1
|
Donarska B, Sławińska-Brych A, Mizerska-Kowalska M, Zdzisińska B, Płaziński W, Łączkowski KZ. Thalidomide derivatives as nanomolar human neutrophil elastase inhibitors: Rational design, synthesis, antiproliferative activity and mechanism of action. Bioorg Chem 2023; 138:106608. [PMID: 37207596 DOI: 10.1016/j.bioorg.2023.106608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Here, we rationally designed a human neutrophil elastase (HNE) inhibitors 4a-4f derived from thalidomide. The HNE inhibition assay showed that synthesized compounds 4a, 4b, 4e and 4f demonstrated strong HNE inhibiton properties with IC50 values of 21.78-42.30 nM. Compounds 4a, 4c, 4d and 4f showed a competitive mode of action. The most potent compound 4f shows almost the same HNE inhibition as sivelestat. The molecular docking analysis revealed that the strongest interactions occur between the azetidine-2,4-dione group and the following three aminoacids: Ser195, Arg217 and His57. A high correlation between the binding energies and the experimentally determined IC50 values was also demonstrated. The study of antiproliferative activity against human T47D (breast carcinoma), RPMI 8226 (multiple myeloma), and A549 (non-small-cell lung carcinoma) revealed that designed compounds were more active compared to thalidomide, pomalidomide and lenalidomide used as the standard drugs. Additionally, the most active compound 4f derived from lenalidomide induces cell cycle arrest at the G2/M phase and apoptosis in T47D cells.
Collapse
Affiliation(s)
- Beata Donarska
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland.
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland
| | - Magdalena Mizerska-Kowalska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland
| | - Barbara Zdzisińska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Cracow, Poland; Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland
| | - Krzysztof Z Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
2
|
Rayasam A, Jullienne A, Chumak T, Faustino J, Szu J, Hamer M, Ek CJ, Mallard C, Obenaus A, Vexler ZS. Viral mimetic triggers cerebral arteriopathy in juvenile brain via neutrophil elastase and NETosis. J Cereb Blood Flow Metab 2021; 41:3171-3186. [PMID: 34293939 PMCID: PMC8669290 DOI: 10.1177/0271678x211032737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stroke is among the top ten causes of death in children but has received disproportionally little attention. Cerebral arteriopathies account for up to 80% of childhood arterial ischemic stroke (CAIS) cases and are strongly predictive of CAIS recurrence and poorer outcomes. The underlying mechanisms of sensitization of neurovasculature by viral infection are undefined. In the first age-appropriate model for childhood arteriopathy-by administration of viral mimetic TLR3-agonist Polyinosinic:polycytidylic acid (Poly-IC) in juvenile mice-we identified a key role of the TLR3-neutrophil axis in disrupting the structural-functional integrity of the blood-brain barrier (BBB) and distorting the developing neurovascular architecture and vascular networks. First, using an array of in-vivo/post-vivo vascular imaging, genetic, enzymatic and pharmacological approaches, we report marked Poly-IC-mediated extravascular leakage of albumin (66kDa) and of a small molecule DiI (∼934Da) and disrupted tight junctions. Poly-IC also enhanced the neuroinflammatory milieu, promoted neutrophil recruitment, profoundly upregulated neutrophil elastase (NE), and induced neutrophil extracellular trap formation (NETosis). Finally, we show that functional BBB disturbances, NETosis and neuroinflammation are markedly attenuated by pharmacological inhibition of NE (Sivelestat). Altogether, these data reveal NE/NETosis as a novel therapeutic target for viral-induced cerebral arteriopathies in children.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Neurology, University California San Francisco, San Francisco, CA, USA
| | - Amandine Jullienne
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Tetyana Chumak
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joel Faustino
- Department of Neurology, University California San Francisco, San Francisco, CA, USA
| | - Jenny Szu
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Mary Hamer
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - C Joakim Ek
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andre Obenaus
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Zinaida S Vexler
- Department of Neurology, University California San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Viglio S, Bak EG, Schouten IGM, Iadarola P, Stolk J. Protease-Specific Biomarkers to Analyse Protease Inhibitors for Emphysema Associated with Alpha 1-Antitrypsin Deficiency. An Overview of Current Approaches. Int J Mol Sci 2021; 22:ijms22031065. [PMID: 33494436 PMCID: PMC7865489 DOI: 10.3390/ijms22031065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
As a known genetic cause of chronic obstructive pulmonary disease (COPD), alpha1-antitrypsin deficiency (AATD) can cause severe respiratory problems at a relatively young age. These problems are caused by decreased or absent levels of alpha1-antitrypsin (AAT), an antiprotease which is primarily functional in the respiratory system. If the levels of AAT fall below the protective threshold of 11 µM, the neutrophil-derived serine proteases neutrophil elastase (NE) and proteinase 3 (PR3), which are targets of AAT, are not sufficiently inhibited, resulting in excessive degradation of the lung parenchyma, increased inflammation, and increased susceptibility to infections. Because other therapies are still in the early phases of development, the only therapy currently available for AATD is AAT augmentation therapy. The controversy surrounding AAT augmentation therapy concerns its efficiency, as protection of lung function decline is not demonstrated, despite the treatment's proven significant effect on lung density change in the long term. In this review article, novel biomarkers of NE and PR3 activity and their use to assess the efficacy of AAT augmentation therapy are discussed. Furthermore, a series of seven synthetic NE and PR3 inhibitors that can be used to evaluate the specificity of the novel biomarkers, and with potential as new drugs, are discussed.
