1
|
Kumar S, Møller AH, Ilmjärv T, Dalsgaard TK. Stability of R-phycoerythrin from Furcellaria lumbricalis - Dependence on purification strategies and purity. Food Res Int 2024; 190:114595. [PMID: 38945610 DOI: 10.1016/j.foodres.2024.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 07/02/2024]
Abstract
R-phycoerythrin (R-PE) is the most abundant, naturally occurring phycobiliproteins found in red algae. The spectroscopic and structural properties of phycobiliproteins exhibit unique absorption characteristics with two significant absorption maxima at 498 and 565 nm, indicating two different chromophores of R-PE, phycourobilin and phycoerythrobilin respectively. This study aimed to clarify how the stability of R-PE purified from F. lumbricalis was affected by different purification strategies. Crude extracts were compared to R-PE purified by i) microfiltration, ii) ultrafiltration, and iii) multi-step ammonium sulphate precipitation followed by dialysis. The stability of the different R-PE preparations was evaluated with respect to pH (2, 4, 6, 7, 8, 10 and 12) and temperature (20, 40, 60, 80 and 100 °C). The absorbance spectra indicated higher stability of phycourobilin as compared to phycoerythrobilin for heat and pH stability in the samples. All preparations of R-PE showed heat stability till 40 °C from the findings of color, concentration of R-PE and fluorescence emission. The crude extract showed stability from pH 6 to 8, whereas R-PE purified by ultrafiltration and multi-step ammonium sulphate precipitation were both stable from pH 4 to 8 and R-PE purified by microfiltration exhibited stability from pH 4 to 10 from the results of color, SDS-PAGE, and concentration of R-PE. At pH 2, the color changed to violet whereas a yellow color was observed at pH 12 in the samples along with the precipitation of the protein.
Collapse
Affiliation(s)
- Sruthi Kumar
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CBIO, Aarhus University Centre for Circular Bioeconomy, 8830 Tjele, Denmark.
| | - Anders Hauer Møller
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CBIO, Aarhus University Centre for Circular Bioeconomy, 8830 Tjele, Denmark; CiFOOD, Aarhus University Centre for Innovative Food Research, 8000 Aarhus C, Denmark.
| | - Tanel Ilmjärv
- Vetik OÜ, Lahe Farm, Muratsi Village, Saaremaa Parish, 93859 Saare County, Estonia.
| | - Trine K Dalsgaard
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark; CBIO, Aarhus University Centre for Circular Bioeconomy, 8830 Tjele, Denmark; CiFOOD, Aarhus University Centre for Innovative Food Research, 8000 Aarhus C, Denmark.
| |
Collapse
|
2
|
Lee H, Han T, Park J. Purified Pyropia yezoensis Pigment Extract-Based Tandem Dye Synthesis. Mar Drugs 2024; 22:197. [PMID: 38786588 PMCID: PMC11122725 DOI: 10.3390/md22050197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Red phycoerythrin (R-PE) is a highly valuable protein found in an edible seaweed, Pyropia yezoensis. It is used extensively in biotechnological applications due to its strong fluorescence and stability in diverse environments. However, the current methods for extracting and purifying R-PE are costly and unsustainable. The aim of the present study was to enhance the financial viability of the process by improving the extraction and purification of R-PE from dried P. yezoensis and to further enhance R-PE value by incorporating it into a tandem dye for molecular biology applications. A combination of ultrafiltration, ion exchange chromatography, and gel filtration yielded concentrated (1 mg·mL-1) R-PE at 99% purity. Using purified PE and Cyanine5 (Cy5), an organic tandem dye, phycoerythrin-Cy5 (PE-Cy5), was subsequently established. In comparison to a commercially available tandem dye, PE-Cy5 exhibited 202.3% stronger fluorescence, rendering it suitable for imaging and analyzes that require high sensitivity, enhanced signal-to-noise ratio, broad dynamic range, or shorter exposure times to minimize potential damage to samples. The techno-economic analysis confirmed the financial feasibility of the innovative technique for the extraction and purification of R-PE and PE-Cy5 production.
