthan gum hydrogel. Methods: this research analyzed the critical variables of the freeze/thaw process through a systematic study of a 2 k factorial design of experiments, such as the proportion and concentration of polymers, freezing time and temperature, and freeze/thaw cycles. Additionally, physicochemical analysis, susceptibility to bacterial growth, and cell viability tests were included to approximate its cytotoxicity. The optimized hydrogel consisted of polyvinyl alcohol and xanthan gum at a 95 : 5 ratio, polymer mixture concentration of 15%, and 12 h of freezing with three cycles of freeze/thaw. The hydrogel was crystalline, flexible, and resistant, with tensile strengths ranging from 9 to 87 kPa. The hydrogel was appropriate for developing scaffolds for soft tissue engineering such as the cardiac and skeletal muscle, dermis, thyroid, bladder, and spleen. Also, the hydrogel did not expose an in vitro cytotoxic effect, rendering it a candidate for biomedical applications.
Collapse
Affiliation(s)
- Sergio Alberto Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México Ciudad de México 04510 Mexico
| | - Sergio Alcalá-Alcalá
- Laboratorio de Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos Cuernavaca Morelos Mexico
| | - Y S Tapia-Guerrero
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII) Ciudad de México 14389 Mexico
| | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII) Ciudad de México 14389 Mexico
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México Ciudad de México 04510 Mexico
| |
Collapse
|
32
|
Durpekova S, Bergerova ED, Hanusova D, Dusankova M, Sedlarik V. Eco-friendly whey/polysaccharide-based hydrogel with poly(lactic acid) for improvement of agricultural soil quality and plant growth. Int J Biol Macromol 2022; 212:85-96. [PMID: 35561864 DOI: 10.1016/j.ijbiomac.2022.05.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022]
Abstract
A set of renewable and biodegradable hydrogels based on acid whey and cellulose derivatives blended with poly(lactic acid) (PLA) were designed as eco-friendly biopolymeric material for sustainable agricultural applications. The physico-chemical properties of the hydrogel were evaluated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and rheological measurements. The effect of the whey/polysaccharide/PLA hydrogel on soil quality improvement (water retention study, biodegradability, loading capacity and release of the fertilizers) and the growth pattern of Raphanus sativus and Phaseolus vulgaris has been also studied. The addition of PLA has been found to improve mechanical properties of the hydrogel. The introduction of 20% wt PLA extended decomposition time of hydrogels by 25% which makes the material more stable in the environment and maintaining the soil humidity for longer. The increasing the amount of PLA led to a rise in hydrogel viscosity brought about better entrapment efficiency of the fertilizers (86-92% for KNO3 and 87-96% for urea, resp.) compared to control (82% for KNO3 and 85% for urea, resp.). The novel hydrogels with swelling ratio of up to 500% showed potential as a sustainable water reservoir for plants improving water retention capacity of the soil by 30%.
Collapse
Affiliation(s)
- Silvie Durpekova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic.
| | - Eva Domincova Bergerova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Dominika Hanusova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Miroslava Dusankova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Vladimir Sedlarik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| |
Collapse
|
33
|
Ali F, Khan I, Chen J, Akhtar K, Bakhsh EM, Khan SB. Emerging Fabrication Strategies of Hydrogels and Its Applications. Gels 2022; 8:gels8040205. [PMID: 35448106 PMCID: PMC9024659 DOI: 10.3390/gels8040205] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Recently, hydrogels have been investigated for the controlled release of bioactive molecules, such as for living cell encapsulation and matrices. Due to their remote controllability and quick response, hydrogels are widely used for various applications, including drug delivery. The rate and extent to which the drugs reach their targets are highly dependent on the carriers used in drug delivery systems; therefore the demand for biodegradable and intelligent carriers is progressively increasing. The biodegradable nature of hydrogel has created much interest for its use in drug delivery systems. The first part of this review focuses on emerging fabrication strategies of hydrogel, including physical and chemical cross-linking, as well as radiation cross-linking. The second part describes the applications of hydrogels in various fields, including drug delivery systems. In the end, an overview of the application of hydrogels prepared from several natural polymers in drug delivery is presented.