Collapse
Affiliation(s)
- Simona Viglio
- Department of Molecular Medicine, University of Pavia, Via Taramelli 3, 27100 Pavia, Italy
- Correspondence:
| | - Elisabeth G. Bak
- Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333 Leiden, The Netherlands; (E.G.B.); (I.G.M.S.); (J.S.)
| | - Iris G. M. Schouten
- Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333 Leiden, The Netherlands; (E.G.B.); (I.G.M.S.); (J.S.)
| | - Paolo Iadarola
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, Via A. Ferrata 9, 27100 Pavia, Italy;
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333 Leiden, The Netherlands; (E.G.B.); (I.G.M.S.); (J.S.)
| |
Collapse
|
4
|
Crocetti L, Giovannoni MP, Cantini N, Guerrini G, Vergelli C, Schepetkin IA, Khlebnikov AI, Quinn MT. Novel Sulfonamide Analogs of Sivelestat as Potent Human Neutrophil Elastase Inhibitors. Front Chem 2020; 8:795. [PMID: 33033716 PMCID: PMC7491426 DOI: 10.3389/fchem.2020.00795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Human neutrophil elastase (HNE) is involved in a number of essential physiological processes and has been identified as a potential therapeutic target for treating acute and chronic lung injury. Nevertheless, only one drug, Sivelestat, has been approved for clinical use and just in Japan and the Republic of Korea. Thus, there is an urgent need for the development of low-molecular-weight synthetic HNE inhibitors, and we have developed a wide variety of HNE inhibitors with various chemical scaffolds. We hypothesized that substitution of the active fragment of Sivelestat into these HNE inhibitor scaffolds could modulate their inhibitory activity, potentially resulting in higher efficacy and/or improved chemical stability. Here, we report the synthesis, biological evaluation, and molecular modeling studies of novel compounds substituted with the 4-(sulfamoyl)phenyl pivalate fragment necessary for Sivelestat activity. Many of these compounds were potent HNE inhibitors with activity in the nanomolar range (IC50 = 19-30 nM for compounds 3a, 3b, 3f, 3g, and 9a), confirming that the 4-(sulfamoyl)phenyl pivalate fragment could substitute for the N-CO group at position 1 and offer a different point of attack for Ser195. Results of molecular docking of the these pivaloyl-containing compounds into the HNE binding site supported the mechanism of inhibitory activity involving a nucleophilic attack of Ser195 from the catalytic triad onto the pivaloyl carbonyl group. Furthermore, some compounds (e.g., 3a and 3f) had a relatively good stability in aqueous buffer (t1/2 > 9 h). Thus, this novel approach led to the identification of a number of potent HNE inhibitors that could be used as leads for the further development of new therapeutics.
