1
|
Shen J, Qin H, Li K, Ding H, Chen X, Peng M, Jiang X, Han Y. The angelica Polysaccharide: a review of phytochemistry, pharmacology and beneficial effects on systemic diseases. Int Immunopharmacol 2024; 133:112025. [PMID: 38677093 DOI: 10.1016/j.intimp.2024.112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
Angelica sinensis is a perennial herb widely distributed around the world, and angelica polysaccharide (APS) is a polysaccharide extracted from Angelica sinensis. APS is one of the main active components of Angelica sinensis. A large number of studies have shown that APS has hematopoietic, promoting blood circulation, radiation resistance, lowering blood glucose, enhancing the body immunity and other pharmacological effects in a variety of diseases. However, different extraction methods and extraction sites greatly affect the efficacy of APS. In recent years, with the emerging of new technologies, there are more and more studies on the combined application and structural modification of APS. In order to promote the comprehensive development and in-depth application of APS, this narrative review systematically summarizes the effects of different drying methods and extraction sites on the biological activity of APS, and the application of APS in the treatment of diseases, hoping to provide a scientific basis for the experimental study and clinical application of APS.
Collapse
Affiliation(s)
- Jie Shen
- School of Pharmacy, Qingdao University, Qingdao, China
| | - Huan Qin
- School of Basic Medical Sciences, Qingdao, China
| | - Kangkang Li
- School of Basic Medical Sciences, Qingdao, China
| | - Huiqing Ding
- School of Basic Medical Sciences, Qingdao, China.
| | - Xuehong Chen
- School of Basic Medical Sciences, Qingdao, China.
| | - Meiyu Peng
- School of Basic Medical Sciences, Shandong Second Medical University, China
| | - Xin Jiang
- School of Basic Medical Sciences, Qingdao, China.
| | - Yantao Han
- School of Basic Medical Sciences, Qingdao, China.
| |
Collapse
|
2
|
Li CC, Ji P, He J, Peng YS, Wu FL, Hua YL, Yao WL, Yuan ZW, Wei YM. Screening of polysaccharides from the differently processed products of Angelica sinensis with the best liver protection effect on chicken and the intervention mechanism study based on tandem mass tag proteomics and multiple reaction monitoring approach. Biomed Chromatogr 2024; 38:e5840. [PMID: 38402901 DOI: 10.1002/bmc.5840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
The incidence of colibacillosis in poultry is on the rise, significantly affecting the chicken industry. Ceftiofur sodium (CS) is frequently employed to treat this disease, resulting in lipopolysaccharide (LPS) buildup. Processing plays a vital role in traditional Chinese veterinary medicine. The potential intervention in liver injury by polysaccharides from the differently processed products of Angelica sinensis (PDPPAS) induced by combined CS and LPS remains unclear. This study aims to investigate the protective effect of PDPPAS on chicken liver injury caused by CS combined with LPS buildup and further identify the polysaccharides with the highest hepatoprotective activity in chickens. Furthermore, the study elucidates polysaccharides' intervention mechanism using tandem mass tag (TMT) proteomics and multiple reaction monitoring (MRM) methods. A total of 190 1-day-old layer chickens were randomly assigned into 12 groups, of which 14 chickens were in the control group and 16 in other groups, for a 10-day trial. The screening results showed that charred A. sinensis polysaccharide (CASP) had the most effective and the best hepatoprotective effect at 48 h. TMT proteomics and MRM validation results demonstrated that the intervention mechanism of the CASP high-dose (CASPH) intervention group was closely related to the protein expressions of FCER2, TBXAS1, CD34, AGXT, GCAT, COX7A2L, and CYP2AC1. Conclusively, the intervention mechanism of CASPH had multitarget, multicenter regulatory features.
Collapse
Affiliation(s)
- Chen-Chen Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jian He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - You-Sheng Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Fan-Lin Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zi-Wen Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Zhang X, Gao M, Zhao X, Qi Y, Xu L, Yin L, Peng J. Purification and structural characterization of two polysaccharides with anti-inflammatory activities from Plumbago zeylanica L. Int J Biol Macromol 2024; 260:129455. [PMID: 38232876 DOI: 10.1016/j.ijbiomac.2024.129455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Plumbago zeylanica L., a traditional Chinese medicine, has anti-bacterial and anti-inflammatory effects, and it is critical important to explore the chemical compounds and evaluate their biological actions from the medicinal plant. However, the chemical structure and biological activities of polysaccharides from P. zeylanica. were still poorly understood. In this study, two water-soluble polysaccharides named WPZP-2-1 and WPZP-2-2 were purified from P. zeylanica L. Chemical and spectroscopic tests showed that the main chain of WPZP-2-1 was →4)-α-D-GalpA-(1 → 2)-α-L-Rhap-(1→, and the branch chain was galactose or arabinose. The main chain of WPZP-2-2 was composed of →4)-α-D-GalpA-(1 → 2)-α-L-Rhap-(1→, and the O-2 and O-3 of →4)-α-D-GalpA had a small amount of acetylation. In addition, in vitro test showed that WPZP-2-1 and WPZP-2-2 significantly improved the inflammatory damage of LPS + IFN-γ-induced THP-1 cells via reducing the protein levels of CD14, TLR4 and MyD88, thereby promoting IL-10 expression and inhibiting the mRNA levels of TNF-α and IL-1β. Those findings indicated that WPZP-2-1 and WPZP-2-2 from the plant should be served as the potential anti-inflammatory agents.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Meng Gao
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Xuerong Zhao
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yan Qi
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Linan Xu
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Lianhong Yin
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.