Collapse
Affiliation(s)
- Fayaz Ali
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology Avenida Wai Long, Taipa, Macau 999078, China;
| | - Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, No. 1133 Xueyuan Zhong Jie, Putian 351100, China
- Correspondence: (J.C.); (S.B.K.)
| | - Kalsoom Akhtar
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Esraa M. Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (J.C.); (S.B.K.)
| |
Collapse
|
34
|
Tavakoli M, Mirhaj M, Labbaf S, Varshosaz J, Taymori S, Jafarpour F, Salehi S, Abadi SAM, Sepyani A. Fabrication and evaluation of Cs/PVP sponge containing platelet-rich fibrin as a wound healing accelerator: An in vitro and in vivo study. Int J Biol Macromol 2022; 204:245-257. [PMID: 35131230 DOI: 10.1016/j.ijbiomac.2022.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/05/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022]
Abstract
Despite significant advances in surgery and postoperative care, there are still challenges in the treatment of wounds. In the current study, a freeze-dried chitosan (Cs)/polyvinylpyrrolidone (PVP) sponges containing platelet-rich fibrin (PRF at 1, 1.5 and 2% w/v) for wound dressing application is fabricated and fully characterized. Addition of 1% w/v of PRF to Cs/PVP (CS/PVP/1PRF) sample significantly increased the tensile strength (from 0.147 ± 0.005 to 0.242 ± 0.001 MPa), elastic modulus (from 0.414 ± 0.014 to 0.611 ± 0.022 MPa) and strain at break (from 53.4 ± 0.9 to 61.83 ± 1.17%) compared to Cs sample, and was hence selected as the optimal sample. The antibacterial activity of Cs/PVP/1PRF sponge wound dressing against E. coli and S. aureus was confirmed to be effective. Enzyme-linked immunosorbent assays revealed that the release of both VEGF and PDGF-AB from PRF powder, as well as PDGF-AB from Cs/PVP/1PRF sample was time-independent, but the release of VEGF from Cs/PVP/1PRF sample increased significantly with time. According to MTT and CAM assays, the Cs/PVP/1PRF sample significantly increased proliferation and angiogenic potential, respectively. Furthermore, in vivo studies demonstrated a 97.16 ± 1.55% wound closure for Cs/PVP/1PRF group after 14 days.
Collapse
Affiliation(s)
- Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Iran.
| | - Somayeh Taymori
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Iran
| | - Franoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Saeedeh Salehi
- Department of Materials Engineering, Islamic Azad University, Najafabad, Iran
| | | | - Azadeh Sepyani
- Department of Tissue Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
35
|
Ansar R, Saqib S, Mukhtar A, Niazi MBK, Shahid M, Jahan Z, Kakar SJ, Uzair B, Mubashir M, Ullah S, Khoo KS, Lim HR, Show PL. Challenges and recent trends with the development of hydrogel fiber for biomedical applications. CHEMOSPHERE 2022; 287:131956. [PMID: 34523459 DOI: 10.1016/j.chemosphere.2021.131956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Hydrogel is the most emblematic soft material which possesses significantly tunable and programmable characteristics. Polymer hydrogels possess significant advantages including, biocompatible, simple, reliable and low cost. Therefore, research on the development of hydrogel for biomedical applications has been grown intensely. However, hydrogel development is challenging and required significant effort before the application at an industrial scale. Therefore, the current work focused on evaluating recent trends and issues with hydrogel development for biomedical applications. In addition, the hydrogel's development methodology, physicochemical properties, and biomedical applications are evaluated and benchmarked against the reported literature. Later, biomedical applications of the nano-cellulose-based hydrogel are considered and critically discussed. Based on a detailed review, it has been found that the surface energy, intermolecular interactions, and interactions of hydrogel adhesion forces are major challenges that contribute to the development of hydrogel. In addition, compared to other hydrogels, nanocellulose hydrogels demonstrated higher potential for drug delivery, 3D cell culture, diagnostics, tissue engineering, tissue therapies and gene therapies. Overall, nanocellulose hydrogel has the potential for commercialization for different biomedical applications.