Collapse
Affiliation(s)
- Hojun Lee
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| | - Taejun Han
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Ghent, Belgium
| | - Jihae Park
- Bio Environmental Science and Technology (BEST) Lab, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653-Block F, B-9000 Ghent, Belgium
- Centre for Environmental and Energy Research, Ghent University Global Campus, 119-5, Songdomunhwa-ro, Incheon 21985, Republic of Korea
| |
Collapse
|
3
|
Bekasova O. Properties and potential applications of bioconjugates of R-phycoerythrin with Ag° or CdS nanoparticle synthesized in its tunnel cavity: A review. Int J Biol Macromol 2024; 255:128181. [PMID: 37977463 DOI: 10.1016/j.ijbiomac.2023.128181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Green synthesis is a promising method for the preparation of nanoparticles (NPs) due to its simplicity, low cost, low toxicity, and environmental friendliness. Biosynthesized NPs exhibit multifunctional activity, good biocompatibility, and higher anticancer and antibacterial activity compared to chemically synthesized NPs. R-phycoerythrin, a photosynthetic light-harvesting pigment of protein nature (M.w. 290 kDa), is an attractive platform for the synthesis of small sizes NPs due to its structural features, non-toxicity, water solubility. Photosensitive bioconjugates of R-phycoerythrin with NPs were prepared by synthesizing Ag° and CdS NPs in tunnel cavities of R-phycoerythrin (3.5 × 6.0 nm) isolated from the red seaweed Callithamnion rubosum. The review is devoted to the physical processes and chemical reactions that occur in the native protein macromolecule of a complex structure during the synthesis of a NP in its cavity. The influence of Ago and CdS NPs on the electronic processes caused by the absorption of photons, leading to reversible and irreversible changes in R-phycoerythrin has been analyzed. Properties of R-phycoerythrin bioconjugates Ag° and CdS with NPs combined with the literature data suggest potential applications of Ag°⋅PE and CdS⋅PE bioconjugates for cancer diagnosis, treatment, and monitoring as well as for realizing theranostic strategy in the future. The use of these bioconjugates in anticancer therapy may have synergistic effects since both R-phycoerythrin and NPs induce cancer cell death.
Collapse
Affiliation(s)
- Olga Bekasova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninskiy pr. 33, Moscow 119071, Russian Federation.
| |
Collapse
|
4
|
Ji L, Qiu S, Wang Z, Zhao C, Tang B, Gao Z, Fan J. Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. Food Res Int 2023; 167:112737. [PMID: 37087221 DOI: 10.1016/j.foodres.2023.112737] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Phycobiliproteins are light-harvesting complexes found mainly in cyanobacteria and red algae, playing a key role in photosynthesis. They are extensively applied in food, cosmetics, and biomedical industry due to bright color, unique fluorescence characteristics and diverse physiological activities. They have received much attention in the past few decades because of their green and sustainable production, safe application, and functional diversity. This work aimed to provide a comprehensive summary of parameters affecting the whole bioprocess with a special focus on the extraction and purification, which directly determines the application of phycobiliproteins. Food grade phycobiliproteins are easy to prepare, whereas analytical grade phycobiliproteins are extremely complex and costly to produce. Most phycobiliproteins are denatured and inactivated at high temperatures, severely limiting their application. Inspired by recent advances, future perspectives are put forward, including (1) the mutagenesis and screening of algal strains for higher phycobiliprotein productivity, (2) the application of omics and genetic engineering for stronger phycobiliprotein stability, and (3) the utilization of synthetic biology and heterologous expression systems for easier phycobiliprotein isolation. This review will give a reference for exploring more phycobiliproteins for food and health application development.
Collapse
Affiliation(s)
- Liang Ji
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Sheng Qiu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhiheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Chenni Zhao
- Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Bo Tang
- Nantong Focusee Biotechnology Company Ltd., Nantong, Jiangsu 226133, PR China
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China; School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
5
|
Zhang Y, Zhang L, Hu J, Wang Z, Meng D, Li H, Zhou Z, Yang R. The structural characterization and color stabilization of the pigment protein-phycoerythrin glycosylated with oligochitosan. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Pereira Martins JR, Linhares de Aguiar AL, Barros Nogueira KA, Uchôa Bastos Filho AJ, da Silva Moreira T, Lima Holanda Araújo M, Pessoa C, Eloy JO, da Silva Junior IJ, Petrilli R. Nanoencapsulation of R-phycoerytrin extracted from Solieria filiformis improves protein stability and enables its biological application as a fluorescent dye. J Microencapsul 2023; 40:37-52. [PMID: 36630267 DOI: 10.1080/02652048.2023.2168081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We aimed to encapsulate R-PE to improve its stability for use as a fluorescent probe for cancer cells. Purified R-PE from the algae Solieria filiformis was encapsulated in polymeric nanoparticles using PCL. Nanoparticles were characterised and R-PE release was evaluated. Also, cellular uptake using breast and prostate cancer cells were performed. Nanoparticles presented nanometric particle size (198.8 ± 0.06 nm) with low polydispersity (0.13 ± 0.022), negative zeta potential (-18.7 ± 1.10 mV), and 50.0 ± 7.3% encapsulation. FTIR revealed that R-PE is molecularly dispersed in PCL. DSC peak at 307 °C indicates the presence of R-PE in the nanoparticle. Also, in vitro, it was demonstrated low release for nanoparticles and degradation for the free R-PE. Finally, cellular uptake demonstrated the potential of R-PE/PCL nanoparticles for cancer cell detection. Nanoparticles loaded with R-PE can overcome instability and allow application as a fluorescent probe for cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - Thais da Silva Moreira
- Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | | | - Claudia Pessoa
- Department of Physiology and Pharmacology, College of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Josimar O Eloy
- Department of Pharmacy, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | | | - Raquel Petrilli
- Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony, Redenção, Brazil
| |
Collapse
|
7
|
Kovaleski G, Kholany M, Dias LMS, Correia SFH, Ferreira RAS, Coutinho JAP, Ventura SPM. Extraction and purification of phycobiliproteins from algae and their applications. Front Chem 2022; 10:1065355. [PMID: 36531328 PMCID: PMC9752866 DOI: 10.3389/fchem.2022.1065355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/14/2022] [Indexed: 09/02/2023] Open
Abstract
Microalgae, macroalgae and cyanobacteria are photosynthetic microorganisms, prokaryotic or eukaryotic, living in saline or freshwater environments. These have been recognized as valuable carbon sources, able to be used for food, feed, chemicals, and biopharmaceuticals. From the range of valuable compounds produced by these cells, some of the most interesting are the pigments, including chlorophylls, carotenoids, and phycobiliproteins. Phycobiliproteins are photosynthetic light-harvesting and water-soluble proteins. In this work, the downstream processes being applied to recover fluorescent proteins from marine and freshwater biomass are reviewed. The various types of biomasses, namely macroalgae, microalgae, and cyanobacteria, are highlighted and the solvents and techniques applied in the extraction and purification of the fluorescent proteins, as well as their main applications while being fluorescent/luminescent are discussed. In the end, a critical perspective on how the phycobiliproteins business may benefit from the development of cost-effective downstream processes and their integration with the final application demands, namely regarding their stability, will be provided.
Collapse
Affiliation(s)
- Gabriela Kovaleski
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariam Kholany
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Lília M. S. Dias
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | | | - Rute A. S. Ferreira
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - João A. P. Coutinho
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Sónia P. M. Ventura
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
8
|
Marine algae colorants: Antioxidant, anti-diabetic properties and applications in food industry. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Brain-Isasi S, Correa S, Amado-Hinojosa J, Buschmann AH, Camus C, Lienqueo ME. Combined extraction methodology for simultaneous recovery of phycobiliproteins and agar from the red alga Gracilaria chilensis C. J. Bird, McLachlan & E. C. Oliveira. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
10
|
Ramu Ganesan A, Kannan M, Karthick Rajan D, Pillay AA, Shanmugam M, Sathishkumar P, Johansen J, Tiwari BK. Phycoerythrin: a pink pigment from red sources (rhodophyta) for a greener biorefining approach to food applications. Crit Rev Food Sci Nutr 2022; 63:10928-10946. [PMID: 35648055 DOI: 10.1080/10408398.2022.2081962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phycoerythrin (PE) is a photosensitive red pigment from phycobiliprotein family predominantly present in the red algae. The concentration of PE depends on photon flux density (PFD) and the quality of light absorbed by the algae tissue. This necessitates robust techniques to extract PE from the embedded cell-wall matrix of the algal frond. Similarly, PE is sensitive to various factors which influence its stability and purity of PE. The PE is extracted from Red algae through different extraction techniques. This review explores an integrative approach of fractionating PE for the scaling-up process and commercialization. The mechanism for stabilizing PE pigment in food was critically evaluated for further retaining this pigment within the food system. The challenges and possibilities of employing efficient extraction for industrial adoption are meticulously estimated. The techniques involved in the sustainable way of extracting PE pigments improved at a laboratory scale in the past decade. Although, the complexity of industrial-scale biorefining was found to be a bottleneck. The extraction of PE using benign chemicals would be safe for food applications to promote health benefits. The precise selection of encapsulation technique with enhanced sensitivity and selectivity of the membrane would bring better stability of PE in the food matrix.
Collapse
Affiliation(s)
- Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Bodø, Norway
| | - Mohan Kannan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu, India
| | - Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India
| | - Arti A Pillay
- School of Applied Sciences, College of Engineering, Science and Technology (CEST), Fiji National University, Nasinu, Fiji
| | - Munisamy Shanmugam
- Research and Development Division (DSIR- Lab), Aquagri Processing Private Limited, Tamil Nadu, India
| | - Palanivel Sathishkumar
- Department of Biomaterials, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, Tamil Nadu, India
| | - Johan Johansen
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Bodø, Norway
| | - Brijesh K Tiwari
- Food Chemistry & Technology, Teagasc Food Research Centre, Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Sathuvan M, Thangam R, Venkateshbabu G, Cheong KL, Kang H, Liu Y. Single-step purified R-phycoerythrin transmits cellular imaging functionalities in vitro. Int J Biol Macromol 2022; 194:563-570. [PMID: 34813785 DOI: 10.1016/j.ijbiomac.2021.11.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
A single-step and rapid chromatographic method-based purification of Gracilaria corticata (J. Agardh) R-phycoerythrin (R-PE) was attained using polyacrylamide gel electrophoresis (PAGE) technique without affecting structural integrity. The purified R-PE had a characteristic UV-Vis spectrum with three absorbance maxima at 496, 535, and 565 nm, and fluorescence at 575 nm. R-PE was obtained with a purity index of 4.2 and a recovery yield of 44.3%. SDS-PAGE analysis exhibited three sub-units i.e., 18, 21, and 31 kDa, which corresponds to α, β, and γ, respectively. This report's purification process was considered less time-consuming and could be efficiently applied to purify phycobiliproteins. The purified R-PE showed optimal stability up to 6 h at pH 7.0 when exposed to light (3000 lx), while the temperature at which the maximum stability was retained was at 20 °C. The cellular imaging property of R-PE was effectively implemented to evaluate its credentials without affecting the cell proliferation of Vero and Hep-2 cell lines with the higher IC50 concentrations in vitro. Under fluorescence microscopy and flow cytometry analysis, purified R-PE displayed the characteristic affinity towards cell imaging functions in preliminary in vitro studies.