| | - Jinyong Peng
- Department of Pharmaceutical Analysis, College of Pharmacy, Dalian Medical University, Dalian, 116044, China; School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
4
|
Wang K, Liu X, Cai G, Gong J, Guo Y, Gao W. Chemical composition analysis of Angelica sinensis (Oliv.) Diels and its four processed products by ultra-high-performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry combining with nontargeted metabolomics. J Sep Sci 2023; 46:e2300473. [PMID: 37933715 DOI: 10.1002/jssc.202300473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Angelica sinensis (Oliv.) Diels. has been used for women to enrich the blood, prevent and treat blood deficiency syndrome in Traditional Chinese Medicine for thousands of years. Wine-processed Angelica sinensis, soil-processed Angelica sinensis, oil-processed Angelica sinensis, and charred-processed Angelica sinensis are the most significant four processed products used in Chinese clinic. However, there have been few studies aimed at comparing their chemical differences. Ultra-high-performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry combining with nontargeted metabolomics was applied to investigate the diversity of processed products of Angelica sinensis. A total of 74 compounds with the variable importance in the projection value more than 1.5 and P less than 0.05 in ANOVA were highlighted as the compounds that contribute most to the discrimination of Angelica sinensis and four processed products. The results showed the metabolic changes between Angelica sinensis and its four processed products, there were 19 metabolites, 3 metabolites, 6 metabolites, and 45 metabolites were tentatively assigned in soil-processed Angelica sinensis, wine-processed Angelica sinensis, oil-processed Angelica sinensis, and charred-processed Angelica sinensis, respectively. These results suggested that the proposed metabolomics approach was useful for the quality evaluation and control of processed products of Angelica sinensis.
Collapse
Affiliation(s)
- Kangyu Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Xiaokang Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Guangzhi Cai
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Jiyu Gong
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Yunlong Guo
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Wenyi Gao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, P. R. China
| |
Collapse
|
5
|
Huang H, Ke C, Zhang D, Wu J, Zhang P. Molecular mechanism study and tumor heterogeneity of Chinese angelica and Fructus aurantii in the treatment of colorectal cancer through computational and molecular dynamics. Funct Integr Genomics 2023; 23:106. [PMID: 36977932 DOI: 10.1007/s10142-023-01042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE Screening Chinese angelica (CHA) and Fructus aurantii (FRA) for ingredients with therapeutic effects on colorectal cancer (CRC) and discovering novel targets for the prevention or treatment of CRC. METHODS TCMSP database as a starting point for the initial selection of ingredients and targets, we screened and validated the ingredients and targets of CHA and FRA using tools such as Autodock Vina, R 4.2.0, and GROMACS. To obtain the pharmacokinetic information of the active ingredients, we performed ADMET prediction and consulted a large number of works related to CRC cell lines for the discussion and validation of the results. RESULTS Molecular dynamics simulation results showed the complexes formed between these components and targets can exist in a very stable tertiary structure under the human environment, and their side effects can be ignored. CONCLUSIONS Our study successfully explains the effective mechanism of CHA and FRA for improving CRC while predicting the potential targets PPARG, AKT1, RXRA, and PPARA of CHA and FRA for CRC treatment, which provides a new foundation for investigating the novel compounds of TCMs and a new direction for subsequent CRC research.
Collapse
Affiliation(s)
- He Huang
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunlian Ke
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Dongdong Zhang
- School of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Jiezhong Wu
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Peng Zhang
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
6
|
Jing P, Song X, Xiong L, Wang B, Wang Y, Wang L. Angelica sinensis polysaccharides prevents hematopoietic regression in D-Galactose-Induced aging model via attenuation of oxidative stress in hematopoietic microenvironment. Mol Biol Rep 2023; 50:121-132. [PMID: 36315330 DOI: 10.1007/s11033-022-07898-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Extrinsic molecular mechanisms that regulate hematopoietic stem/progenitor cell (HSPC) aging are still poorly understood, and a potential protective medication needs to be explored. MATERIALS AND METHODS The senescent parameters of hematopoietic cells and bone marrow stromal cells (BMSCs) including cell cycle analysis, senescence-associated SA-β-gal staining and signals, hematopoietic factors and cellular junction were analyzed in femur and tibia of rats. Furthermore, Sca-1+ HSPCs and BMSCs co-culture system was established to evaluate the direct effects of BMSC feeder layer to HSPCs. Oxidative DNA damage indicators in Sca-1+ HSCs and senescence-associated secretory phenotype (SASP) of BMSCs, gap junction intercellular communication between BMSCs, osteogenesis/adipogenisis differentiation balance of BMSCs were detected. RESULTS In the D-gal pre-administrated rats, ASP treatment rescued senescence of hematopoietic cells and BMSCs, reserved CFU-GEMM; also, ASP treatment attenuated stromal oxidative load, ameliorated SCF, CXCL12, and GM-CSF production, increased Connexin-43 (Cx43) expression. BMSCs and Sca-1+ HSPCs co-cultivation demonstrated that ASP treatment prevented oxidative DNA damage response in co-cultured Sca-1+ HSPCs induced by D-gal pre-administration of feeder layer and the underlying mechanism may be related to ASP ameliorating feeder layer dysfunction due to D-gal induced senescence via inhibiting secretion of IL-1, IL-6, TNF-α, and RANTES, enhancing Cx43-mediated intercellular communication, improving Runx2 expression whereas decreasing PPARγ expression in BMSCs. CONCLUSION The antioxidant property of ASP may provide a stroma-mediated potential therapeutic strategy for HSPC aging.