Collapse
Affiliation(s)
- Reema Ansar
- Department of Chemical Engineering, University of Gujrat, 50700, Pakistan.
| | - Sidra Saqib
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 54000, Lahore, Pakistan.
| | - Ahmad Mukhtar
- Department of Chemical Engineering, NFC Institute of Engineering and Fertilizer Research, Jaranwala Road, 38000, Faisalabad, Pakistan.
| | - Muhammad Bilal Khan Niazi
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan.
| | - Zaib Jahan
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan.
| | - Salik Javed Kakar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Bushra Uzair
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan.
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia.
| | - Sami Ullah
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia.
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
36
|
Hybrid Beads of Zero Valent Iron Oxide Nanoparticles and Chitosan for Removal of Arsenic in Contaminated Water. WATER 2021. [DOI: 10.3390/w13202876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Water contaminated with highly hazardous metals including arsenic (As) is one of the major challenges faced by mankind in the present day. To address this pressing issue, hybrid beads were synthesized with various concentrations of zero valent iron oxide nanoparticles, i.e., 20% (FeCh-20), 40% (FeCh-40) and 60% (FeCh-60) impregnated into a polymer of chitosan. These hybrid beads were employed as an adsorbent under the optimized conditions of pH and time to facilitate the efficient removal of hazardous arsenic by adsorption cum reduction processes. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer- Emmett-Teller BET, a porosity test and wettability analysis were performed to characterize these hybrid beads. The porosity and contact angle of the prepared hybrid beads decreased with an increase in nanoparticle concentration. The effects of various adsorption factors such as adsorbent composition, contact period, pH value and the initial adsorbate concentration were also evaluated to study the performance of these beads for arsenic treatment in contaminated water. FeCh-20, FeCh-40 and FeCh-60 have demonstrated 63%, 81% and 70% removal of arsenic at optimized conditions of pH 7.4 in 10 h, respectively. Higher adsorption of arsenic by FeCh-40 is attributed to its optimal porosity, hydrophilicity and the presence of appropriate nanoparticle contents. The Langmuir adsorption kinetics described the pseudo second order. Thus, the novel beads of FeCh-40 developed in this work are a potent candidate for the treatment of polluted water contaminated with highly toxic arsenic metals.
Collapse
|
37
|
Rial-Hermida MI, Rey-Rico A, Blanco-Fernandez B, Carballo-Pedrares N, Byrne EM, Mano JF. Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules. ACS Biomater Sci Eng 2021; 7:4102-4127. [PMID: 34137581 PMCID: PMC8919265 DOI: 10.1021/acsbiomaterials.0c01784] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
A plethora of applications using polysaccharides have been developed in recent years due to their availability as well as their frequent nontoxicity and biodegradability. These polymers are usually obtained from renewable sources or are byproducts of industrial processes, thus, their use is collaborative in waste management and shows promise for an enhanced sustainable circular economy. Regarding the development of novel delivery systems for biotherapeutics, the potential of polysaccharides is attractive for the previously mentioned properties and also for the possibility of chemical modification of their structures, their ability to form matrixes of diverse architectures and mechanical properties, as well as for their ability to maintain bioactivity following incorporation of the biomolecules into the matrix. Biotherapeutics, such as proteins, growth factors, gene vectors, enzymes, hormones, DNA/RNA, and antibodies are currently in use as major therapeutics in a wide range of pathologies. In the present review, we summarize recent progress in the development of polysaccharide-based hydrogels of diverse nature, alone or in combination with other polymers or drug delivery systems, which have been implemented in the delivery of biotherapeutics in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- M. Isabel Rial-Hermida
- Department
of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| | - Ana Rey-Rico
- Cell
Therapy and Regenerative Medicine
Unit, Centro de Investigacións Científicas Avanzadas
(CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Barbara Blanco-Fernandez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology, 08028 Barcelona, Spain