Collapse
Affiliation(s)
- Malairaj Sathuvan
- Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Gopal Venkateshbabu
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai-600 025, Tamil Nadu, India
| | - Kit-Leong Cheong
- Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, College of Science, Shantou University, Shantou, Guangdong 515063, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yang Liu
- Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, College of Science, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
12
|
Meng D, Zhang L, Wang Q, Zhang Y, Sun Y, Zhang H, Wang Z, Zhou Z, Yang R. Self-Assembly of Phycoerythrin with Oligochitosan by Electrostatic Interaction for Stabilization of Phycoerythrin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12818-12827. [PMID: 34669400 DOI: 10.1021/acs.jafc.1c05205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phycoerythrin (PE) is a natural water-soluble pigment protein with characteristic phycobilins and is sensitive to thermal and light environmental changes. In this study, PE was extracted from Porphyra haitanensis and PE-oligochitosan complexes (POC) were fabricated by a self-assembly approach. The effects of cationic oligochitosan on the binding interaction, structure, size distribution, and color stability of PE were evaluated. The stoichiometric number n was calculated to be 21.67 ± 2.65 (oligochitosan/PE) and the binding constant K was (6.47 ± 0.48) × 105 M-1. Cationic oligochitosan could electrostatically interact with PE and affect the PE structure by increasing the α-helix content. In addition, high concentrations of oligochitosan led to the formation of dense phycoerythrin protein granules. Moreover, at a reaction ratio of 20.0:1 (oligochitosan/PE), being approximately the predicted stoichiometric number n, the thermal stability (40-80 °C), natural light stability, and ultraviolet light irradiation (254 nm) stability of the POC were improved. This study provides an approach to reduce the susceptibility of PE upon environmental changes by forming a stable self-assembly complex, which will promote the application of PE as a natural pigment protein in food and chemical applications.
Collapse
Affiliation(s)
- Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liqun Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qiaoe Wang
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Yidan Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yifei Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haili Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhiwei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhongkai Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
13
|
Macroalgae as Protein Sources—A Review on Protein Bioactivity, Extraction, Purification and Characterization. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The increased demand for protein sources combined with a decrease in the available land and water resources have led to a growing interest in macroalgae as alternative protein sources. This review focuses on strategies for macroalgae protein extraction, enrichment and characterization. To date, the protein extraction methods applied to algae include enzymatic hydrolysis, physical processes and chemical extraction. Novel methods, such as pulsed electric field, microwave-assisted, pressurized liquid and supercritical fluid extractions, and the application of smart solvents are discussed. An overview of the use of membranes and other processes to generate high-value protein concentrates from algae extracts is also presented, as well as some examples of the methods used for their characterization. The potential bioactivities from macroalgae-derived proteins and peptides, including novel glycoproteins and lectins, are briefly reviewed.
Collapse
|
14
|
Lee PT, Huang J, Huang CY, Liu ZX, Yeh HY, Huang HT, Chen LL, Nan FH, Lee MC. Phycoerythrin from Colaconema sp. Has Immunostimulatory Effects on the Whiteleg Shrimp Litopenaeus vannamei and Increases Resistance to Vibrio parahaemolyticus and White Spot Syndrome Virus. Animals (Basel) 2021; 11:ani11082371. [PMID: 34438826 PMCID: PMC8388644 DOI: 10.3390/ani11082371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary In this study, we found that phycoerythrin from Colaconema sp. can differentially stimulate the immune response of whiteleg shrimp in vitro and in vivo and could potentially be used as an immunomodulator in shrimp culture. Abstract We investigated whether phycoerythrin (PE), a pigment sourced from marine algae, could act as an immunomodulatory agent in whiteleg shrimp (Litopenaeus vannamei). To this end, PE was extracted and purified from a PE-rich macroalgae, Colaconema sp. Our in vitro analysis demonstrated that PE enhanced prophenoloxidase and phagocytosis activity but inhibited the production of reactive oxygen species in hemocytes. Additionally, the PE signal could be detected using an in vivo imaging system after its injection into the ventral sinus of the cephalothorax of whiteleg shrimp. The expression profiles of fourteen immune-related genes were monitored in hemocytes from whiteleg shrimp injected with 0.30 μg of PE per gram of body weight, and crustin, lysozyme, penaiedin 4, and anti-lipopolysaccharide factor showed up-regulated post-stimulation. The induction of immune genes and enhancement of innate immune parameters by PE may explain the higher survival rates for shrimp that received different doses of PE prior to being challenged with Vibrio parahaemolyticus or white spot syndrome virus compared to controls. Combined, these results show that PE from Colaconema sp. can differentially stimulate the immune response of whiteleg shrimp in vitro and in vivo and could potentially be used as an immunomodulator in shrimp culture.