Collapse
Affiliation(s)
- Pengwei Jing
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Xiaoying Song
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China.,The People's Hospital of Jiajiang, 614100, Leshan, China
| | - Lirong Xiong
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Biyao Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Yaping Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China.,Department of Histology and Embryology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, 400016, Chongqing, China
| | - Lu Wang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, 400016, Chongqing, China. .,Department of Histology and Embryology, Chongqing Medical University, 1# Yixueyuan Road, Yuzhong District, 400016, Chongqing, China.
| |
Collapse
|
7
|
Zou YF, Li CY, Fu YP, Jiang QX, Peng X, Li LX, Song X, Zhao XH, Li YP, Chen XF, Feng B, Huang C, Jia RY, Ye G, Tang HQ, Yin ZQ. The comparison of preliminary structure and intestinal anti-inflammatory and anti-oxidative activities of polysaccharides from different root parts of Angelica sinensis (Oliv.) Diels. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115446. [PMID: 35675860 DOI: 10.1016/j.jep.2022.115446] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Angelica sinensis, has been commonly used in gynecology for centuries, and is normally applied divided into different parts in various clinical applications. At present, the majority of existing studies focus on the volatile oil and ferulic acid extracted from different parts of A. sinensis, but there is a dearth of scientific information on its water-soluble polysaccharides. AIM OF THE STUDY The structures of polysaccharides from plants, have been reported contributing to multiple pharmacological activities such as anti-oxidative, anti-inflammatory, anti-tumor and liver protection. Therefore, the focus of this study was on its anti-oxidative and anti-inflammatory activities in vitro, which would be based on the various polysaccharides with distinct structures obtained from different parts of the A. sinensis root. MATERIALS AND METHODS Four parts of A. sinensis root were separated according to the Chinese Pharmacopoeia: head, body, tail and whole body. Crude polysaccharides were obtained by water extraction and ethanol precipitation method, and were further fractionated by DEAE Sepharose chromatographic column and gel filtration. The comparison of ASPs from different root parts were performed, including chemical compositions determined by colorimetric analysis, monosaccharide compositions measured by high performance liquid chromatography (HPLC), glycosidic linkage units determined by methylation and gas chromatography-mass spectrometry (GC-MS), organic functional groups determined by FT-IR, molecular weight (Mw) demarcated by gel permeation chromatography, and the viscosities and solubilities were measured according to method published in the previous report with minor modification. In vitro biological activities of APSs were compared on lipopolysaccharide (LPS)-induced inflammatory and oxidative stress models on IPEC-J2 cells. RESULTS Four purified polysaccharides, ASP-H-AP, ASP-B-AP, ASP-T-AP and ASP-Hb-AP from the root of A. sinensis, were obtained, and consisted of various contents of protein and the polyphenol. They were possibly pectic polysaccharides with a long homogalacturonan region as the main backbone and ramified with rhamnogalacturonan I region, but they were differed by subregions and the relative contents of glycosidic units. The Mw of four pectic polysaccharides were ranged from 67.9-267.7 kDa. The infrared spectrum also showed that the four polysaccharide fractions contained the characteristic peaks of polysaccharides. Their distinct primary structure could lead to a variety of biological activities. In vitro biological assays suggested that four polysaccharide fractions can protect IPEC-J2 cells against the LPS-induced inflammation by down-regulating inflammation factors and related genes on IPEC-J2 cells. These polysaccharides also could alleviate oxidative stress on IPEC-J2 cells by up-regulating the gene and protein expressions of antioxidant enzymes. It was concluded that ASP-H-AP possessed better anti-inflammatory and anti-oxidative effects, while those of ASP-T-AP was relatively poor among the four polysaccharide fractions. CONCLUSION All results indicated that the structure of pectic polysaccharides from different root parts of A. sinensis differed, which lead to their distinct anti-inflammatory and anti-oxidative activities. This may also be one of the factors why different parts of A. sinensis showed various pharmacological activities and applied independently in traditional use. In addition, it would be valuable for further studies on structure-activity relationship of polysaccharides obtained by different root parts of A. sinensis.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Quan-Xing Jiang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xi Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yang-Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xing-Fu Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Bing Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
8
|
ZHANG M, XING L, WANG Y, LUO R, LI X, DONG J. Anti-fatigue activities of anthocyanins from Lycium ruthenicum Murry. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.242703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Lijie XING
- Xinjiang Academy of Agriculture and Reclamation Science, China; Xinjiang production and construction corps institute for food inspection, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shihezi), China
| | - Yuan WANG
- Xinjiang Academy of Agriculture and Reclamation Science, China; Xinjiang production and construction corps institute for food inspection, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shihezi), China
| | - Ruifeng LUO
- Xinjiang Academy of Agriculture and Reclamation Science, China; Xinjiang production and construction corps institute for food inspection, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shihezi), China
| | - Xianyi LI
- Xinjiang Academy of Agriculture and Reclamation Science, China; Xinjiang production and construction corps institute for food inspection, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products (Shihezi), China
| | | |
Collapse
|
9
|
Ji P, Li CC, Wei YM, Hua YL, Yao WL, Wu FL, Zhang XS, Yuan ZW, Zhao NS, Zhang YH, Wen YQ. A new method providing complementary explanation of the blood-enriching function and mechanism of unprocessed Angelica sinensis and its four kinds of processed products based on tissue-integrated metabolomics and confirmatory analysis. Biomed Chromatogr 2021; 36:e5252. [PMID: 34591996 DOI: 10.1002/bmc.5252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/05/2022]
Abstract
Angelica sinensis (AS) is a common Traditional Chinese Medicine used for tonifying blood in China. Unprocessed AS and its four kinds of processed products (ASs) are used to treat blood deficiency syndrome in the country. The different blood-tonifying mechanisms of ASs remain unclear. In this work, a novel method integrating metabolomics and hematological and biochemical parameters was established to provide a complementary explanation of blood supplementation mechanism of ASs. Our results revealed that different ASs exhibited various blood supplementation effect, and that AS parched with alcohol demonstrated the best blood supplementation effect. Eight metabolites from liver tissue and 12 metabolites from spleen tissue were considered to be potential biomarkers. These biomarkers were involved in four metabolic pathways. Correlation analysis results showed that l-aspartic acid and l-alanine (spleen tissue), linoleic acid, and l-cystathionine (liver tissue) exhibited a high positive or negative correlation with the aforesaid biochemical indicators. The blood-supplementation effect mechanism of ASs were related to four metabolic pathways. l-Aspartic acid and l-alanine (spleen tissue), linoleic acid, and l-cystathionine (liver tissue) were the four key metabolites associated with the blood supplementation effect of ASs. This study gives a complementary explanation of the blood supplementation effect and mechanism of action of ASs.