- CIBER
en Bioingeniería, Biomateriales y
Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| | - Natalia Carballo-Pedrares
- Cell
Therapy and Regenerative Medicine
Unit, Centro de Investigacións Científicas Avanzadas
(CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Eimear M. Byrne
- Wellcome-Wolfson
Institute For Experimental Medicine, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - João F. Mano
- Department
of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| |
Collapse
|
38
|
Sha D, Zheng R, Wang B, Xu J, Shi K, Yang X, Ji X. Superhydrophilic polyvinyl alcohol-formaldehyde composite sponges with hierachical pore structure for oil/water emulsion separation. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Zahid AA, Augustine R, Dalvi YB, Reshma K, Ahmed R, Raza Ur Rehman S, Marei HE, Alfkey R, Hasan A. Development of nitric oxide releasing visible light crosslinked gelatin methacrylate hydrogel for rapid closure of diabetic wounds. Biomed Pharmacother 2021; 140:111747. [PMID: 34044276 DOI: 10.1016/j.biopha.2021.111747] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 01/04/2023] Open
Abstract
Management of non-healing and slow to heal diabetic wounds is a major concern in healthcare across the world. Numerous techniques have been investigated to solve the issue of delayed wound healing, though, mostly unable to promote complete healing of diabetic wounds due to the lack of proper cell proliferation, poor cell-cell communication, and higher chances of wound infections. These challenges can be minimized by using hydrogel based wound healing patches loaded with bioactive agents. Gelatin methacrylate (GelMA) has been proven to be a highly cell friendly, cell adhesive, and inexpensive biopolymer for various tissue engineering and wound healing applications. In this study, S-Nitroso-N-acetylpenicillamine (SNAP), a nitric oxide (NO) donor, was incorporated in a highly porous GelMA hydrogel patch to improve cell proliferation, facilitate rapid cell migration, and enhance diabetic wound healing. We adopted a visible light crosslinking method to fabricate this highly porous biodegradable but relatively stable patch. Developed patches were characterized for morphology, NO release, cell proliferation and migration, and diabetic wound healing in a rat model. The obtained results indicate that SNAP loaded visible light crosslinked GelMA hydrogel patches can be highly effective in promoting diabetic wound healing.
Collapse
Affiliation(s)
- Alap Ali Zahid
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, Doha 2713, Qatar
| | - Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, Doha 2713, Qatar
| | - Yogesh B Dalvi
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences & Research, Tiruvalla 689101, Kerala, India
| | - K Reshma
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences & Research, Tiruvalla 689101, Kerala, India; Department of Biotechnology St. Peter's College Kolenchery, Ernakulam 682311, Kerala, India
| | - Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, Doha 2713, Qatar
| | - Syed Raza Ur Rehman
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, Doha 2713, Qatar
| | - Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, Doha 2713, Qatar.
| |
Collapse
|
40
|
Song P, Song N, Li L, Wu M, Lu Z, Zhao X. Angiopep-2-Modified Carboxymethyl Chitosan-Based pH/Reduction Dual-Stimuli-Responsive Nanogels for Enhanced Targeting Glioblastoma. Biomacromolecules 2021; 22:2921-2934. [PMID: 34180218 DOI: 10.1021/acs.biomac.1c00314] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glioblastoma (GBM) is a fatal brain tumor with poor prognosis. Blood-brain barrier (BBB) prevents the effective delivery of chemotherapeutic agents to GBM. Herein, we developed a pH/reduction-sensitive carboxymethyl chitosan nanogel (CMCSN) modified by targeting peptide angiopep-2 (ANG) and loaded with doxorubicin (DOX). The multifunctional nanogel (DOX-ANG-CMCSN) exhibited good pH and reduction sensitivity, ideal stability, and biocompatibility. Its hydrodynamic diameter was 190 nm, drug loading was 12.7%, and the cumulative release rate of 24 h was 82.3% under the simulated tumor microenvironment. More importantly, the modification of ANG significantly enhanced BBB penetration and tumor targeting ability both in vivo and in vitro. DOX-ANG-CMCSN achieved 2-3-fold higher uptake and an enhanced antitumor activity compared with nontargeted DOX-CMCSN. Therefore, the targeted nanogels with the pH/reduction dual-stimuli response may provide a promising platform for GBM-targeted chemotherapy.
