1
|
Guo J, Yao L, Wang X, Song R, Yang B, Jin D, Guo J, Wu G. Dual-Responsive Antibacterial Hydrogel Patch for Chronic-Infected Wound Healing. Biomacromolecules 2024. [PMID: 39418536 DOI: 10.1021/acs.biomac.4c00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Bacterial infections in chronic wounds, such as bedsores and diabetic ulcers, present significant healthcare challenges. Excessive antibiotic use leads to drug resistance and lacks precision for targeted wound treatment. Our study introduces an innovative solution: a near-infrared (NIR) and pH dual-responsive hydrogel patch incorporating regenerated silk fibroin (RSF) and molybdenum dioxide (MoO2) nanoparticles (NPs), offering enhanced mechanical properties, precise drug release, and superior antibacterial efficacy. The dual-responsive hydrogel patch allows for precise control over antibiotic release triggered by NIR light and pH fluctuations, enabling tailored treatment for infected wounds. First, the pH-responsive characteristic matches the alkaline environment of the infected wound, ensuring on-demand antibiotic release. Second, NIR exposure accelerates antibiotic release, enhancing wound healing and providing additional antibacterial effects. Additionally, the patch further blocks bacterial infection, promotes wound repair, and degrades in sync with the healing process, further bolstering the efficacy against wound infections.
Collapse
Affiliation(s)
- Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang 550025, P. R. China
- College of Agriculture, Anshun University, Anshun 561000, P. R. China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Liang Yao
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04 V1W8, Ireland
| | - Xianqing Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04 V1W8, Ireland
| | - Rijian Song
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin D04 V1W8, Ireland
| | - Bo Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Daochao Jin
- Institute of Entomology, Guizhou University, Guiyang 550025, P. R. China
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang 550025, P. R. China
| | - Guohua Wu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| |
Collapse
|
2
|
Wong K, Tan XH, Li J, Hui JHP, Goh JCH. An In Vitro Macrophage Response Study of Silk Fibroin and Silk Fibroin/Nano-Hydroxyapatite Scaffolds for Tissue Regeneration Application. ACS Biomater Sci Eng 2024. [PMID: 39381957 DOI: 10.1021/acsbiomaterials.4c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
In recent years, silk fibroin (SF) has been incorporated with low crystallinity nanohydroxyapatite (nHA) as a scaffold for various tissue regeneration applications due to the mechanical strength of SF and osteoconductive properties of nHA. However, currently, there is a lack of understanding of the immune response toward the degradation products of SF with nHA composite after implantation. It is known that particulate fragments from the degradation of a biomaterial can trigger an immune response. As the scaffold is made of degradable materials, the degradation products may contribute to the inflammation. Therefore, in this study, the effects of the enzymatic degradation of the SF/nHA scaffold on macrophage response were investigated in comparison to the control SF scaffold. Since the degradation products of a scaffold can influence macrophage polarization, it can be hypothesized that as the SF and SF/nHA scaffolds were degraded in vitro using protease XIV solution, the degradation products can contribute to the polarization of THP-1-derived macrophages from pro-inflammatory M1 to anti-inflammatory M2 phenotype. The results demonstrated that the initial (day 1) degradation products of the SF/nHA scaffold elicited a pro-inflammatory response, while the latter (day 24) degradation products of the SF/nHA scaffold elicited an anti-inflammatory response. Moreover, the degradation products from the SF scaffold elicited a higher anti-inflammatory response due to the faster degradation of the SF scaffold and a higher amino acid concentration in the degradation solution. Hence, this paper can help elucidate the contributory effects of the degradation products of SF and SF/nHA scaffolds on macrophage response and provide greater insights into designing silk-based biomaterials with tunable degradation rates that can modulate macrophage response for future tissue regeneration applications.
Collapse
Affiliation(s)
- Kallista Wong
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - Xuan Hao Tan
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - Jun Li
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - James Hoi Po Hui
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - James Cho Hong Goh
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| |
Collapse
|
3
|
Park H, Patil TV, Dutta SD, Lee J, Ganguly K, Randhawa A, Kim H, Lim KT. Extracellular Matrix-Bioinspired Anisotropic Topographical Cues of Electrospun Nanofibers: A Strategy of Wound Healing through Macrophage Polarization. Adv Healthc Mater 2024; 13:e2304114. [PMID: 38295299 DOI: 10.1002/adhm.202304114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Indexed: 02/02/2024]
Abstract
The skin serves as the body's outermost barrier and is the largest organ, providing protection not only to the body but also to various internal organs. Owing to continuous exposure to various external factors, it is susceptible to damage that can range from simple to severe, including serious types of wounds such as burns or chronic wounds. Macrophages play a crucial role in the entire wound-healing process and contribute significantly to skin regeneration. Initially, M1 macrophages infiltrate to phagocytose bacteria, debris, and dead cells in fresh wounds. As tissue repair is activated, M2 macrophages are promoted, reducing inflammation and facilitating restoration of the dermis and epidermis to regenerate the tissue. This suggests that extracellular matrix (ECM) promotes cell adhesion, proliferation, migrationand macrophage polarization. Among the numerous strategies, electrospinning is a versatile technique for obtaining ECM-mimicking structures with anisotropic and isotropic topologies of micro/nanofibers. Various electrospun biomaterials influence macrophage polarization based on their isotropic or anisotropic topologies. Moreover, these fibers possess a high surface-area-to-volume ratio, promoting the effective exchange of vital nutrients and oxygen, which are crucial for cell viability and tissue regeneration. Micro/nanofibers with diverse physical and chemical properties can be tailored to polarize macrophages toward skin regeneration and wound healing, depending on specific requirements. This review describes the significance of micro/nanostructures for activating macrophages and promoting wound healing.
Collapse
Affiliation(s)
- Hyeonseo Park
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hojin Kim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
4
|
Latiyan S, Kumar TSS, Doble M, Kennedy JF. Perspectives of nanofibrous wound dressings based on glucans and galactans - A review. Int J Biol Macromol 2023:125358. [PMID: 37330091 DOI: 10.1016/j.ijbiomac.2023.125358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Wound healing is a complex and dynamic process that needs an appropriate environment to overcome infection and inflammation to progress well. Wounds lead to morbidity, mortality, and a significant economic burden, often due to the non-availability of suitable treatments. Hence, this field has lured the attention of researchers and pharmaceutical industries for decades. As a result, the global wound care market is expected to be 27.8 billion USD by 2026 from 19.3 billion USD in 2021, at a compound annual growth rate (CAGR) of 7.6 %. Wound dressings have emerged as an effective treatment to maintain moisture, protect from pathogens, and impede wound healing. However, synthetic polymer-based dressings fail to comprehensively address optimal and quick regeneration requirements. Natural polymers like glucan and galactan-based carbohydrate dressings have received much attention due to their inherent biocompatibility, biodegradability, inexpensiveness, and natural abundance. Also, nanofibrous mesh supports better proliferation and migration of fibroblasts because of their large surface area and similarity to the extracellular matrix (ECM). Thus, nanostructured dressings derived from glucans and galactans (i.e., chitosan, agar/agarose, pullulan, curdlan, carrageenan, etc.) can overcome the limitations associated with traditional wound dressings. However, they require further development pertaining to the wireless determination of wound bed status and its clinical assessment. The present review intends to provide insight into such carbohydrate-based nanofibrous dressings and their prospects, along with some clinical case studies.