Collapse
Affiliation(s)
- Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Chen-Chen Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Fan-Lin Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Xiao-Song Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Zi-Wen Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Nian-Shou Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Ya-Hui Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| | - Yan-Qiao Wen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Anning district, PR China
| |
Collapse
|
10
|
Gao H, Ding L, Liu R, Zheng X, Xia X, Wang F, Qi J, Tong W, Qiu Y. Characterization of Anoectochilus roxburghii polysaccharide and its therapeutic effect on type 2 diabetic mice. Int J Biol Macromol 2021; 179:259-269. [PMID: 33675836 DOI: 10.1016/j.ijbiomac.2021.02.217] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 02/05/2023]
Abstract
Anoectochilus roxburghii is a traditional herb in China that can be potentially used to treat diabetes. A novel polysaccharide ARLP-W was isolated from Anoectochilus roxburghii by chromatography on DEAE-52 cellulose. Chemical analysis indicated that ARLP-W (8.1 × 104 Da) was mainly composed of mannose and glucose. The main linkages of glycosidic bonds of ARLP-W were β-1, 4-Manp and α-1, 4-Glcp. The terminal Glcp was connected to Manp-via O-3. RT-qPCR and western blotting analysis showed that ARLP-W caused a significant reduction in the levels of the key gluconeogenesis enzymes phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase) in the liver. The results of the insulin resistance tests indicated that ARLP-W increased glucose absorption. These results indicate that ARLP-W has a good therapeutic effect on type 2 diabetes and can assist with further development and application treatment of diabetes.
Collapse
Affiliation(s)
- Huashan Gao
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Linlin Ding
- College of Life Science, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Rui Liu
- College of chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinhua Zheng
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Xichao Xia
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Fuan Wang
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Jinxu Qi
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Weishuang Tong
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China.
| | - Yuanhao Qiu
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, Henan 467000, China.
| |
Collapse
|
11
|
Effects of Traditional Chinese Medication-Based Bioactive Compounds on Cellular and Molecular Mechanisms of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3617498. [PMID: 34093958 PMCID: PMC8139859 DOI: 10.1155/2021/3617498] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 04/28/2021] [Indexed: 12/21/2022]
Abstract
The oxidative stress reaction is the imbalance between oxidation and antioxidation in the body, resulting in excessive production of oxygen free radicals in the body that cannot be removed, leading to excessive oxidation of the body, and causing damage to cells and tissues. A large number of studies have shown that oxidative stress is involved in the pathological process of many diseases, so inhibiting oxidative stress, that is, antioxidation, is of great significance for the treatment of diseases. Studies have shown that many traditional Chinese medications contain antioxidant active bioactive compounds, but the mechanisms of those compounds are different and complicated. Therefore, by summarizing the literature on antioxidant activity of traditional Chinese medication-based bioactive compounds in recent years, our review systematically elaborates the main antioxidant bioactive compounds contained in traditional Chinese medication and their mechanisms, so as to provide references for the subsequent research.
Collapse
|
12
|
Bi SJ, Fu RJ, Li JJ, Chen YY, Tang YP. The Bioactivities and Potential Clinical Values of Angelica Sinensis Polysaccharides. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21997321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Angelica sinensis Radix (ASR), one of the most commonly used traditional Chinese medicines, contains many chemical components such as polysaccharides, volatile oil, flavonoids, amino acids, and organic acids, among which polysaccharides play an indispensable role in the therapeutic effect of ASR. A. sinensis polysaccharide (ASP) has many biological activities, for instance, hematopoietic, anti-tumor, and liver protection, which are closely related to the treatment of human diseases such as chronic anemia, leukemia, and diabetes. In addition, there are excellent application prospects for drug delivery in nanoparticles. This paper reviews the chemical compositions, extraction methods, biological activity, action mechanism, potential clinical applications, nanoparticles, and research prospect of ASP from 2010 to 2020, so as to provide references for its further development.