Collapse
Affiliation(s)
- Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-T.L.); (J.H.); (C.-Y.H.); (Z.-X.L.); (H.-Y.Y.); (H.-T.H.); (F.-H.N.)
| | - Jing Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-T.L.); (J.H.); (C.-Y.H.); (Z.-X.L.); (H.-Y.Y.); (H.-T.H.); (F.-H.N.)
| | - Chin-Yi Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-T.L.); (J.H.); (C.-Y.H.); (Z.-X.L.); (H.-Y.Y.); (H.-T.H.); (F.-H.N.)
| | - Zi-Xuan Liu
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-T.L.); (J.H.); (C.-Y.H.); (Z.-X.L.); (H.-Y.Y.); (H.-T.H.); (F.-H.N.)
| | - Han-Yang Yeh
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-T.L.); (J.H.); (C.-Y.H.); (Z.-X.L.); (H.-Y.Y.); (H.-T.H.); (F.-H.N.)
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-T.L.); (J.H.); (C.-Y.H.); (Z.-X.L.); (H.-Y.Y.); (H.-T.H.); (F.-H.N.)
| | - Li-Li Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung City 20224, Taiwan;
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-T.L.); (J.H.); (C.-Y.H.); (Z.-X.L.); (H.-Y.Y.); (H.-T.H.); (F.-H.N.)
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City 20224, Taiwan
| | - Meng-Chou Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan; (P.-T.L.); (J.H.); (C.-Y.H.); (Z.-X.L.); (H.-Y.Y.); (H.-T.H.); (F.-H.N.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City 20224, Taiwan
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City 20224, Taiwan
- Correspondence: ; Tel.: +886-22462-2192 (ext. 5239) or +886-978-586-589; Fax: +886-22463-5441
| |
Collapse
|
15
|
Efficient Purification of R-phycoerythrin from Marine Algae ( Porphyra yezoensis) Based on a Deep Eutectic Solvents Aqueous Two-Phase System. Mar Drugs 2020; 18:md18120618. [PMID: 33291563 PMCID: PMC7761831 DOI: 10.3390/md18120618] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
R-phycoerythrin (R-PE), a marine bioactive protein, is abundant in Porphyra yezoensis with high protein content. In this study, R-PE was purified using a deep eutectic solvents aqueous two-phase system (DES-ATPS), combined with ammonium sulphate precipitation, and characterized by certain techniques. Firstly, choline chloride-urea (ChCl-U) was selected as the suitable DES to form ATPS for R-PE extraction. Then, single-factor experiments were conducted: the purity (A565/A280) of R-PE was 3.825, and the yield was 69.99% (w/w) under optimal conditions (adding 0.040 mg R-PE to ChCl-U (0.35 g)/K2HPO4 (0.8 g/mL, 0.5 mL) and extracting for 20 min). The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results revealed that the purified R-PE contained three main bands. One band was presented after purification in native-PAGE. The UV-vis spectra showed characteristic absorption peaks at 495, 540, and 565 nm. R-PE displayed an emission wavelength at 570 nm when excited at 495 nm. All spectra results illustrated that the structure of R-PE remained unchanged throughout the process, proving the effectiveness of this method. Transmission electron microscope (TEM) showed that aggregation and surrounding phenomena were the driving forces for R-PE extraction. This study could provide a green and simple purification method of R-PE in drug development.