Collapse
Affiliation(s)
- Letizia Crocetti
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Maria Paola Giovannoni
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Niccolò Cantini
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Gabriella Guerrini
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Claudia Vergelli
- Neurofarba, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Igor A. Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | | | - Mark T. Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
5
|
Huang GL, Liu B, Tian XJ, Chen YG. Synthesis and evaluation of inhibitory activity in vitro of dihydrostilbenes against human neutrophil elastases. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:353-358. [PMID: 30835549 DOI: 10.1080/10286020.2019.1571489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Twelve dihydrostilbenes (including five new analogues) were prepared by the Witting-Hornor reaction from appropriate aromatic aldehydes and phosphonate esters, followed by hydrogenation in five steps. The in vitro inhibition activity against human neutrophil elastase (HNE) of these dihydrostilbenes was evaluated, and three 1,2-dihydroxylated dihydrostilbenes (6b, 6j, and 6l) exhibited stronger inhibitory activity against HNE than other analogues.
Collapse
Affiliation(s)
- Guo-Li Huang
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650050, China
| | - Bo Liu
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650050, China
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xing-Jun Tian
- School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ye-Gao Chen
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650050, China
| |
Collapse
|
6
|
Tao Z, Jin W, Ao M, Zhai S, Xu H, Yu L. Evaluation of the anti-inflammatory properties of the active constituents in Ginkgo biloba for the treatment of pulmonary diseases. Food Funct 2019; 10:2209-2220. [PMID: 30945705 DOI: 10.1039/c8fo02506a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ginkgo biloba has long been used in ancient China for the treatment of cough, asthma, and other lung diseases. However, the active constituents in G. biloba for pulmonary disease treatment remain unclear. The objective of this study was to evaluate the anti-inflammatory active constituents in G. biloba and clarify their associated molecular mechanisms. The biological effects of different G. biloba extracts were evaluated in an ovalbumin-induced allergic mouse model. Anti-inflammatory compounds were present in the ethyl acetate phase of the extract, which were analysed by HPLC-MS. Biflavones were identified as the main compounds, which were further evaluated by docking calculations. Leukocyte elastase showed a high fit score with ginkgetin, one of the identified biflavones. The lowest binding free energy was -6.69 kcal mol-1. The effects of biflavones were investigated in vivo and in vitro. Ginkgetin markedly suppressed the abnormal expression of the Akt and p38 pathways in human neutrophil elastase (HNE)-stimulated A549 cells. Biflavones also decreased MUC5AC mRNA expression in HNE-stimulated A549 cells and the allergic mouse model. Inflammatory cells (neutrophils) and cytokines (IL-8) also decreased in mice treated with biflavones. The results suggest that G. biloba biflavones could inhibit the activity of leukocyte elastase. This in turn implicates G. biloba as a functional food for the treatment of airway inflammation.
Collapse
Affiliation(s)
- Zhu Tao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | |
Collapse
|
7
|
Yao W, Chen J, Wu S, Han X, Guan J, Yuan D, Cai J, Hei Z. ONO-5046 suppresses reactive oxidative species-associated formation of neutrophil extracellular traps. Life Sci 2018; 210:243-250. [DOI: 10.1016/j.lfs.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 12/27/2022]
|
8
|
Ozawa T, Mihara K, Yasuno N. Predictors of the therapeutic effect of sivelestat in patients with acute lung injury associated with systemic inflammatory response syndrome. J Pharm Health Care Sci 2016; 2:19. [PMID: 27559479 PMCID: PMC4995800 DOI: 10.1186/s40780-016-0051-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/01/2016] [Indexed: 11/10/2022] Open
Abstract
Background Sivelestat, a neutrophil elastase inhibitor, was previously approved in Japan for the treatment of acute lung injury associated with systemic inflammatory response syndrome. However, sivelestat produced inconsistent therapeutic benefits. This study aimed to identify factors predicting the therapeutic effects of sivelestat. Methods We enrolled 53 mechanically ventilated patients who received sivelestat. The patients were classified as effective (n = 28) if they were weaned from the ventilator within 28 days, or as ineffective groups (n = 25). Patient characteristics were compared between these groups and multivariate logistic regression analysis was used to identify predictive factors. A validation study was then conducted in sivelestat-free patients. Results A high red blood cell count and low hydrogen ion concentration were significantly associated with a higher ventilator weaning rate in patients receiving sivelestat. The validation study revealed that the hydrogen ion concentration value also significantly associated with ventilator weaning in patients who did not receive sivelestat. Conclusions Although hydrogen ion concentration was inversely associated with the ventilator weaning rate, it did not predict sivelestat efficacy. This study indicated that acute lung injury patients with a high red blood cell count would derive the most benefit from sivelestat administration.