Collapse
Affiliation(s)
- Shi-Jie Bi
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Jia-Jia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| |
Collapse
|
13
|
Wang K, Wang J, Song M, Wang H, Xia N, Zhang Y. Angelica sinensis polysaccharide attenuates CCl 4-induced liver fibrosis via the IL-22/STAT3 pathway. Int J Biol Macromol 2020; 162:273-283. [PMID: 32569681 DOI: 10.1016/j.ijbiomac.2020.06.166] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Angelica sinensis polysaccharide (ASP) has hepatoprotective effects in liver injury models. However, its role and mechanism in chronic liver fibrosis have not been fully elucidated. In this study, a carbon tetrachloride (CCl4)-induced chronic liver fibrosis mouse model was established. The results showed that ASP treatment reduced serum alanine aminotransferase by approximately 50% and liver fibrosis areas by approximately 70%. Hepatic stellate cell (HSC) activation was inhibited in ASP-treated mice. Furthermore, the mechanism was studied in-depth, focusing on the interleukin 22/signal transducer and activator of transcription 3 (IL-22/STAT3) axis. Concentrations of 50 μg/ml and 100 μg/ml ASP induced the secretion of IL-22 in vitro, which further increased at a concentration of 200 μg/ml. Moreover, in vivo data showed that ASP significantly promoted IL-22 production in splenocytes and liver tissues. The antifibrotic effects of ASP were abolished after IL-22 neutralization. In addition, ASP activated the STAT3 pathway in the liver, as demonstrated by a 2-fold increase compared to that of the CCl4 group, which was abrogated by the IL-22 antibody. Subsequently, we showed that the antifibrotic effects of ASP were abrogated by blocking STAT3 with S3I-201. In conclusion, ASP effectively alleviates chronic liver fibrosis by inhibiting HSC activation through the IL-22/STAT3 pathway.
Collapse
Affiliation(s)
- Kaiping Wang
- Hubei Key Laboratory of Nature Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Junfeng Wang
- Hubei Key Laboratory of Nature Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzi Song
- Hubei Key Laboratory of Nature Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, China
| | - Hanxiang Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Wang J, Zhang M, Gou Z, Jiang S, Zhang Y, Wang M, Tang X, Xu B. The Effect of Camellia oleifera Cake Polysaccharides on Growth Performance, Carcass Traits, Meat Quality, Blood Profile, and Caecum Microorganisms in Yellow Broilers. Animals (Basel) 2020; 10:ani10020266. [PMID: 32046177 PMCID: PMC7070595 DOI: 10.3390/ani10020266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Plant originated polysaccharides used as feed additives have gradually become popular for the health and nutrition of broilers. In the present study, polysaccharides from Camellia oleifera cake (CCP) were added to the daily diet of yellow broilers. Our results indicated that the immunity of the broilers was boosted due to the increasing weight or index of gizzard, spleen, and the thymus. CCP treatment improved the juiciness and changed the meat color of broilers by increasing the cooking loss and the yellowness. Additionally, the structure of intestinal flora altered as a response to the CCP supplementation, which favored the health of broilers. Results have revealed that CCP has potential and development value as a new type of feed additive for broilers. Abstract The study was carried out to evaluate the influence of polysaccharides from Camellia oleifera cake (CCP) in Lingnan yellow broilers diet from 1 to 50 days. Growth performance, carcass traits, meat quality, blood profile, and caecum microorganisms were characterized by three different levels of 0, 200 and 800 mg/kg CCP supplementation. Dietary treatment did not affect the productive trait from 1 to 50 days of age, except that average daily feed intake decreased at 42 days of age (p < 0.05). Additionally, the effects of CCP on various organs were different. The weight (p < 0.01) and index (p < 0.05) of bursa of Fabricius gradually decreased with the higher CCP supplementation at 21 days of the broilers diet. The gizzard weights were all higher when the broilers were fed with higher CCP concentration at 21, 42, and 50 days, respectively (p < 0.05). The weight and index of the spleen increased most with low CCP concentration (200 mg/kg) at 42 and 50 days. Moreover, CCP addition had no significant effect on meat quality except cooking loss (P < 0.05) and yellowness of meat color (p < 0.05). In the study of blood metabolism at 50 days of broilers, the concentration of calcium (p < 0.01), total cholesterol (p < 0.05) and uric acid (p < 0.01) decreased with higher CCP supplementation. CCP increased the albumin concentration (p < 0.001) that was highest at 200 mg/kg CCP supplementation. The addition of CCP increased the number of Lactobacillus and Enterococcus faecalis (p < 0.01) in the caecum of broilers, and had the potential to inhibit the growth of Escherichia coli (p = 0.11). Results showed that CCP played a role in improving intestinal flora and the immunity of yellow broilers.
Collapse
Affiliation(s)
- Jing Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (J.W.); (M.Z.); (M.W.); (X.T.); (B.X.)
| | - Mengyu Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (J.W.); (M.Z.); (M.W.); (X.T.); (B.X.)
| | - Zhongyong Gou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (Z.G.); (S.J.)
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (Z.G.); (S.J.)
| | - Yingzhong Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (J.W.); (M.Z.); (M.W.); (X.T.); (B.X.)
- Correspondence: ; Tel.: +86-020-8707-1272
| | - Minghuai Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (J.W.); (M.Z.); (M.W.); (X.T.); (B.X.)
| | - Xuxiao Tang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (J.W.); (M.Z.); (M.W.); (X.T.); (B.X.)
| | - Baohua Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (J.W.); (M.Z.); (M.W.); (X.T.); (B.X.)