Collapse
Affiliation(s)
- Sachin Latiyan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India; Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - T S Sampath Kumar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - John F Kennedy
- Chembiotech Labs, Institute of Science and Technology, Kyrewood House, Tenbury Wells WR158FF, UK
| |
Collapse
|
5
|
Preparation and Characterization of Nanofibrous Membranes Electro-Spun from Blended Poly(l-lactide-co-ε-caprolactone) and Recombinant Spider Silk Protein as Potential Skin Regeneration Scaffold. Int J Mol Sci 2022; 23:ijms232214055. [PMID: 36430534 PMCID: PMC9698895 DOI: 10.3390/ijms232214055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Biomaterial scaffolding serves as an important strategy in skin tissue engineering. In this research, recombinant spider silk protein (RSSP) and poly(L-lactide-co-ε-caprolactone) (PLCL) were blended in different ratios to fabricate nanofibrous membranes as potential skin regeneration scaffolds with an electro-spinning process. Scanning electron microscopy (SEM), water contact angles measurement, Fourier transform infrared (FTIR) spectroscopy, wide angle X-ray diffraction (WAXD), tensile mechanical tests and thermo-gravimetric analysis (TGA) were carried out to characterize the nanofibrous membranes. The results showed that the blending of RSSP greatly decreased the nanofibers' average diameter, enhanced the hydrophilicity, changed the microstructure and thermal properties, and could enable tailored mechanical properties of the nanofibrous membranes. Among the blended membranes, the PLCL/RSSP (75/25) membrane was chosen for further investigation on biocompatibility. The results of hemolysis assays and for proliferation of human foreskin fibroblast cells (hFFCs) confirmed the membranes potential use as skin-regeneration scaffolds. Subsequent culture of mouse embryonic fibroblast cells (NIH-3T3) demonstrated the feasibility of the blended membranes as a human epidermal growth factor (hEGF) delivery matrix. The PLCL/RSSP (75/25) membrane possessed good properties comparable to those of human skin with high biocompatibility and the ability of hEGF delivery. Further studies can be carried out on such membranes with chemical or genetic modifications to make better scaffolds for skin regeneration.
Collapse
|
6
|
Photocrosslinkable Silk-Based Biomaterials for Regenerative Medicine and Healthcare Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Salehi AOM, Keshel SH, Rafienia M, Nourbakhsh MS, Baradaran-Rafii A. Promoting keratocyte stem like cell proliferation and differentiation by aligned polycaprolactone-silk fibroin fibers containing Aloe vera. BIOMATERIALS ADVANCES 2022; 137:212840. [PMID: 35929269 DOI: 10.1016/j.bioadv.2022.212840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/04/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
There is a long history behind applying biological macromolecules like Aloe vera (AV) in regenerative medicine; endowed with anti-inflammatory and antimicrobial activities besides improving immune activity, AV has always been of particular interest to regenerate/reconstruct injuries and burns. In the present study, aligned electrospun polycaprolactone (PCL)-silk fibroin (SF) fibers containing different percentages of AV (0, 2.5, 5, and 7.5%wt) were fabricated for stromal regeneration. The results illustrated that a uniform bead-free structure was obtained, and the AV incorporation decreased the mean fiber diameter from 552 down to 182 nm and led to more alignment in the fibers. The Young's modulus raised from 4.96 to 5.26 MPa by higher amount of AV up to 5%wt. It is noteworthy that both the fiber alignment and AV affected the scaffolds' transparency and water uptake to increase. The human stromal keratocyte cells (hSKC)s culture revealed that the addition of AV and morphological properties of scaffolds encouraged cell adhesion and proliferation. The mRNA expression level for keratocan and ALDH3A1 and immunocytochemistry F-actin revealed the positive effect of AV on hSKCs differentiation. Our study indicated the promising potential of AV as a biological macromolecule for stromal tissue regeneration.
Collapse
Affiliation(s)
- Amin Orash Mahmoud Salehi
- Biomaterials Group, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran; Department of Biomechatronics Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Saeed Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran 19857-17443, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| | - Mohammad Sadegh Nourbakhsh
- Biomaterials Group, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran; Department of Materials and Metallurgical Engineering, Semnan University, Semnan 35131-19111, Iran.
| | - Alireza Baradaran-Rafii
- Ophthalmic Research Center, Department of Ophthalmology, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 19857-17443, USA.
| |
Collapse
|
8
|
Deng X, Gould M, Ali MA. A review of current advancements for wound healing: Biomaterial applications and medical devices. J Biomed Mater Res B Appl Biomater 2022; 110:2542-2573. [PMID: 35579269 PMCID: PMC9544096 DOI: 10.1002/jbm.b.35086] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complex process that is critical in restoring the skin's barrier function. This process can be interrupted by numerous diseases resulting in chronic wounds that represent a major medical burden. Such wounds fail to follow the stages of healing and are often complicated by a pro‐inflammatory milieu attributed to increased proteinases, hypoxia, and bacterial accumulation. The comprehensive treatment of chronic wounds is still regarded as a significant unmet medical need due to the complex symptoms caused by the metabolic disorder of the wound microenvironment. As a result, several advanced medical devices, such as wound dressings, wearable wound monitors, negative pressure wound therapy devices, and surgical sutures, have been developed to correct the chronic wound environment and achieve skin tissue regeneration. Most medical devices encompass a wide range of products containing natural (e.g., chitosan, keratin, casein, collagen, hyaluronic acid, alginate, and silk fibroin) and synthetic (e.g., polyvinyl alcohol, polyethylene glycol, poly[lactic‐co‐glycolic acid], polycaprolactone, polylactic acid) polymers, as well as bioactive molecules (e.g., chemical drugs, silver, growth factors, stem cells, and plant compounds). This review addresses these medical devices with a focus on biomaterials and applications, aiming to deliver a critical theoretical reference for further research on chronic wound healing.
Collapse
Affiliation(s)
- Xiaoxuan Deng
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Maree Gould
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - M Azam Ali
- Centre for Bioengineering & Nanomedicine (Dunedin), Department of Oral Rehabilitation, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Kharat Z, Amiri Goushki M, Sarvian N, Asad S, Dehghan MM, Kabiri M. Chitosan/PEO nanofibers containing Calendula officinalis extract: Preparation, characterization, in vitro and in vivo evaluation for wound healing applications. Int J Pharm 2021; 609:121132. [PMID: 34563618 DOI: 10.1016/j.ijpharm.2021.121132] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Wound healing is a complex pathophysiological process, highlighting the importance of effective and thorough wound care along with the prevention of wound infection, a major barrier that can slow down or even disrupt the healing process. To date, there are plenty of herbal plants well known and historically supernatural, showing profound wound healing effects. Application of such herbal extracts/ingredients in electrospun nanofiber platforms has shown promising outcomes in improving wound healing process. Based on these facts, we loaded Calendula officinalis extract (CO) in chitosan/polyethylene oxide scaffolds (CS/PEO) by electrospinning. Using SEM, morphology of electrospun scaffolds showed a narrow range of fiber diameter, around 143--252 nm, with uniform and bead-free appearance. FT-IR spectroscopy confirmed the presence of CO extract in nanofibrous scaffolds. Of importance, incorporation of CO extract improved mechanical properties of CS/PEO nanofibers. A 1602 cP reduction in viscosity and a 0.892 ms/cm increase in the conductivity of the solution was observed after addition of the CO extract. CO extract showed strong antibacterial properties with 96% and 94% reduction in Gram positive and Gram negative bacteria, respectively. In vitro studies with fibroblast cells confirmed enhanced proliferation, growth and attachment of the cells. The in vivo and histological analysis of rat wounds, revealed excellent wound healing ability of CS/PEO/CO dressings (87.5 % wound closure after 14 days) via improving collagen synthesis, re-epithelization and remodeling of the tissue. In sum, our findings show that CS/PEO/CO scaffolds can be used as a promising dressing for the treatment of skin wounds.