Collapse
|
16
|
Saluri M, Kaldmäe M, Rospu M, Sirkel H, Paalme T, Landreh M, Tuvikene R. Spatial variation and structural characteristics of phycobiliproteins from the red algae Furcellaria lumbricalis and Coccotylus truncatus. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Pereira T, Barroso S, Mendes S, Amaral RA, Dias JR, Baptista T, Saraiva JA, Alves NM, Gil MM. Optimization of phycobiliprotein pigments extraction from red algae Gracilaria gracilis for substitution of synthetic food colorants. Food Chem 2020; 321:126688. [DOI: 10.1016/j.foodchem.2020.126688] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
|
18
|
Ghosh T, Mishra S. Studies on Extraction and Stability of C-Phycoerythrin From a Marine Cyanobacterium. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
19
|
Wu J, Ren N, Lu Y, Jia M, Wang R, Zhang J. A poly (diallyldimethylammonium chloride)-mediated R-phycoerythrin/DNA hybrid system as a fluorescent biosensor for DNA detection. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
DNAzyme-Functionalized R-Phycoerythrin as a Cost-Effective and Environment-Friendly Fluorescent Biosensor for Aqueous Pb 2+ Detection. SENSORS 2019; 19:s19122732. [PMID: 31216658 PMCID: PMC6630308 DOI: 10.3390/s19122732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/16/2019] [Indexed: 01/28/2023]
Abstract
The sensitive detection of Pb2+ is of significant importance for food safety, environmental monitoring, and human health care. To this end, a novel fluorescent biosensor, DNAzyme-functionalized R-phycoerythrin (DNAzyme-R-PE), was presented for Pb2+ analysis. The biosensor was prepared via the immobilization of Iowa Black® FQ-modified DNAzyme–substrate complex onto the surface of SPDP-functionalized R-PE. The biosensor produced a minimal fluorescence signal in the absence of Pb2+. However, Pb2+ recognition can induce the cleavage of substrate, resulting in a fluorescence restoration of R-PE. The fluorescence changes were used to measure sensitively Pb2+ and the limit of detection was 0.16 nM with a linear range from 0.5–75 nM. Furthermore, the proposed biosensor showed excellent selectivity towards Pb2+ even in the presence of other metal ions interferences and was demonstrated to successfully determine Pb2+ in spiked lake water samples.
Collapse
|
21
|
Torres MD, Flórez-Fernández N, Domínguez H. Integral Utilization of Red Seaweed for Bioactive Production. Mar Drugs 2019; 17:E314. [PMID: 31142051 PMCID: PMC6627364 DOI: 10.3390/md17060314] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 01/08/2023] Open
Abstract
The hydrocolloids carrageenan and agar are the major fraction industrially extracted and commercialized from red seaweeds. However, this type of macroalgae also contains a variety of components with nutritional, functional and biological properties. In the context of sustainability and bioeconomy, where the integral utilization of the natural resources is incentivized, the sequential separation and valorization of seaweed components with biological properties of interest for food, nutraceuticals, cosmeceuticals and pharmaceuticals is proposed. In this work, a review of the available conventional and alternative greener and efficient extraction for obtaining red seaweed bioactives is presented. The potential of emerging technologies for the production of valuable oligomers from carrageenan and agar is also commented, and finally, the sequential extraction of the constituent fractions is discussed.
Collapse
Affiliation(s)
- Maria Dolores Torres
- Department of Chemical Engineering, Faculty of Sciences, University of Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain.
| | - Noelia Flórez-Fernández
- Department of Chemical Engineering, Faculty of Sciences, University of Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain.
| | - Herminia Domínguez
- Department of Chemical Engineering, Faculty of Sciences, University of Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain.
| |
Collapse
|
22
|
Phycobiliproteins: Molecular structure, production, applications, and prospects. Biotechnol Adv 2019; 37:340-353. [DOI: 10.1016/j.biotechadv.2019.01.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022]
|
23
|
Senthilkumar N, Thangam R, Murugan P, Suresh V, Kurinjimalar C, Kavitha G, Sivasubramanian S, Rengasamy R. Hepato‐protective effects of R‐phycoerythrin‐rich protein extract ofPortieria hornemannii(Lyngbye) Silva against DEN‐induced hepatocellular carcinoma. J Food Biochem 2018. [DOI: 10.1111/jfbc.12695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Ramar Thangam
- King Institute of Preventive Medicine & Research Chennai India
- Central Leather Research Institute Council for Scientific and Industrial Research Chennai India
| | - Pitchai Murugan
- Department of Medicinal Botany Sri Sairam Siddha Medical College and Research Centre Chennai India
- Centre for Advanced Studies in Botany University of Madras Chennai India
| | | | - Chidambaram Kurinjimalar
- Centre for Advanced Studies in Botany University of Madras Chennai India
- Central Leather Research Institute Council for Scientific and Industrial Research Chennai India
| | - Ganapathy Kavitha
- Centre for Advanced Studies in Botany University of Madras Chennai India
- Centre for Ocean Research Sathyabama University Chennai India
| | | | - Ramasamy Rengasamy
- Centre for Advanced Studies in Botany University of Madras Chennai India
| |
Collapse
|
24
|
Nair D, Krishna JG, Panikkar MVN, Nair BG, Pai JG, Nair SS. Identification, purification, biochemical and mass spectrometric characterization of novel phycobiliproteins from a marine red alga, Centroceras clavulatum. Int J Biol Macromol 2018; 114:679-691. [DOI: 10.1016/j.ijbiomac.2018.03.153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/22/2018] [Accepted: 03/25/2018] [Indexed: 11/30/2022]