| |
Collapse
|
15
|
Xue Y, Dongmei Li, Yige Zhang, Hang Gao, Li H. Angelica polysaccharide moderates hypoxia-evoked apoptosis and autophagy in rat neural stem cells by downregulation of BNIP3. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2492-2499. [PMID: 31208217 DOI: 10.1080/21691401.2019.1623228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yongzhen Xue
- Department of Children’s Healthcare, East Medical District of Linyi People’s Hospital, Linyi, China
| | - Dongmei Li
- Department of Internal Medicine, Shandong Provincial Coal Linyi Hot Springs Sanatorium Hospital, Linyi, China
| | - Yige Zhang
- Classe Six of Clinical Five-Year System, Medical Department of Qingdao University, Qingdao, China
| | - Hang Gao
- Class eight of Clinical Medicine, Basic Medical College of Jining Medical University, Jining, China
| | - Hui Li
- Department of Children’s Rehabilitation, Linyi Women’s and Children’s Hospital, Linyi, China
| |
Collapse
|
16
|
Yuan Z, Zhong L, Hua Y, Ji P, Yao W, Ma Q, Zhang X, Wen Y, Yang L, Wei Y. Metabolomics study on promoting blood circulation and ameliorating blood stasis: Investigating the mechanism of Angelica sinensis
and its processed products. Biomed Chromatogr 2019; 33:e4457. [DOI: 10.1002/bmc.4457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/12/2018] [Accepted: 11/29/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Ziwen Yuan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| | - Lijia Zhong
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| | - Yongli Hua
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| | - Peng Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| | - Wanling Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| | - Qi Ma
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| | - Xiaosong Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| | - Yanqiao Wen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| | - Lihong Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| | - Yanming Wei
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine; Gansu Agricultural University; Lanzhou 730070 China
| |
Collapse
|
17
|
Gan F, Yang Y, Chen Y, Che C, Pan C, Huang K. Bush sophora root polysaccharide could help prevent aflatoxin B1-induced hepatotoxicity in the primary chicken hepatocytes. Toxicon 2018; 150:180-187. [PMID: 29857086 DOI: 10.1016/j.toxicon.2018.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/14/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022]
Abstract
The aim of this study was to evaluate the effects of bush sophora root polysaccharide (BSRPS) on the aflatoxin B1 (AFB1)-induced hepatotoxicity and to explore the underlying mechanisms. The primary chicken hepatocytes were used as the model in the present experiment. The results showed that AFB1 induced hepatotoxicity of chicken hepatocytes in a dose dependent manner as demonstrated by decreasing cell viability and increasing LDH activity, ALT and AST levels. AFB1 at 0.16 μM significantly increased the levels of hepatic cytochrome P450 1A5 (CYP450 1A5) mRNA and malondialdehyde (MDA) and decreased the activity and mRNA level of manganese superoxide dismutase(SOD2) and the glutathione peroxidases (GSH-Px) activity in the hepatocytes compared with the blank control. BSRPS at 8.93 μM, 17.86 μM, and 35.72 μM supplementation could significantly reverse the above-mentioned changes induced by AFB1, and 17.86 μM of BSRPS has the largest effects on protecting the AFB1-induced hepatocytes damage. Knock-down of SOD2 by SOD2-specific siRNA significantly eliminated the protective effects of BSRPS on AFB1-induced the increase of CYP450 1A5 mRNA levels and hepatotoxicity. These results suggested that the BSRPS has protective effects on AFB1-induced hepatotoxicity by down-regulating CYP450 1A5 mRNA level via up-regulating SOD2 expression in the primary chicken hepatocytes.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yulan Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yun Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Chaoping Che
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Cuiling Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
18
|
Ji P, Wei Y, Hua Y, Zhang X, Yao W, Ma Q, Yuan Z, Wen Y, Yang C. A novel approach using metabolomics coupled with hematological and biochemical parameters to explain the enriching-blood effect and mechanism of unprocessed Angelica sinensis and its 4 kinds of processed products. JOURNAL OF ETHNOPHARMACOLOGY 2018; 211:101-116. [PMID: 28958590 DOI: 10.1016/j.jep.2017.09.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/19/2017] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica sinensis (AS), root of Angelica sinensis (Oliv.) Diels, an important kind of Chinese traditional herbal medicine, has been used for women to enrich the blood for thousands of years. It is mainly distributed in Gansu province of China. According to Traditional Chinese medicine usage, unprocessed AS (UAS) and its 4 kinds of processed products (ASs) are all used to treat different diseases or syndromes. The difference among the enriching-blood effects of ASs is unclear. And their exact mechanisms of enriching the blood are not fully understood. AIM OF THE STUDY In this study, our aim is to compare the enriching-blood effect and explain the related mechanism of ASs, to lay the foundation for the blood deficiency diagnosis and the rational use of ASs in the clinic. MATERIALS AND METHODS ASs were used to intervene the blood deficiency syndrome model mice induced by acetyl phenylhydrazine (APH) and cyclophosphamide (CTX). A novel approach using metabolomics coupled with hematological and biochemical parameters to explain the enriching-blood effect and mechanism of ASs was established. The blood routine examination, ATPase, glucose-6-phosphate dehydrogenase, methemoglobin, glutathion peroxidase, glutathione reductase, and erythropoietin were measured. Two biofluids (plasma and urine) obtained from mice were analyzed with GC-MS. Distinct changes in metabolite patterns of the two biofluids after mice were induced by APH and CTX, and mice were intervened with ASs were analyzed using partial least squares-discriminant analysis. Potential biomarkers were found using a novel method including variable importance in the projection (VIP) >1.0, volcano plot analysis, and significance analysis of microarray. RESULTS The results of hematological, biochemical parameters and the integrated metabolomics all showed the blood deficiency syndrome model was built successfully, ASs exhibited different degree of enriching-blood effect, and AS pached with alcohol (AAS) exhibited the best enriching-blood effect. 16 metabolites in the plasma and 8 metabolites in the urine were considered as the potential biomarkers. These metabolites were involved in 7 metabolic pathways which were concerned with the different enriching-blood effect mechanisms of ASs. The correlation analysis results confirmed L-Valine (plasma), Linoleic acid (urine), L-Aspartic acid (urine) and Cholesterol (urine) were strong positive or negative associated with biochemical indicators. CONCLUSIONS The enriching-blood effects of ASs are different. The pathological mechanisms of blood deficiency syndrome and the enriching-blood effect mechanism of ASs are involved in 7 metabolic pathways. L-Valine (plasma), Linoleic acid (urine), L-Aspartic acid (urine), Cholesterol (urine) are four important biomarkers being related to the enriching-blood effect of ASs. The combination of VIP, volcano plot analysis and significance analysis of microarray is suitable for screening biomarkers in metabolomics study. They can lay the foundation for clinical practice.