Collapse
Affiliation(s)
- Zahra Kharat
- Department of Biotechnology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Mehdi Amiri Goushki
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran 14395-1561, Iran
| | - Nazanin Sarvian
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran
| | - Sedigheh Asad
- Department of Biotechnology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran 14155-6455, Iran.
| |
Collapse
|
10
|
Nanotechnologies: An Innovative Tool to Release Natural Extracts with Antimicrobial Properties. Pharmaceutics 2021; 13:pharmaceutics13020230. [PMID: 33562128 PMCID: PMC7915176 DOI: 10.3390/pharmaceutics13020230] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Site-Specific release of active molecules with antimicrobial activity spurred the interest in the development of innovative polymeric nanocarriers. In the preparation of polymeric devices, nanotechnologies usually overcome the inconvenience frequently related to other synthetic strategies. High performing nanocarriers were synthesized using a wide range of starting polymer structures, with tailored features and great chemical versatility. Over the last decade, many antimicrobial substances originating from plants, herbs, and agro-food waste by-products were deeply investigated, significantly catching the interest of the scientific community. In this review, the most innovative strategies to synthesize nanodevices able to release antimicrobial natural extracts were discussed. In this regard, the properties and structure of the starting polymers, either synthetic or natural, as well as the antimicrobial activity of the biomolecules were deeply investigated, outlining the right combination able to inhibit pathogens in specific biological compartments.
Collapse
|
11
|
Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Liang J, Cui L, Li J, Guan S, Zhang K, Li J. Aloe vera: A Medicinal Plant Used in Skin Wound Healing. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:455-474. [PMID: 33066720 DOI: 10.1089/ten.teb.2020.0236] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skin injury is a major problem threatening human physical and mental health, and how to promote wound healing has been the focus. Developing new wound dressings is an important strategy in skin regeneration. Aloe vera is a medicinal plant with a long history, complex constituents, and various pharmacological activities. Many studies have shown that A. vera plays an important role in promoting wound healing. Adding A. vera to wound dressing has become an ideal way. This review will describe the process of skin injury and wound healing and analyze the role of A. vera in wound healing. In addition, the types of wound dressing and the applications of A. vera in wound dressing will be discussed.
Collapse
Affiliation(s)
- Jiaheng Liang
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Longlong Cui
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Jiankang Li
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Shuaimeng Guan
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Jingan Li
- School of Materials Science and Engineering and Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
13
|
Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold. Int J Biol Macromol 2020; 161:377-388. [DOI: 10.1016/j.ijbiomac.2020.06.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
|
14
|
Jensen G, Holloway JL, Stabenfeldt SE. Hyaluronic Acid Biomaterials for Central Nervous System Regenerative Medicine. Cells 2020; 9:E2113. [PMID: 32957463 PMCID: PMC7565873 DOI: 10.3390/cells9092113] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Hyaluronic acid (HA) is a primary component of the brain extracellular matrix and functions through cellular receptors to regulate cell behavior within the central nervous system (CNS). These behaviors, such as migration, proliferation, differentiation, and inflammation contribute to maintenance and homeostasis of the CNS. However, such equilibrium is disrupted following injury or disease leading to significantly altered extracellular matrix milieu and cell functions. This imbalance thereby inhibits inherent homeostatic processes that support critical tissue health and functionality in the CNS. To mitigate the damage sustained by injury/disease, HA-based tissue engineering constructs have been investigated for CNS regenerative medicine applications. HA's effectiveness in tissue healing and regeneration is primarily attributed to its impact on cell signaling and the ease of customizing chemical and mechanical properties. This review focuses on recent findings to highlight the applications of HA-based materials in CNS regenerative medicine.
Collapse
Affiliation(s)
- Gregory Jensen
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85224, USA;
| | - Julianne L. Holloway
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85224, USA;
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
15
|
Kumar SSD, Abrahamse H. Advancement of Nanobiomaterials to Deliver Natural Compounds for Tissue Engineering Applications. Int J Mol Sci 2020; 21:E6752. [PMID: 32942542 PMCID: PMC7555266 DOI: 10.3390/ijms21186752] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Recent advancement in nanotechnology has provided a wide range of benefits in the biological sciences, especially in the field of tissue engineering and wound healing. Nanotechnology provides an easy process for designing nanocarrier-based biomaterials for the purpose and specific needs of tissue engineering applications. Naturally available medicinal compounds have unique clinical benefits, which can be incorporated into nanobiomaterials and enhance their applications in tissue engineering. The choice of using natural compounds in tissue engineering improves treatment modalities and can deal with side effects associated with synthetic drugs. In this review article, we focus on advances in the use of nanobiomaterials to deliver naturally available medicinal compounds for tissue engineering application, including the types of biomaterials, the potential role of nanocarriers, and the various effects of naturally available medicinal compounds incorporated scaffolds in tissue engineering.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
16
|
Marrazzo P, O’Leary C. Repositioning Natural Antioxidants for Therapeutic Applications in Tissue Engineering. Bioengineering (Basel) 2020; 7:E104. [PMID: 32887327 PMCID: PMC7552777 DOI: 10.3390/bioengineering7030104] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
Although a large panel of natural antioxidants demonstrate a protective effect in preventing cellular oxidative stress, their low bioavailability limits therapeutic activity at the targeted injury site. The importance to deliver drug or cells into oxidative microenvironments can be realized with the development of biocompatible redox-modulating materials. The incorporation of antioxidant compounds within implanted biomaterials should be able to retain the antioxidant activity, while also allowing graft survival and tissue recovery. This review summarizes the recent literature reporting the combined role of natural antioxidants with biomaterials. Our review highlights how such functionalization is a promising strategy in tissue engineering to improve the engraftment and promote tissue healing or regeneration.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d’Augusto 237, 47921 Rimini (RN), Italy
| | - Cian O’Leary
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen’s Green, 2 D02 Dublin, Ireland;
- Science Foundation Ireland Advanced Materials and Bioengineering (AMBER) Centre, RCSI, 2 D02 Dublin, Ireland
| |
Collapse
|
17
|
Chouhan D, Mandal BB. Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside. Acta Biomater 2020; 103:24-51. [PMID: 31805409 DOI: 10.1016/j.actbio.2019.11.050] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023]
Abstract
Silk biomaterials are known for biomedical and tissue engineering applications including drug delivery and implantable devices owing to their biocompatible and a wide range of ideal physico-chemical properties. Herein, we present a critical overview of the progress of silk-based matrices in skin regeneration therapeutics with an emphasis on recent innovations and scientific findings. Beginning with a brief description of numerous varieties of silks, the review summarizes our current understanding of the biological properties of silk that help in the wound healing process. Various silk varieties such as silkworm silk fibroin, silk sericin, native spider silk and recombinant silk materials have been explored for cutaneous wound healing applications from the past few decades. With an aim to harness the regenerative properties of silk, numerous strategies have been applied to develop functional bioactive wound dressings and viable bio-artificial skin grafts in recent times. The review examines multiple inherent properties of silk that aid in the critical events of the healing process such as cell migration, cell proliferation, angiogenesis, and re-epithelialization. A detailed insight into the progress of silk-based cellular skin grafts is also provided that discusses various co-culture strategies and development of bilayer and tri-layer human skin equivalent under in vitro conditions. In addition, functionalized silk matrices loaded with bioactive molecules and antibacterial compounds are discussed, which have shown great potential in treating hard-to-heal wounds. Finally, clinical studies performed using silk-based translational products are reviewed that validate their regenerative properties and future applications in this area. STATEMENT OF SIGNIFICANCE: The review article discusses the recent advances in silk-based technologies for wound healing applications, covering various types of silk biomaterials and their properties suitable for wound repair and regeneration. The article demonstrates the progress of silk-based matrices with an update on the patented technologies and clinical advancements over the years. The rationale behind this review is to highlight numerous properties of silk biomaterials that aid in all the critical events of the wound healing process towards skin regeneration. Functionalization strategies to fabricate silk dressings containing bioactive molecules and antimicrobial compounds for drug delivery to the wound bed are discussed. In addition, a separate section describes the approaches taken to generate living human skin equivalent that have recently contributed in the field of skin tissue engineering.