Collapse
Affiliation(s)
- Panpan Song
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Nannan Song
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Li Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Minghao Wu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhongxia Lu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| |
Collapse
|
41
|
Mandal S, Dasmahapatra AK. Effect of aging on the microstructure and physical properties of Poly(vinyl alcohol) hydrogel. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02624-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Preparation of polyvinyl alcohol hydrogel containing bacteriophage and its evaluation for potential use in the healing of skin wounds. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Chopra H, Singh I, Kumar S, Bhattacharya T, Rahman MH, Akter R, Kabir MT. Comprehensive Review on Hydrogels. Curr Drug Deliv 2021; 19:658-675. [PMID: 34077344 DOI: 10.2174/1567201818666210601155558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
The conventional drug delivery systems have a long list of issues of repeated dosing and toxicity arising due to it. The hydrogels are the answer to them and offer a result that minimizes such activities and optimizes therapeutic benefits. The hydrogels proffer tunable properties that can withstand degradation, metabolism, and controlled release moieties. Some of the areas of applications of hydrogels involve wound healing, ocular systems, vaginal gels, scaffolds for tissue, bone engineering, etc. They consist of about 90% of the water that makes them suitable bio-mimic moiety. Here, we present a birds-eye view of various perspectives of hydrogels, along with their applications.
Collapse
Affiliation(s)
- Hitesh Chopra
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Rajpura-140401, Patiala, Punjab, India
| | - Inderbir Singh
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Rajpura-140401, Patiala, Punjab, India
| | - Sandeep Kumar
- Department of Pharmaceutics, ASBASJSM College of Pharmacy, Bela-140111, Ropar, Punjab, India
| | | | - Md Habibur Rahman
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100. Bangladesh
| | - Rokeya Akter
- Department of Pharmacy, Southeast University, Banani, Dhaka-1213. Bangladesh
| | - Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212. Bangladesh
| |
Collapse
|
44
|
Zhang L, Yu D, Regenstein JM, Xia W, Dong J. A comprehensive review on natural bioactive films with controlled release characteristics and their applications in foods and pharmaceuticals. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Wang Z, Gao S, Zhang W, Gong H, Xu K, Luo C, Zhi W, Chen X, Li J, Weng J. Polyvinyl alcohol/chitosan composite hydrogels with sustained release of traditional Tibetan medicine for promoting chronic diabetic wound healing. Biomater Sci 2021; 9:3821-3829. [PMID: 33881045 DOI: 10.1039/d1bm00346a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Tibetan eighteen flavor dangshen pills (TEP) are composed of 18 traditional Tibetan medicines, which are commonly used in the treatment of skin diseases in the Tibetan medical system. They have anti-inflammatory and analgesic effects, and healing properties. However, TEP contain large doses and have strong side effects and low bioavailability. To improve the utilization rate of TEP in skin treatment, we prepared TEP powder and then introduced it into polyvinyl alcohol/chitosan (PVA/CS) hydrogels to treat diabetic wounds by slowly releasing the active ingredients of TEP. In vitro studies showed that TEP-loaded hydrogels can effectively and continuously release the active ingredients of TEP and have antibacterial and antioxidant properties. In addition, the hydrogel system was not cytotoxic to L929 cells, and significantly promoted the proliferation of HUVECs. Moreover, when the TEP-loaded hydrogel was applied to diabetic wounds in rats, it reduced the inflammatory response and improved collagen deposition, which in turn promoted skin healing. Our results indicate that TEP-loaded hydrogels may be a new formulation for the application of traditional Tibetan medicines for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Zuxin Wang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Shan Gao
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Wanlin Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Hanwen Gong
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Kai Xu
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Chao Luo
- College of Medicine, Tibet Universtiy, Tibet, 850000, China
| | - Wei Zhi
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xingyu Chen
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jie Weng
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China. and Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
46
|
Pirahmadi P, Kokabi M, Alamdarnejad G. Polyvinyl alcohol/chitosan/carbon nanotubes electroactive shape memory nanocomposite hydrogels. J Appl Polym Sci 2021. [DOI: 10.1002/app.49995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Pegah Pirahmadi
- Department of Polymer Engineering, Faculty of Chemical Engineering Tarbiat Modares University Tehran Islamic Republic of Iran
| | - Mehrdad Kokabi
- Department of Polymer Engineering, Faculty of Chemical Engineering Tarbiat Modares University Tehran Islamic Republic of Iran