|
25
|
Gu D, Lazo-Portugal R, Fang C, Wang Z, Ma Y, Knight M, Ito Y. Purification of R-phycoerythrin from Gracilaria lemaneiformis by centrifugal precipitation chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1087-1088:138-141. [PMID: 29738963 DOI: 10.1016/j.jchromb.2018.04.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 10/17/2022]
Abstract
Centrifugal precipitation chromatography (CpC) is a powerful chromatographic technique invented in the year 2000 but so far very little applied. The method combines dialysis, counter-current and salting out processes. The separation rotor consists of two identical spiral channels separated by a dialysis membrane (6-8 K MW cut-off) in which the upper channel is eluted with an ammonium sulfate gradient and the lower channel with water, and the mixtures are separated according to their solubility in ammonium sulfate as a chromatographic technique. In the present study, the method was successfully applied for separation and purification of R-phycoerythrin (R-PE), a protein widely used as a fluorescent probe, from the red alga Gracilaria lemaneiformis. The separation was performed with the elution of ammonium sulfate from 50% to 0% in 21.5 h at a flow rate of 0.5 ml/min, while the lower channel was eluted with water at a flow rate of 0.05 ml/min after sample charge, and the column was rotated at 200 rpm. After a single run, the absorbance ratio A565/A280 (a criterion for the purity of R-PE) was increased from 0.5 of the crude to 6.5. The purified R-PE exhibited a typical "three peaks" spectrum with absorbance maximum at 497, 538 and 565 nm. The Native-PAGE showed one single protein band and 20 kDa (subunits α and β) and 30 kDa (subunit γ) can be observed in SDS-PAGE analysis which were consistent with the (αβ)6γ subunit composition of R-PE. The results indicated that CpC is an efficient method to obtain protein with the high purity from a complex source.
Collapse
Affiliation(s)
- Dongyu Gu
- School of Marine Science and Environment Engineering, Dalian Ocean University, Dalian 116023, China; Laboratory of Bioseparation Technology, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA
| | | | - Chen Fang
- School of Marine Science and Environment Engineering, Dalian Ocean University, Dalian 116023, China
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Yoichiro Ito
- Laboratory of Bioseparation Technology, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Choi YJ, Gurunathan S, Kim JH. Graphene Oxide-Silver Nanocomposite Enhances Cytotoxic and Apoptotic Potential of Salinomycin in Human Ovarian Cancer Stem Cells (OvCSCs): A Novel Approach for Cancer Therapy. Int J Mol Sci 2018; 19:E710. [PMID: 29494563 PMCID: PMC5877571 DOI: 10.3390/ijms19030710] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 01/06/2023] Open
Abstract
The use of graphene to target and eliminate cancer stem cells (CSCs) is an alternative approach to conventional chemotherapy. We show the biomolecule-mediated synthesis of reduced graphene oxide-silver nanoparticle nanocomposites (rGO-Ag) using R-phycoerythrin (RPE); the resulting RPE-rGO-Ag was evaluated in human ovarian cancer cells and ovarian cancer stem cells (OvCSCs). The synthesized RPE-rGO-Ag nanocomposite (referred to as rGO-Ag) was characterized using various analytical techniques. rGO-Ag showed significant toxicity towards both ovarian cancer cells and OvCSCs. After 3 weeks of incubating OvCSCs with rGO-Ag, the number of A2780 and ALDH⁺CD133⁺ colonies was significantly reduced. rGO-Ag was toxic to OvCSCs and reduced cell viability by mediating the generation of reactive oxygen species, leakage of lactate dehydrogenase, reduced mitochondrial membrane potential, and enhanced expression of apoptotic genes, leading to mitochondrial dysfunction and possibly triggering apoptosis. rGO-Ag showed significant cytotoxic potential towards highly tumorigenic ALDH⁺CD133⁺ cells. The combination of rGO-Ag and salinomycin induced 5-fold higher levels of apoptosis than each treatment alone. A combination of rGO-Ag and salinomycin at very low concentrations may be suitable for selectively killing OvCSCs and sensitizing tumor cells. rGO-Ag may be a novel nano-therapeutic molecule for specific targeting of highly tumorigenic ALDH⁺CD133⁺ cells and eliminating CSCs. This study highlights the potential for targeted therapy of tumor-initiating cells.
Collapse
Affiliation(s)
- Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
27
|
Munier M, Morançais M, Dumay J, Jaouen P, Fleurence J. One-step purification of R-phycoerythrin from the red edible seaweed Grateloupia turuturu. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 992:23-9. [PMID: 25939094 DOI: 10.1016/j.jchromb.2015.04.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 01/22/2023]
Abstract
A one-step chromatographic method for the purification of R-phycoerythrin (R-PE) of Grateloupia turuturu Yamada is described. Native R-PE was obtained with a purity index of 2.89 and a recovery yield of 27% using DEAE-Sepharose Fast Flow chromatography with a three-step increase in ionic strength. The analysis by SDS electrophoresis showed a broad band between 18 and 21kDa in size corresponding to subunits α and β and a low intensity band of 29kDa corresponding to the γ subunit. Two forms of R-PE were identified by gel filtration chromatography: a native form with a molecular weight of 260±5kDa and a dissociated form with a molecular weight of 60±2kDa. The native form presented the characteristic absorption spectrum of R-PE with three absorbance maxima at 498, 540 and 565nm, whereas the dissociated form presented only the 498 and 540nm peaks. Moreover, the two forms displayed two different fluorescence maxima.