Collapse
|
18
|
Gunes S, Tamburaci S, Tihminlioglu F. A novel bilayer zein/MMT nanocomposite incorporated with H. perforatum oil for wound healing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 31:7. [PMID: 31838599 DOI: 10.1007/s10856-019-6332-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Recently, layered structures composed of nanofibers have gained attention as a novel material to mimic skin tissue in wound healing applications. The aim of this study is to develop a novel hybrid bilayer material composed of zein based composite film and nanofiber layers as a wound dressing material. The upper layer was composed of H. perforatum oil incorporated zein film including MMT and the bottom layer was comprised of 3D electrospun zein/MMT nanofibers to induce wound healing with the controlled release of H. perforatum oil. The bilayer composites were characterized in terms of mechanical test, WVP, water uptake and surface wettability. Antimicrobial activity of the wound dressings against microorganisms were investigated by disc diffusion method. In vitro cytotoxicity of monolayer film and bilayer structure was performed using WST-1 assay on HS2 keratinocyte and 3T3 cell lines. Results indicated that the prepared monolayer films showed appropriate mechanical and gas barrier properties and surface wettability for wound healing. Controlled release of H. perforatum oil was obtained from fabricated membranes up to 48 h. Bilayer membranes showed antimicrobial activity against E. coli, S. aureus, and C. albicans and did not show any toxic effect on NIH3T3 mouse fibroblast and HS2 keratinocyte cell lines. In vitro scratch assay results indicated that H. perforatum oil had a wound healing effect by inducing fibroblast migration. The proliferation study supported these results by increasing fibroblast proliferation on H. perforatum oil loaded bilayer membranes.
Collapse
Affiliation(s)
- Seda Gunes
- Graduate Program of Bioengineering, İzmir Institute of Technology, İzmir, 35430, Turkey
| | - Sedef Tamburaci
- Graduate Program of Bioengineering, İzmir Institute of Technology, İzmir, 35430, Turkey
| | - Funda Tihminlioglu
- Department of Chemical Engineering, İzmir Institute of Technology, İzmir, 35430, Turkey.
| |
Collapse
|
19
|
Deb A, Saikia R, Chowdhury D. Nano-Bioconjugate Film from Aloe vera To Detect Hazardous Chemicals Used in Cosmetics. ACS OMEGA 2019; 4:20394-20401. [PMID: 31815243 PMCID: PMC6894156 DOI: 10.1021/acsomega.9b03280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 05/04/2023]
Abstract
It is of utmost importance to detect hazardous chemicals that affect human health. In this work, a simple method has been developed using a traditional medicinal herb Aloe vera as a carbon source to fabricate a nano-bioconjugate film. The nano-bioconjugate system comprises of A. vera gel itself and sodium alginate to form a fluorescent nano-bioconjugate film. The film was successfully used as an optical "turn-off" sensor in detecting analytes viz. para-Aminobenzoic acid (PABA), benzophenone, hydroquinone, and propylparaben, which are used in cosmetics and are listed as "red-listed" chemicals. The applicability of the fluorescent film in detecting these hazardous chemicals was even assessed with some locally purchased cosmetic samples. Mechanistic insight into the fluorescent quenching shown by nano-bioconjugate film is also discussed. Developments of such a detection system from sustainable sources make it an interesting option for fabricating sensors for hazardous chemicals.
Collapse
Affiliation(s)
- Ankita Deb
- Material Nanochemistry Laboratory,
Physical Sciences Division, Institute of
Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Rasna Saikia
- Material Nanochemistry Laboratory,
Physical Sciences Division, Institute of
Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory,
Physical Sciences Division, Institute of
Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| |
Collapse
|
20
|
Cruz Y, Muñoz E, Gomez-Pachón EY, Morales-Corona J, Olayo-Lortia J, Olayo R, Olayo-Valles R. Electrospun PCL-protein scaffolds coated by pyrrole plasma polymerization. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:832-845. [DOI: 10.1080/09205063.2019.1603338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yeyzon Cruz
- Escuela de Ciencias Químicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia-UPTC. Avenida Central del Norte 39-115 Sede Central Tunja–Boyacá–Colombia
- Departamento de Física, Universidad Autónoma Metropolitana - Iztapalapa, Av. San Rafael Atlixco 186, 09340, Mexico City, Mexico
| | - Efrén Muñoz
- Escuela de Ciencias Químicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia-UPTC. Avenida Central del Norte 39-115 Sede Central Tunja–Boyacá–Colombia
- Grupo de Investigación en desarrollo y aplicación de nuevos materiales-DANUM, Universidad Pedagógica y Tecnológica de Colombia-UPTC
| | - E. Y. Gomez-Pachón
- Escuela de Diseño Industrial, Facultad sede Duitama, Universidad Pedagógica y Tecnológica de Colombia-UPTC. Carrera18 con Calle 22, Duitama-Boyacá-Colombia
- Grupo de Investigación en desarrollo y aplicación de nuevos materiales-DANUM, Universidad Pedagógica y Tecnológica de Colombia-UPTC
| | - Juan Morales-Corona
- Departamento de Física, Universidad Autónoma Metropolitana - Iztapalapa, Av. San Rafael Atlixco 186, 09340, Mexico City, Mexico
| | - Jesús Olayo-Lortia
- Tecnológico Nacional de México- Instituto Tecnológico de Toluca, Av. Tecnológico s/n. Colonia Agrícola Bellavista, Metepec, Edo. de México, México
| | - Roberto Olayo
- Departamento de Física, Universidad Autónoma Metropolitana - Iztapalapa, Av. San Rafael Atlixco 186, 09340, Mexico City, Mexico
| | - Roberto Olayo-Valles
- Departamento de Física, Universidad Autónoma Metropolitana - Iztapalapa, Av. San Rafael Atlixco 186, 09340, Mexico City, Mexico
| |
Collapse
|
21
|
Antimicrobial properties and biocompatibility of electrospun poly-ε-caprolactone fibrous mats containing Gymnema sylvestre leaf extract. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:503-514. [DOI: 10.1016/j.msec.2018.12.135] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/17/2018] [Accepted: 12/29/2018] [Indexed: 11/17/2022]
|
22
|
Electrospun Schizophyllan/polyvinyl alcohol blend nanofibrous scaffold as potential wound healing. Int J Biol Macromol 2019; 127:27-38. [DOI: 10.1016/j.ijbiomac.2018.12.256] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 01/28/2023]
|
23
|
Controlled release of lawsone from polycaprolactone/gelatin electrospun nano fibers for skin tissue regeneration. Int J Biol Macromol 2019; 124:478-491. [DOI: 10.1016/j.ijbiomac.2018.11.237] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 11/15/2018] [Accepted: 11/26/2018] [Indexed: 01/14/2023]
|
24
|
Garcia-Orue I, Gainza G, Garcia-Garcia P, Gutierrez FB, Aguirre JJ, Hernandez RM, Delgado A, Igartua M. Composite nanofibrous membranes of PLGA/Aloe vera containing lipid nanoparticles for wound dressing applications. Int J Pharm 2019; 556:320-329. [DOI: 10.1016/j.ijpharm.2018.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/16/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022]
|
25
|
Kimna C, Tamburaci S, Tihminlioglu F. Novel zein‐based multilayer wound dressing membranes with controlled release of gentamicin. J Biomed Mater Res B Appl Biomater 2018; 107:2057-2070. [DOI: 10.1002/jbm.b.34298] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/24/2018] [Accepted: 12/01/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Ceren Kimna
- Department of Chemical Engineeringİzmir Institute of Technology Urla, 35430 İzmir Turkey
| | - Sedef Tamburaci
- Department of Chemical Engineeringİzmir Institute of Technology Urla, 35430 İzmir Turkey
- Graduate Program of Biotechnology and Bioengineeringİzmir Institute of Technology Urla, 35430 İzmir Turkey
| | - Funda Tihminlioglu
- Department of Chemical Engineeringİzmir Institute of Technology Urla, 35430 İzmir Turkey
| |
Collapse