Collapse
Affiliation(s)
- Peng Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yanming Wei
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Yongli Hua
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Xiaosong Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Wanling Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Qi Ma
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Ziwen Yuan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yanqiao Wen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Chaoxue Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
19
|
Angelica sinensis Polysaccharides Ameliorate Stress-Induced Premature Senescence of Hematopoietic Cell via Protecting Bone Marrow Stromal Cells from Oxidative Injuries Caused by 5-Fluorouracil. Int J Mol Sci 2017; 18:ijms18112265. [PMID: 29143796 PMCID: PMC5713235 DOI: 10.3390/ijms18112265] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023] Open
Abstract
Myelosuppression is the most common complication of chemotherapy. Decline of self-renewal capacity and stress-induced premature senescence (SIPS) of hematopoietic stem cells (HSCs) induced by chemotherapeutic agents may be the cause of long-term myelosuppression after chemotherapy. Whether the mechanism of SIPS of hematopoietic cells relates to chemotherapeutic injury occurred in hematopoietic microenvironment (HM) is still not well elucidated. This study explored the protective effect of Angelica sinensis polysaccharide (ASP), an acetone extract polysaccharide found as the major effective ingredients of a traditional Chinese medicinal herb named Chinese Angelica (Dong Quai), on oxidative damage of homo sapiens bone marrow/stroma cell line (HS-5) caused by 5-fluorouracil (5-FU), and the effect of ASP relieving oxidative stress in HM on SIPS of hematopoietic cells. Tumor-suppressive doses of 5-FU inhibited the growth of HS-5 in a dose-dependent and time-dependent manner. 5-FU induced HS-5 apoptosis and also accumulated cellular hallmarks of senescence including cell cycle arrest and typical senescence-associated β-galactosidase positive staining. The intracellular reactive oxygen species (ROS) was increased in 5-FU treated HS-5 cells and coinstantaneous with attenuated antioxidant capacity marked by superoxide dismutase and glutathione peroxidase. Oxidative stress initiated DNA damage indicated by increased γH2AX and 8-OHdG. Oxidative damage of HS-5 cells resulted in declined hematopoietic stimulating factors including stem cell factor (SCF), stromal cell-derived factor (SDF), and granulocyte-macrophage colony-stimulating factor (GM-CSF), however, elevated inflammatory chemokines such as RANTES. In addition, gap junction channel protein expression and mediated intercellular communications were attenuated after 5-FU treatment. Significantly, co-culture on 5-FU treated HS-5 feeder layer resulted in less quantity of human umbilical cord blood-derived hematopoietic cells and CD34+ hematopoietic stem/progenitor cells (HSPCs), and SIPS of hematopoietic cells. However, it is noteworthy that ASP ameliorated SIPS of hematopoietic cells by the mechanism of protecting bone marrow stromal cells from chemotherapeutic injury via mitigating oxidative damage of stromal cells and improving their hematopoietic function. This study provides a new strategy to alleviate the complication of conventional cancer therapy using chemotherapeutic agents.
Collapse
|
20
|
Tian S, Hao C, Xu G, Yang J, Sun R. Optimization conditions for extracting polysaccharide from Angelica sinensis and its antioxidant activities. J Food Drug Anal 2017; 25:766-775. [PMID: 28987352 PMCID: PMC9328866 DOI: 10.1016/j.jfda.2016.08.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 11/23/2022] Open
Abstract
In this study, polysaccharides from Angelica sinensis were extracted using the ultrasound-assisted extraction method. Based on the results of single factor experiments and orthogonal tests, three independent variables-water/raw material ratio, ultrasound time, and ultrasound power-were selected for investigation. Then, we used response surface methodology to optimize the extraction conditions. The experimental data were fitted to a quadratic equation using multiple regression analysis, and the optimal conditions were as follows: water/raw material ratio, 43.31 mL/g; ultrasonic time, 28.06 minutes; power, 396.83 W. Under such conditions, the polysaccharide yield was 21.89±0.21%, which was well matched with the predicted yield. In vitro assays, scavenging activity of superoxide anion radicals, hydroxyl radicals, and 2,2-diphenyl-1-picry-hydrazyl radical showed that polysaccharides had certain antioxidant activities and that hydroxyl radicals have a remarkable scavenging capability. Therefore, these studies provide reference for further research and rational development of A. sinensis polysaccharide.