Collapse
Affiliation(s)
- Mathilde Munier
- FR CNRS 3473 IUML, Mer Molécule Santé (MMS), EA 2160, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Michèle Morançais
- FR CNRS 3473 IUML, Mer Molécule Santé (MMS), EA 2160, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Justine Dumay
- FR CNRS 3473 IUML, Mer Molécule Santé (MMS), EA 2160, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Pascal Jaouen
- FR CNRS 3473 IUML, UMR-CNRS 6144 (GEPEA), Université de Nantes, CRTT 37 boulevard de l'Université, BP 406, 44602 Saint-Nazaire Cedex, France
| | - Joël Fleurence
- FR CNRS 3473 IUML, Mer Molécule Santé (MMS), EA 2160, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.
| |
Collapse
|
28
|
Methods of phycobiliprotein extraction from Gracilaria crassa and its applications in food colourants. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.01.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Thangam R, Sundarraj S, Vivek R, Suresh V, Sivasubramanian S, Paulpandi M, Karthick SV, Ragavi AS, Kannan S. Theranostic potentials of multifunctional chitosan–silver–phycoerythrin nanocomposites against triple negative breast cancer cells. RSC Adv 2015. [DOI: 10.1039/c4ra14043e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Study focused to the applications of nanocomposites with therapeutic and imaging functions against TNBC cells. The developed multifunctional nanocomposites exhibited cell imaging, cytotoxicity with apoptosis induction against cancer cells.
Collapse
Affiliation(s)
- Ramar Thangam
- Proteomics & Molecular Cell Physiology Lab
- Department of Zoology
- Bharathiar University
- Coimbatore-641 046
- India
| | - Shenbagamoorthy Sundarraj
- Proteomics & Molecular Cell Physiology Lab
- Department of Zoology
- Bharathiar University
- Coimbatore-641 046
- India
| | - Raju Vivek
- Proteomics & Molecular Cell Physiology Lab
- Department of Zoology
- Bharathiar University
- Coimbatore-641 046
- India
| | - Veeraperumal Suresh
- Department of Zoology
- School of Life Sciences
- Periyar University
- Salem-636 011
- India
| | | | - Manickam Paulpandi
- Proteomics & Molecular Cell Physiology Lab
- Department of Zoology
- Bharathiar University
- Coimbatore-641 046
- India
| | - S. Vignesh Karthick
- Department of Virology
- King Institute of Preventive Medicine & Research
- Chennai-600 032
- India
| | - A. Sri Ragavi
- Department of Virology
- King Institute of Preventive Medicine & Research
- Chennai-600 032
- India
| | - Soundarapandian Kannan
- Proteomics & Molecular Cell Physiology Lab
- Department of Zoology
- Bharathiar University
- Coimbatore-641 046
- India
| |
Collapse
|
30
|
Abstract
This chapter describes spectrophotometric assays of major compounds extracted from microalgae and macroalgae, i.e., proteins, carbohydrates, pigments (chlorophylls, carotenoids, and phycobiliproteins) and phenolic compounds. In contrast to other specific analytical techniques, such as high pressure liquid chromatography (HPLC) or mass spectrometry (MS), commonly applied to purified extracts to reveal more detailed composition and structure of algal compound families, these assays serve as a first assessment of the global contents of extracts.
Collapse
Affiliation(s)
- Solène Connan
- Photobiotechnology, INTECHMER, Conservatoire National des Artset Métiers, BP 324, Cherbourg, 50103, France,
| |
Collapse
|
31
|
Further studies and biological activities of macromolecular protein R-Phycoerythrin from Portieria hornemannii. Int J Biol Macromol 2013; 62:107-16. [DOI: 10.1016/j.ijbiomac.2013.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/08/2013] [Accepted: 08/08/2013] [Indexed: 12/23/2022]
|
32
|
Thangam R, Suresh V, Asenath Princy W, Rajkumar M, SenthilKumar N, Gunasekaran P, Rengasamy R, Anbazhagan C, Kaveri K, Kannan S. C-Phycocyanin from Oscillatoria tenuis exhibited an antioxidant and in vitro antiproliferative activity through induction of apoptosis and G0/G1 cell cycle arrest. Food Chem 2013; 140:262-72. [DOI: 10.1016/j.foodchem.2013.02.060] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/07/2013] [Accepted: 02/14/2013] [Indexed: 12/21/2022]
|