|
26
|
Baghersad S, Hajir Bahrami S, Mohammadi MR, Mojtahedi MRM, Milan PB. Development of biodegradable electrospun gelatin/aloe-vera/poly(ε‑caprolactone) hybrid nanofibrous scaffold for application as skin substitutes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:367-379. [DOI: 10.1016/j.msec.2018.08.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 07/22/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022]
|
27
|
|
28
|
Suarato G, Bertorelli R, Athanassiou A. Borrowing From Nature: Biopolymers and Biocomposites as Smart Wound Care Materials. Front Bioeng Biotechnol 2018; 6:137. [PMID: 30333972 PMCID: PMC6176001 DOI: 10.3389/fbioe.2018.00137] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/13/2018] [Indexed: 12/23/2022] Open
Abstract
Wound repair is a complex and tightly regulated physiological process, involving the activation of various cell types throughout each subsequent step (homeostasis, inflammation, proliferation, and tissue remodeling). Any impairment within the correct sequence of the healing events could lead to chronic wounds, with potential effects on the patience quality of life, and consequent fallouts on the wound care management. Nature itself can be of inspiration for the development of fully biodegradable materials, presenting enhanced bioactive potentialities, and sustainability. Naturally-derived biopolymers are nowadays considered smart materials. They provide a versatile and tunable platform to design the appropriate extracellular matrix able to support tissue regeneration, while contrasting the onset of adverse events. In the past decades, fabrication of bioactive materials based on natural polymers, either of protein derivation or polysaccharide-based, has been extensively exploited to tackle wound-healing related problematics. However, in today's World the exclusive use of such materials is becoming an urgent challenge, to meet the demand of environmentally sustainable technologies to support our future needs, including applications in the fields of healthcare and wound management. In the following, we will briefly introduce the main physico-chemical and biological properties of some protein-based biopolymers and some naturally-derived polysaccharides. Moreover, we will present some of the recent technological processing and green fabrication approaches of novel composite materials based on these biopolymers, with particular attention on their applications in the skin tissue repair field. Lastly, we will highlight promising future perspectives for the development of a new generation of environmentally-friendly, naturally-derived, smart wound dressings.
Collapse
Affiliation(s)
- Giulia Suarato
- Smart Materials, Istituto Italiano di Tecnologia, Genoa, Italy
- In vivo Pharmacology Facility, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Rosalia Bertorelli
- In vivo Pharmacology Facility, Istituto Italiano di Tecnologia, Genoa, Italy
| | | |
Collapse
|
29
|
Stocco TD, Bassous NJ, Zhao S, Granato AEC, Webster TJ, Lobo AO. Nanofibrous scaffolds for biomedical applications. NANOSCALE 2018; 10:12228-12255. [PMID: 29947408 DOI: 10.1039/c8nr02002g] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tissue engineering is an emergent and very interesting research field, providing potential solutions for a myriad of challenges in healthcare. Fibrous scaffolds specifically have shown promise as an effective tissue engineering method, as their high length-to-width ratio mimics that of extracellular matrix components, which in turn guides tissue formation, promotes cellular adhesion and improves mechanical properties. In this review paper, we discuss in detail both the importance of fibrous scaffolds for the promotion of tissue growth and the different methods to produce fibrous biomaterials to possess favorable and unique characteristics. Here, we focus on the pressing need to develop biomimetic structures that promote an ideal environment to encourage tissue formation. In addition, we discuss different biomedical applications in which fibrous scaffolds can be useful, identifying their importance, relevant aspects, and remaining significant challenges. In conclusion, we provide comments on the future direction of fibrous scaffolds and the best way to produce them, proposed in light of recent technological advances and the newest and most promising fabrication techniques.
Collapse
Affiliation(s)
- Thiago D Stocco
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Wang X, Ding Z, Wang C, Chen X, Xu H, Lu Q, Kaplan DL. Bioactive Silk Hydrogels with Tunable Mechanical Properties. J Mater Chem B 2018; 6:2739-2746. [PMID: 30345058 PMCID: PMC6191054 DOI: 10.1039/c8tb00607e] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Developing bioactive hydrogels with potential to guide the differentiation behavior of stem cells has become increasingly important in the biomaterials field. Here, silk hydrogels with tunable mechanical properties were developed by introducing inert silk fibroin nanofibers (SNF) within an enzyme crosslinked system of regenerated silk fibroin (RSF). After the crosslinking reaction of RSF, the inert SNF was embedded into the RSF hydrogel matrix, resulting in improved mechanical properties. Tunable stiffness in the range of 9-60 KPa was achieved by adjusting the amount of the added NSF, significantly higher than SNF-free hydrogels formed under same conditions (about 1 KPa). In addition, the proliferation of rat bone marrow derived mesenchymal stem cells cultured on the composite hydrogels and differentiated into endothelial cells, myoblast and osteoblast cells was improved, putatively due to the control of stiffness of the hydrogels. Bioactive and tunable silk-based hydrogels were prepared via a composite SNF and crosslinked RSF system, providing a new strategy to design silk biomaterials with tunable mechanical and biological performance.
Collapse
Affiliation(s)
- Xue Wang
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P. R. China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science, Soochow University, Suzhou 215123, P. R. China
| | - Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P. R. China
| | - Xiangdong Chen
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P. R. China
| | - Hui Xu
- Department of Dermatology and Dermatologic Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science, Soochow University, Suzhou 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
32
|
Miguel SP, Figueira DR, Simões D, Ribeiro MP, Coutinho P, Ferreira P, Correia IJ. Electrospun polymeric nanofibres as wound dressings: A review. Colloids Surf B Biointerfaces 2018; 169:60-71. [PMID: 29747031 DOI: 10.1016/j.colsurfb.2018.05.011] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022]
Abstract
Skin wounds have significant morbidity and mortality rates associated. This is explained by the limited effectiveness of the currently available treatments, which in some cases do not allow the reestablishment of the structure and functions of the damaged skin, leading to wound infection and dehydration. These drawbacks may have an impact on the healing process and ultimately prompt patients' death. For this reason, researchers are currently developing new wound dressings that enhance skin regeneration. Among them, electrospun polymeric nanofibres have been regarded as promising tools for improving skin regeneration due to their structural similarity with the extracellular matrix of normal skin, capacity to promote cell growth and proliferation and bactericidal activity as well as suitability to deliver bioactive molecules to the wound site. In this review, an overview of the recent studies concerning the production and evaluation of electrospun polymeric nanofibrous membranes for skin regenerative purposes is provided. Moreover, the current challenges and future perspectives of electrospun nanofibrous membranes suitable for this biomedical application are highlighted.