Collapse
Affiliation(s)
- Suyang Tian
- Laboratory of Biophysics and Biomedical Engineering, School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062,
China
- Lintong Middle School, Xi’an 710600,
China
| | - Changchun Hao
- Laboratory of Biophysics and Biomedical Engineering, School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062,
China
| | - Guangkuan Xu
- Laboratory of Biophysics and Biomedical Engineering, School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062,
China
| | - Juanjuan Yang
- Laboratory of Biophysics and Biomedical Engineering, School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062,
China
| | - Runguang Sun
- Laboratory of Biophysics and Biomedical Engineering, School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062,
China
| |
Collapse
|
21
|
Xiang L, Wang J, Zhang G, Rong L, Wu H, Sun S, Guo Y, Yang Y, Lu L, Qu L. Analysis and identification of two similar traditional Chinese medicines by using a three-stage infrared spectroscopy: Ligusticum chuanxiong, Angelica sinensis and their different extracts. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.02.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Mechanisms underlying the effect of polysaccharides in the treatment of type 2 diabetes: A review. Carbohydr Polym 2016; 144:474-94. [DOI: 10.1016/j.carbpol.2016.02.040] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/18/2016] [Accepted: 02/14/2016] [Indexed: 12/11/2022]
|
23
|
Structural analysis and immunoregulation activity comparison of five polysaccharides from Angelica sinensis. Carbohydr Polym 2016; 140:6-12. [DOI: 10.1016/j.carbpol.2015.12.050] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/16/2015] [Accepted: 12/20/2015] [Indexed: 11/19/2022]
|
24
|
Antioxidant and antitumor effects and immunomodulatory activities of crude and purified polyphenol extract from blueberries. Front Chem Sci Eng 2016. [DOI: 10.1007/s11705-016-1553-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Jiao R, Liu Y, Gao H, Xiao J, So KF. The Anti-Oxidant and Antitumor Properties of Plant Polysaccharides. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:463-488. [DOI: 10.1142/s0192415x16500269] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Oxidative stress has been increasingly recognized as a major contributing factor in a variety of human diseases, from inflammation to cancer. Although certain parts of signaling pathways are still under investigation, detailed molecular mechanisms for the induction of diseases have been elucidated, especially the link between excessive oxygen reactive species (ROS) damage and tumorigenesis. Emerging evidence suggests anti-oxidant therapy can play a key role in treating those diseases. Among potential drug resources, plant polysaccharides are natural anti-oxidant constituents important for human health because of their long history in ethnopharmacology, wide availability and few side effects upon consumption. Plant polysaccharides have been shown to possess anti-oxidant, anti-inflammation, cell viability promotion, immune-regulation and antitumor functions in a number of disease models, both in laboratory studies and in the clinic. In this paper, we reviewed the research progress of signaling pathways involved in the initiation and progression of oxidative stress- and cancer-related diseases in humans. The natural sources, structural properties and biological actions of several common plant polysaccharides, including Lycium barbarum, Ginseng, Zizyphus Jujuba, Astragalus lentiginosus, and Ginkgo biloba are discussed in detail, with emphasis on their signaling pathways. All of the mentioned common plant polysaccharides have great potential to treat oxidative stress and cancinogenic disorders in cell models, animal disease models and clinical cases. ROS-centered pathways (e.g. mitochondrial autophagy, MAPK and JNK) and transcription factor-related pathways (e.g. NF-[Formula: see text]B and HIF) are frequently utilized by these polysaccharides with or without the further involvement of inflammatory and death receptor pathways. Some of the polysaccharides may also influence tumorigenic pathways, such as Wnt and p53 to play their anti-tumor roles. In addition, current problems and future directions for the application of those plant polysaccharides are also listed and discussed.
Collapse
Affiliation(s)
- Rui Jiao
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Yingxia Liu
- State Key Discipline of Infectious Diseases, Department of Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jia Xiao
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
- State Key Discipline of Infectious Diseases, Department of Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, China
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong
| | - Kwok Fai So
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- GMH Institute of Central Nervous System Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
26
|
Hsu CH, Lin CL, Wang SE, Sheu SJ, Chien CT, Wu CH. Oral treatment with herbal formula B401 alleviates penile toxicity in aging mice with manganism. Clin Interv Aging 2015; 10:907-18. [PMID: 26064043 PMCID: PMC4455845 DOI: 10.2147/cia.s82026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The present study aims to elucidate the roles of nitric oxide synthase activity, oxidative stress, inflammation, and apoptosis in penile toxicity of aging mice associated with excess manganese (Mn) treatment and to investigate the effect of oral treatment with the herbal formula B401 in this respect. ICR strain mice were divided into two groups: the vehicle (sham group) and the B401 (50 mg/kg) group. The mice were orally treated for 5 days; then a high single dose of MnCl2 (100 mg/kg) was given by intraperitoneal injection to the mice. One day after MnCl2 treatment, corpora cavernosal tissues of both Mn-treated mice and their controls were simultaneously sampled to examine their immunohistochemical staining and Western blot analysis. Nitric oxide (NO) production, levels of neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS), expression levels of factors governing angiogenesis (vascular endothelial growth factor), oxidative stress (catalase, superoxide dismutase 2,4-hydroxynonenal), inflammation (tumor necrosis factor alpha), apoptosis (B-cell lymphoma 2 [Bcl-2], Bcl-2-associated X protein [Bax], cleaved poly(adenosine diphosphate-ribose) polymerase [c-PARP], cytochrome C, caspase-12, and caspase-3) were evaluated in penile corpus cavernosum of the mice. We found that penile toxicity in the mice was enhanced under excess Mn treatment through reduction of NOS activity and increase in oxidative stress, inflammation, and apoptosis in the penile cavernous tissue. Furthermore, the penile toxicity in mice with manganism was alleviated by oral B401 treatment through enhancement of both nitric oxide synthesis and angiogenesis, with simultaneous reduction of oxidative stress, inflammation, and apoptosis in penile corpus cavernosum. We suggest that the herbal formula B401 may serve as a potential dietotherapeutic supplement for penile toxicity or dysfunction in aging males.
Collapse
Affiliation(s)
- Chih-Hsiang Hsu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-Lung Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Sheue-Er Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Chiang-Ting Chien
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chung-Hsin Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
27
|
Lv G, Hu D, Zhao J, Li S. Quality control of sweet medicines based on gas chromatography-mass spectrometry. Drug Discov Ther 2015; 9:94-106. [DOI: 10.5582/ddt.2015.01020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Guangping Lv
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau
| | - Dejun Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau
| | - Shaoping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau
| |
Collapse
|