Collapse
Affiliation(s)
- Takuma Ozawa
- Department of Pharmacy, Kan-etsu Hospital, 145-1 Suneori, Tsuruashima-shi, Saitama, 350-2213 Japan
| | - Kiyoshi Mihara
- Research Center for Clinical Pharmacy, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Nobuhiro Yasuno
- Department of Pharmacy, Kan-etsu Hospital, 145-1 Suneori, Tsuruashima-shi, Saitama, 350-2213 Japan
| |
Collapse
|
9
|
Local inhibition of elastase reduces EMILIN1 cleavage reactivating lymphatic vessel function in a mouse lymphoedema model. Clin Sci (Lond) 2016; 130:1221-36. [PMID: 26920215 PMCID: PMC4888021 DOI: 10.1042/cs20160064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/26/2016] [Indexed: 01/03/2023]
Abstract
Lymphatic vasculature critically depends on the connections of lymphatic endothelial cells with the extracellular matrix (ECM), which are mediated by anchoring filaments (AFs). The ECM protein EMILIN1 is a component of AFs and is involved in the regulation of lymphatic vessel functions: accordingly, Emilin1−/− mice display lymphatic vascular morphological alterations, leading to functional defects such as mild lymphoedema, lymph leakage and compromised lymph drainage. In the present study, using a mouse post-surgical tail lymphoedema model, we show that the acute phase of acquired lymphoedema correlates with EMILIN1 degradation due to neutrophil elastase (NE) released by infiltrating neutrophils. As a consequence, the intercellular junctions of lymphatic endothelial cells are weakened and drainage to regional lymph nodes is severely affected. The local administration of sivelestat, a specific NE inhibitor, prevents EMILIN1 degradation and reduces lymphoedema, restoring a normal lymphatic functionality. The finding that, in human secondary lymphoedema samples, we also detected cleaved EMILIN1 with the typical bands of an NE-dependent pattern of fragmentation establishes a rationale for a powerful strategy that targets NE inhibition. In conclusion, the attempts to block EMILIN1 degradation locally represent the basis for a novel ‘ECM’ pharmacological approach to assessing new lymphoedema treatments.
Collapse
|
10
|
Nayak RC, Trump LR, Aronow BJ, Myers K, Mehta P, Kalfa T, Wellendorf AM, Valencia CA, Paddison PJ, Horwitz MS, Grimes HL, Lutzko C, Cancelas JA. Pathogenesis of ELANE-mutant severe neutropenia revealed by induced pluripotent stem cells. J Clin Invest 2015; 125:3103-16. [PMID: 26193632 DOI: 10.1172/jci80924] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/05/2015] [Indexed: 12/27/2022] Open
Abstract
Severe congenital neutropenia (SCN) is often associated with inherited heterozygous point mutations in ELANE, which encodes neutrophil elastase (NE). However, a lack of appropriate models to recapitulate SCN has substantially hampered the understanding of the genetic etiology and pathobiology of this disease. To this end, we generated both normal and SCN patient-derived induced pluripotent stem cells (iPSCs), and performed genome editing and differentiation protocols that recapitulate the major features of granulopoiesis. Pathogenesis of ELANE point mutations was the result of promyelocyte death and differentiation arrest, and was associated with NE mislocalization and activation of the unfolded protein response/ER stress (UPR/ER stress). Similarly, high-dose G-CSF (or downstream signaling through AKT/BCL2) rescues the dysgranulopoietic defect in SCN patient-derived iPSCs through C/EBPβ-dependent emergency granulopoiesis. In contrast, sivelestat, an NE-specific small-molecule inhibitor, corrected dysgranulopoiesis by restoring normal intracellular NE localization in primary granules; ameliorating UPR/ER stress; increasing expression of CEBPA, but not CEBPB; and promoting promyelocyte survival and differentiation. Together, these data suggest that SCN disease pathogenesis includes NE mislocalization, which in turn triggers dysfunctional survival signaling and UPR/ER stress. This paradigm has the potential to be clinically exploited to achieve therapeutic responses using lower doses of G-CSF combined with targeting to correct NE mislocalization.