Collapse
Affiliation(s)
- Sónia P Miguel
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior,Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Daniela R Figueira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior,Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Déborah Simões
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior,Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Maximiano P Ribeiro
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior,Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; UDI-IPG- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Paula Coutinho
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior,Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; UDI-IPG- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Paula Ferreira
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, P-3030 790 Coimbra, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior,Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CIEPQPF, Department of Chemical Engineering, University of Coimbra, P-3030 790 Coimbra, Portugal.
| |
Collapse
|
33
|
Starch nanoparticle as a vitamin E-TPGS carrier loaded in silk fibroin-poly(vinyl alcohol)-Aloe vera nanofibrous dressing. Colloids Surf B Biointerfaces 2018. [PMID: 29525623 DOI: 10.1016/j.colsurfb.2018.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Core-sheath nanofibrous mat as a new vitamin E (VE) delivery system based on silk fibroin (SF)/poly(vinyl alcohol) (PVA)/aloe vera (AV) was successfully prepared by the electrospinning method. Initially, VE-loaded starch nanoparticles were produced and then incorporated into the best beadless SF-PVA-AV nanofibers. The successful loading of VE in starch nanoparticles was proved by Fourier-transform infrared spectroscopy. The scanning electron microscopy and transmission electron microscopy indicated that spherical nanoparticles were successfully embedded within the nanofibers. In vitro release studies demonstrated that the release of VE was controlled by Fickian diffusion and was faster in samples containing more nanoparticles. Fibroblast attachment, proliferation, and collagen secretion were enhanced after adding AV and VE to the SF-PVA nanomatrix. Moreover, the incorporation of VE into the nanocomposite dressing enhanced antioxidant activity, which can have a positive effect on wound healing process by protecting the cells from toxic oxidation products.
Collapse
|
34
|
The antibacterial and anti-inflammatory investigation of Lawsonia Inermis-gelatin-starch nano-fibrous dressing in burn wound. Int J Biol Macromol 2018; 107:2008-2019. [DOI: 10.1016/j.ijbiomac.2017.10.061] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/30/2017] [Accepted: 10/05/2017] [Indexed: 01/01/2023]
|
35
|
Advances in Nanotechnologies for the Fabrication of Silk Fibroin-Based Scaffolds for Tissue Regeneration. EXTRACELLULAR MATRIX FOR TISSUE ENGINEERING AND BIOMATERIALS 2018. [DOI: 10.1007/978-3-319-77023-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Microwave-Assisted Dip Coating of Aloe Vera on Metallocene Polyethylene Incorporated with Nano-Rods of Hydroxyapaptite for Bone Tissue Engineering. COATINGS 2017. [DOI: 10.3390/coatings7110182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Yousefi I, Pakravan M, Rahimi H, Bahador A, Farshadzadeh Z, Haririan I. An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:433-444. [DOI: 10.1016/j.msec.2017.02.076] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 01/18/2017] [Accepted: 02/14/2017] [Indexed: 12/25/2022]
|
38
|
Miguel SP, Ribeiro MP, Coutinho P, Correia IJ. Electrospun Polycaprolactone/Aloe Vera_Chitosan Nanofibrous Asymmetric Membranes Aimed for Wound Healing Applications. Polymers (Basel) 2017; 9:E183. [PMID: 30970863 PMCID: PMC6432098 DOI: 10.3390/polym9050183] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/06/2017] [Accepted: 05/19/2017] [Indexed: 12/30/2022] Open
Abstract
Today, none of the wound dressings available on the market is fully capable of reproducing all the features of native skin. Herein, an asymmetric electrospun membrane was produced to mimic both layers of skin. It comprises a top dense layer (manufactured with polycaprolactone) that was designed to provide mechanical support to the wound and a bottom porous layer (composed of chitosan and Aloe Vera) aimed to improve the bactericidal activity of the membrane and ultimately the healing process. The results obtained revealed that the produced asymmetric membranes displayed a porosity, wettability, as well as mechanical properties similar to those presented by the native skin. Fibroblast cells were able to adhere, spread, and proliferate on the surface of the membranes and the intrinsic structure of the two layers of the membrane is capable of avoiding the invasion of microorganisms while conferring bioactive properties. Such data reveals the potential of these asymmetric membranes, in the near future, to be applied as wound dressings.
Collapse
Affiliation(s)
- Sónia P Miguel
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Maximiano P Ribeiro
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
- UDI-IPG-Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal.
| | - Paula Coutinho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
- UDI-IPG-Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal.
| | - Ilídio J Correia
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
39
|
Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications. Int J Pharm 2017; 523:556-566. [DOI: 10.1016/j.ijpharm.2016.11.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 01/23/2023]
|
40
|
Sudakaran SV, Venugopal JR, Vijayakumar GP, Abisegapriyan S, Grace AN, Ramakrishna S. Sequel of MgO nanoparticles in PLACL nanofibers for anti-cancer therapy in synergy with curcumin/β-cyclodextrin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:620-628. [PMID: 27987753 DOI: 10.1016/j.msec.2016.10.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/15/2016] [Accepted: 10/23/2016] [Indexed: 12/21/2022]
Abstract
Pharmaceutical industries spend more money in developing new and efficient methods for delivering successful drugs for anticancer therapy. Electrospun nanofibers and nanoparticles loaded with drugs have versatile biomedical applications ranging from wound healing to anticancer therapy. We aimed to attempt for fabricating elastomeric poly (l-lactic acid-co-ε-caprolactone) (PLACL) with Aloe Vera (AV), magnesium oxide (MgO) nanoparticles, curcumin (CUR) and β-cyclodextrin (β-CD) composite nanofibers to control the growth of MCF-7 cells for breast cancer therapy. The study focused on the interaction of MgO nanoparticle with CUR and β-CD inhibiting the proliferation of Michigan Cancer Foundation-7 (MCF-7) breast cancer cells. FESEM micrographs of fabricated electrospun PLACL, PLACL/AV, PLACL/AV/MgO, PLACL/AV/MgO/CUR and PLACL/AV/MgO/β-CD nanofibrous scaffolds achieved bead free, random and uniform nanofibers with fiber diameter in the range of 786±286, 507±171, 334±95, 360±94 and 326±80nm respectively. Proliferation of MCF-7 cells was decreased by 65.92% in PLACL/AV/MgO/CUR with respect to PLACL/AV/MgO nanofibrous scaffolds on day 9. The obtained results proved that 1% CUR interacting with MgO nanoparticles showed higher inhibition of MCF-7 cells among all other nanofibrous scaffolds thus serving as a promising biocomposite material system for the breast cancer therapy.