| | - Ghazaleh Alamdarnejad
- Department of Polymer Engineering, Faculty of Chemical Engineering Tarbiat Modares University Tehran Islamic Republic of Iran
| |
Collapse
|
47
|
Amiri M, Khazaeli P, Salehabadi A, Salavati-Niasari M. Hydrogel beads-based nanocomposites in novel drug delivery platforms: Recent trends and developments. Adv Colloid Interface Sci 2021; 288:102316. [PMID: 33387892 DOI: 10.1016/j.cis.2020.102316] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
The present article evaluates the composition and synthesis of hydrogel beads. Hydrogels, owing to their known biocompatibility, are widely used in drug delivery as a host (or drug carrier). Hydrogels, owing to their physical, chemical and biological properties, are popular in many aspects. Hydrogels are crosslinked-hydrophilic polymers and commercialized/synthesized in both natural and synthetic forms. These polymers are compatible with human tissues, therefore can be potentially used for biomedical treatments. Hydrogels in drug delivery offer several points of interest such as sustainability, and sensitivity without any side-effects as compared to traditional methods in this field. Drugs can encapsulate and release continuously into the targets when hydrogels are activated/modified magnetically or by fluorescent materials. It is crucial to develop new crosslinked polymers in terms of "biocompatibility" and "biodegradability" for novel drug delivery platforms. In the event that the accomplishments of the past can be used into the longer terms, it is exceedingly likely that hydrogels with a wide cluster of alluring properties can be synthesized. The current review, offers an updated summary of latest developments in the nanomedicines field as well as nanobased drug delivery systems over broad study of the discovery/ application of nanomaterials in improving both the efficacy of drugs and targeted delivery of them. The challenges/opportunities of nanomedicine in drug delivery also discussed. SCOPE OF THE RESEARCH: Although several reviews have been published in the field of hydrogels, however many of them have just centralized on the general overviews in terms of "synthesis" and "properties". The utilization of hydrogels and hydrogel-based composites in vital applications have been achieved a great interest. In this review, our aim is to recap of the key points in the field of hydrogels such as; a) hydrogel nanocomposites, b) magnetic beads, c) biomedical applications, and d) drug delivery. In the same vein, these outlines will be expanded with emphasizing on the boon of magnetic beads and recent developments in this area.
Collapse
|
48
|
Khan BA, Khan A, Khan MK, Braga VA. Preparation and properties of High sheared Poly(Vinyl Alcohol)/Chitosan blended Hydrogels films with Lawsonia inermis extract as wound dressing. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Affiliation(s)
- Xianlei Li
- Department of Biomedical Engineering National University of Singapore 117583 Singapore
| | - Yufeng Shou
- Department of Biomedical Engineering National University of Singapore 117583 Singapore
| | - Andy Tay
- Department of Biomedical Engineering National University of Singapore 117583 Singapore
- Institute for Health Innovation and Technology National University of Singapore 117599 Singapore
| |
Collapse
|
50
|
Gul K, Gan RY, Sun CX, Jiao G, Wu DT, Li HB, Kenaan A, Corke H, Fang YP. Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels. Crit Rev Food Sci Nutr 2021; 62:3817-3832. [PMID: 33406881 DOI: 10.1080/10408398.2020.1870034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels, polymeric network materials, are capable of swelling and holding the bulk of water in their three-dimensional structures upon swelling. In recent years, hydrogels have witnessed increased attention in food and biomedical applications. In this paper, the available literature related to the design concepts, types, functionalities, and applications of hydrogels with special emphasis on food applications was reviewed. Hydrogels from natural polymers are preferred over synthetic hydrogels. They are predominantly used in diverse food applications for example in encapsulation, drug delivery, packaging, and more recently for the fabrication of structured foods. Natural polymeric hydrogels offer immense benefits due to their extraordinary biocompatible nature. Hydrogels based on natural/edible polymers, for example, those from polysaccharides and proteins, can serve as prospective alternatives to synthetic polymer-based hydrogels. The utilization of hydrogels has so far been limited, despite their prospects to address various issues in the food industries. More research is needed to develop biomimetic hydrogels, which can imitate the biological characteristics in addition to the physicochemical properties of natural materials for different food applications.
Collapse
Affiliation(s)
- Khalid Gul
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Cui-Xia Sun
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ge Jiao
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an, China Sichuan
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ahmad Kenaan
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, China.,Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ya-Peng Fang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|