Collapse
|
11
|
Hwang TL, Wang WH, Wang TY, Yu HP, Hsieh PW. Synthesis and pharmacological characterization of 2-aminobenzaldehyde oxime analogs as dual inhibitors of neutrophil elastase and proteinase 3. Bioorg Med Chem 2015; 23:1123-34. [DOI: 10.1016/j.bmc.2014.12.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022]
|
12
|
Huang G, Feng L, Liu B, He Y, Li Y, Chen Y. Synthesis and biological evaluation of nigranoic acid esters as novel human neutrophil elastase inhibitors. Nat Prod Res 2015; 29:1650-6. [DOI: 10.1080/14786419.2014.996149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
ZHANG TING, ZHOU XIANGDONG. Clinical application of expectorant therapy in chronic inflammatory airway diseases (Review). Exp Ther Med 2014; 7:763-767. [PMID: 24660026 PMCID: PMC3961124 DOI: 10.3892/etm.2014.1494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 01/14/2014] [Indexed: 12/27/2022] Open
Abstract
Airway mucus hypersecretion is a significant clinical and pathological feature of chronic inflammatory airway diseases. Its clinical presentations include recurrent coughing and phlegm. Airway mucus is closely associated with the occurrence, development and prognosis of chronic inflammatory airway diseases and critically affects the lung function, quality of life, hospitalization rate and mortality of patients with chronic inflammatory airway diseases. Therefore, expectorant therapies targeting the potential mechanisms of mucus hypersecretion have been the focus of numerous studies. Conventional expectorants are mainly mucoactive medicines, including nausea-stimulating expectorants, mucolytics, mucokinetics, and proteases and nucleases. In addition, certain traditional Chinese herbal medicines and non-mucoactive agents, including muscarinic acetylcholine receptor antagonists, corticosteroids, leukotriene receptor antagonists and macrolide antibiotics, have also shown expectorant effects. Several novel medicines for expectorant therapy have emerged, including cholesterol-lowering statins, epidermal growth factor receptor tyrosine kinase inhibitors, phosphodiesterase-4 inhibitors, stanozolol, surfactants, flavonoids, tachykinin receptor antagonists, protease inhibitors, cytokine antagonists and purinergic agonists. With the increasing number of multidisciplinary studies, the effectiveness of expectorant therapy for the treatment of chronic inflammatory airway diseases has been confirmed. Therefore, the development of novel expectorants and the standardization of expectorant therapy are the direction and focus of future studies, thus benefiting patients who have a chronic inflammatory airway disease.
Collapse
Affiliation(s)
- TING ZHANG
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - XIANGDONG ZHOU
- Department of Respiratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
14
|
Feng L, Liu X, Zhu W, Guo F, YingchunWu, Wang R, Chen K, Huang C, Li Y. Inhibition of human neutrophil elastase by pentacyclic triterpenes. PLoS One 2013; 8:e82794. [PMID: 24376583 PMCID: PMC3869726 DOI: 10.1371/journal.pone.0082794] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/29/2013] [Indexed: 12/31/2022] Open
Abstract
SCOPE Inhibiting human neutrophil elastase (HNE) is a promising strategy for treating inflammatory lung diseases, such as H1N1 and SARS virus infections. The use of sivelestat, the only clinically registered synthesized HNE inhibitor, is largely limited by its risk of organ toxicity because it irreversibly inhibits HNE. Therefore, potent reversible HNE inhibitors are promising alternatives to sivelestat. METHODS AND RESULTS An in vitro HNE inhibition assay was employed to screen a series of triterpenes. Six pentacyclic triterpenes, but not tetracyclic triterpenes, significantly inhibited HNE. Of these pentacyclic triterpenes, ursolic acid exhibited the highest inhibitory potency (IC50 = 5.51 µM). The HNE inhibitory activity of ursolic acid was further verified using a mouse model of acute smoke-induced lung inflammation. The results of nuclear magnetic resonance and HNE inhibition kinetic analysis showed that the pentacyclic triterpenes competitively and reversibly inhibited HNE. Molecular docking experiments indicated that the molecular scaffold, 28-COOH, and a double bond at an appropriate location in the pentacyclic triterpenes are important for their inhibitory activity. CONCLUSION Our results provide insights into the effects of pentacyclic triterpenes on lung inflammatory actions through reversible inhibition of HNE activity.
Collapse
Affiliation(s)
- Li Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyu Liu
- Department of Biological Chemistry, Second Military Medicinal University, Shanghai, China
| | - Weiliang Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YingchunWu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|