Collapse
Affiliation(s)
- Shruthi Vathaluru Sudakaran
- Centre for Nanofibers & Nanotechnology, Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore; The Centre for Nanotechnology Research, VIT University, Vellore, India
| | - Jayarama Reddy Venugopal
- Centre for Nanofibers & Nanotechnology, Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore.
| | - Gnaneshwar Puvala Vijayakumar
- Centre for Nanofibers & Nanotechnology, Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Sivasubramanian Abisegapriyan
- Centre for Nanofibers & Nanotechnology, Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore; The Centre for Nanotechnology Research, VIT University, Vellore, India
| | | | - Seeram Ramakrishna
- Centre for Nanofibers & Nanotechnology, Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| |
Collapse
|
41
|
Recent advancements in nanotechnological strategies in selection, design and delivery of biomolecules for skin regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:747-765. [DOI: 10.1016/j.msec.2016.05.074] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 12/31/2022]
|
42
|
Jaipaew J, Wangkulangkul P, Meesane J, Raungrut P, Puttawibul P. Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: Morphological, mechanical, and physical clues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 64:173-182. [PMID: 27127042 DOI: 10.1016/j.msec.2016.03.063] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 03/03/2016] [Accepted: 03/21/2016] [Indexed: 12/22/2022]
Abstract
Osteoarthritis is a critical disease that comes from degeneration of cartilage tissue. In severe cases surgery is generally required. Tissue engineering using scaffolds with stem cell transplantation is an attractive approach and a challenge for orthopedic surgery. For sample preparation, silk fibroin (SF)/hyaluronic acid (HA) scaffolds in different ratios of SF/HA (w/w) (i.e., 100:0, 90:10, 80:20, and 70:30) were formed by freeze-drying. The morphological, mechanical, and physical clues were considered in this research. The morphological structure of the scaffolds was observed by scanning electron microscope. The mechanical and physical properties of the scaffolds were analyzed by compressive and swelling ratio testing, respectively. For the cell experiments, scaffolds were seeded and cultured with human umbilical cord-derived mesenchymal stem cells (HUMSCs). The cultured scaffolds were tested for cell viability, histochemistry, immunohistochemistry, and gene expression. The SF with HA scaffolds showed regular porous structures. Those scaffolds had a soft and elastic characteristic with a high swelling ratio and water uptake. The SF/HA scaffolds showed a spheroid structure of the cells in the porous structure particularly in the SF80 and SF70 scaffolds. Cells could express Col2a, Agg, and Sox9 which are markers for chondrogenesis. It could be deduced that SF/HA scaffolds showed significant clues for suitability in cartilage tissue engineering and in surgery for osteoarthritis.
Collapse
Affiliation(s)
- Jirayut Jaipaew
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110
| | - Piyanun Wangkulangkul
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110; Department of Surgery, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110
| | - Jirut Meesane
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110.
| | - Pritsana Raungrut
- Department of Biomedical Science, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110
| | - Puttisak Puttawibul
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110; Department of Surgery, Faculty of Medicine, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, Thailand 90110
| |
Collapse
|
43
|
Chandika P, Ko SC, Oh GW, Heo SY, Nguyen VT, Jeon YJ, Lee B, Jang CH, Kim G, Park WS, Chang W, Choi IW, Jung WK. Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application. Int J Biol Macromol 2015; 81:504-13. [DOI: 10.1016/j.ijbiomac.2015.08.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/11/2015] [Accepted: 08/20/2015] [Indexed: 12/11/2022]
|
44
|
Balaji A, Jaganathan SK, Supriyanto E, Muhamad II, Khudzari AZM. Microwave-assisted fibrous decoration of mPE surface utilizing Aloe vera extract for tissue engineering applications. Int J Nanomedicine 2015; 10:5909-23. [PMID: 26425089 PMCID: PMC4583113 DOI: 10.2147/ijn.s84307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Developing multifaceted, biocompatible, artificial implants for tissue engineering is a growing field of research. In recent times, several works have been reported about the utilization of biomolecules in combination with synthetic materials to achieve this process. Accordingly, in this study, the ability of an extract obtained from Aloe vera, a commonly used medicinal plant in influencing the biocompatibility of artificial material, is scrutinized using metallocene polyethylene (mPE). The process of coating dense fibrous Aloe vera extract on the surface of mPE was carried out using microwaves. Then, several physicochemical and blood compatibility characterization experiments were performed to disclose the effects of corresponding surface modification. The Fourier transform infrared spectrum showed characteristic vibrations of several active constituents available in Aloe vera and exhibited peak shifts at far infrared regions due to aloe-based mineral deposition. Meanwhile, the contact angle analysis demonstrated a drastic increase in wettability of coated samples, which confirmed the presence of active components on glazed mPE surface. Moreover, the bio-mimic structure of Aloe vera fibers and the influence of microwaves in enhancing the coating characteristics were also meticulously displayed through scanning electron microscopy micrographs and Hirox 3D images. The existence of nanoscale roughness was interpreted through high-resolution profiles obtained from atomic force microscopy. And the extent of variations in irregularities was delineated by measuring average roughness. Aloe vera-induced enrichment in the hemocompatible properties of mPE was established by carrying out in vitro tests such as activated partial thromboplastin time, prothrombin time, platelet adhesion, and hemolysis assay. In conclusion, the Aloe vera-glazed mPE substrate was inferred to attain desirable properties required for multifaceted biomedical implants.
Collapse
Affiliation(s)
- Arunpandian Balaji
- Institut Jantung Negara-Universiti Teknologi Malaysia, Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Saravana Kumar Jaganathan
- Institut Jantung Negara-Universiti Teknologi Malaysia, Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Eko Supriyanto
- Institut Jantung Negara-Universiti Teknologi Malaysia, Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Ida Idayu Muhamad
- Institut Jantung Negara-Universiti Teknologi Malaysia, Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Ahmad Zahran Md Khudzari
- Institut Jantung Negara-Universiti Teknologi Malaysia, Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
45
|
Guler E, Akbulut H, Bozokalfa G, Demir B, Eyrilmez GO, Yavuz M, Demirkol DO, Coskunol H, Endo T, Yamada S, Timur S, Yagci Y. Bioapplications of Polythiophene-g-Polyphenylalanine-Covered Surfaces. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500219] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Emine Guler
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Izmir Turkey
- Institute on Drug Abuse Toxicology and Pharmaceutical Science; Ege University; 35100 Izmir Turkey
| | - Huseyin Akbulut
- Department of Chemistry; Faculty of Science and Letters; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| | - Guliz Bozokalfa
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Izmir Turkey
| | - Bilal Demir
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Izmir Turkey
| | - Gizem Oyman Eyrilmez
- Department of Biotechnology; Graduate School of Natural and Applied Sciences; Ege University; 35100 Izmir Turkey
| | - Murat Yavuz
- Department of Chemistry; Faculty of Science; Dicle University; 21280 Diyarbakir Turkey
| | - Dilek Odaci Demirkol
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Izmir Turkey
| | - Hakan Coskunol
- Institute on Drug Abuse Toxicology and Pharmaceutical Science; Ege University; 35100 Izmir Turkey
- Psychiatry Department; Faculty of Medicine; Ege University; 35100 Izmir Turkey
| | - Takeshi Endo
- Molecular Engineering Institute; Kinki University; 11-6 Kayanomori Iizuka Fukuoka 820-8555 Japan
| | - Shuhei Yamada
- Molecular Engineering Institute; Kinki University; 11-6 Kayanomori Iizuka Fukuoka 820-8555 Japan
| | - Suna Timur
- Department of Biochemistry; Faculty of Science; Ege University; 35100 Izmir Turkey
- Institute on Drug Abuse Toxicology and Pharmaceutical Science; Ege University; 35100 Izmir Turkey
| | - Yusuf Yagci
- Department of Chemistry; Faculty of Science and Letters; Istanbul Technical University; Maslak 34469 Istanbul Turkey
- Center of Excellence for Advanced Materials Research (CEAMR) and Chemistry Department; Faculty of Science; King Abdulaziz University; PO Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
46
|
Synthesis and Properties of Flexible Polyurethane Using Ferric Catalyst for Hypopharyngeal Tissue Engineering. BIOMED RESEARCH INTERNATIONAL 2015; 2015:798721. [PMID: 26236737 PMCID: PMC4506851 DOI: 10.1155/2015/798721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/05/2015] [Accepted: 06/14/2015] [Indexed: 12/03/2022]
Abstract
Biodegradable polyurethane is an ideal candidate material to fabricate tissue engineered hypopharynx from its good mechanical properties and biodegradability. We thus synthesized a hydrophilic polyurethane via reactions among polyethylene glycol (PEG), e-caprolactone (e-CL) and hexamethylene diisocyanate (HDI), and thrihydroxymethyl propane (TMP). The product possessed a fast degradability due to its good wettability and good mechanical parameters with the elongations at break (137 ± 10%) and tensile strength (4.73 ± 0.46 MPa), which will make it a good matrix material for soft tissue like hypopharynx. Its biological properties were evaluated via in vitro and in vivo tests. The results showed that this hydrophilic polyurethane material can support hypopharyngeal fibroblast growth and owned good degradability and low inflammatory reaction in subcutaneous implantation. It will be proposed as the scaffold for hypopharyngeal tissue engineering research in our future study.
Collapse
|
47
|
Wang D, Liu H, Fan Y. Silk fibroin for vascular regeneration. Microsc Res Tech 2015; 80:280-290. [PMID: 26097014 DOI: 10.1002/jemt.22532] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/18/2015] [Accepted: 05/22/2015] [Indexed: 11/11/2022]
Abstract
Cardiovascular disease is the primary cause of morbidity and mortality in today's world. Due to the lack of healthy autologous vessels, more tissue-engineered blood vessels are needed to repair or replace the damaged arteries. Biomaterials play an indispensable role in creating a living neovessel with biological responses. Silk fibroin produced by silkworms possesses good cytocompatibility, tailorable biodegradability, suitable mechanical properties, and minimal inflammatory reactions. In addition, regenerated silk fibroin solutions can be processed into various forms of scaffolds such as films, fibers, tubes, and porous sponges. These features make silk fibroin a promising biomaterial for small-diameter vascular grafts. The present article focuses on the applications of silk fibroin for vascular regeneration. A brief overview of the properties of silk fibroin is provided, following which the current research status and future directions of the main types of silk fibroin scaffolds for vascular regeneration are reviewed and discussed. Microsc. Res. Tech. 80:280-290, 2017. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Danyan Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China.,National Research Center for Rehabilitation Technical Aids, Beijing, 100176, People's Republic of China
| |
Collapse
|
48
|
Norouzi M, Boroujeni SM, Omidvarkordshouli N, Soleimani M. Advances in skin regeneration: application of electrospun scaffolds. Adv Healthc Mater 2015; 4:1114-33. [PMID: 25721694 DOI: 10.1002/adhm.201500001] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Indexed: 12/28/2022]
Abstract
The paucity of cellular and molecular signals essential for normal wound healing makes severe dermatological ulcers stubborn to heal. The novel strategies of skin regenerative treatments are focused on the development of biologically responsive scaffolds accompanied by cells and multiple biomolecules resembling structural and biochemical cues of the natural extracellular matrix (ECM). Electrospun nanofibrous scaffolds provide similar architecture to the ECM leading to enhancement of cell adhesion, proliferation, migration and neo tissue formation. This Review surveys the application of biocompatible natural, synthetic and composite polymers to fabricate electrospun scaffolds as skin substitutes and wound dressings. Furthermore, the application of biomolecules and therapeutic agents in the nanofibrous scaffolds viz growth factors, genes, antibiotics, silver nanoparticles, and natural medicines with the aim of ameliorating cellular behavior, wound healing, and skin regeneration are discussed.
Collapse
Affiliation(s)
- Mohammad Norouzi
- Department of Nanotechnology and Tissue Engineering; Stem Cell Technology Research Center; Tehran Iran
| | | | | | - Masoud Soleimani
- Department of Hematology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
49
|
Sridhar S, Venugopal JR, Ramakrishna S. Improved regeneration potential of fibroblasts using ascorbic acid-blended nanofibrous scaffolds. J Biomed Mater Res A 2015; 103:3431-40. [DOI: 10.1002/jbm.a.35486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/22/2015] [Accepted: 04/14/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Sreepathy Sridhar
- Center for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering; National University of Singapore; Singapore
- Department of Genetic Engineering; SRM University, Kattankulathur; Chennai Tamilnadu India
| | - Jayarama Reddy Venugopal
- Center for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering; National University of Singapore; Singapore
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, NUSNNI, Faculty of Engineering; National University of Singapore; Singapore
| |
Collapse
|
50
|
Bonvallet PP, Schultz MJ, Mitchell EH, Bain JL, Culpepper BK, Thomas SJ, Bellis SL. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds. PLoS One 2015; 10:e0122359. [PMID: 25793720 PMCID: PMC4368828 DOI: 10.1371/journal.pone.0122359] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/16/2015] [Indexed: 11/19/2022] Open
Abstract
Electrospun scaffolds serve as promising substrates for tissue repair due to their nanofibrous architecture and amenability to tailoring of chemical composition. In this study, the regenerative potential of a microporous electrospun scaffold pre-seeded with dermal fibroblasts was evaluated. Previously we reported that a 70% collagen I and 30% poly(Ɛ-caprolactone) electrospun scaffold (70:30 col/PCL) containing 160 μm diameter pores had favorable mechanical properties, supported fibroblast infiltration and subsequent cell-mediated deposition of extracellular matrix (ECM), and promoted more rapid and effective in vivo skin regeneration when compared to scaffolds lacking micropores. In the current study we tested the hypothesis that the efficacy of the 70:30 col/PCL microporous scaffolds could be further enhanced by seeding scaffolds with dermal fibroblasts prior to implantation into skin wounds. To address this hypothesis, a Fischer 344 (F344) rat syngeneic model was employed. In vitro studies showed that dermal fibroblasts isolated from F344 rat skin were able to adhere and proliferate on 70:30 col/PCL microporous scaffolds, and the cells also filled the 160 μm pores with native ECM proteins such as collagen I and fibronectin. Additionally, scaffolds seeded with F344 fibroblasts exhibited a low rate of contraction (~14%) over a 21 day time frame. To assess regenerative potential, scaffolds with or without seeded F344 dermal fibroblasts were implanted into full thickness, critical size defects created in F344 hosts. Specifically, we compared: microporous scaffolds containing fibroblasts seeded for 4 days; scaffolds containing fibroblasts seeded for only 1 day; acellular microporous scaffolds; and a sham wound (no scaffold). Scaffolds containing fibroblasts seeded for 4 days had the best response of all treatment groups with respect to accelerated wound healing, a more normal-appearing dermal matrix structure, and hair follicle regeneration. Collectively these results suggest that microporous electrospun scaffolds pre-seeded with fibroblasts promote greater wound-healing than acellular scaffolds.
Collapse
Affiliation(s)
- Paul P. Bonvallet
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Matthew J. Schultz
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elizabeth H. Mitchell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jennifer L. Bain
- Department of Periodontology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bonnie K. Culpepper
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven J. Thomas
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Susan L. Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|