1
|
Biswal L, Sahu VK, Sardoiwala MN, Karmakar S, Choudhury SR. Antibody conjugated targeted nanotherapy epigenetically inhibits calpain-mediated mitochondrial dysfunction to attenuate Parkinson's disease. Carbohydr Polym 2024; 346:122575. [PMID: 39245478 DOI: 10.1016/j.carbpol.2024.122575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024]
Abstract
Many neurodegenerative and psychiatric malignancies like Parkinson' disease (PD) originate from an imbalance of 17β-Estradiol (E2) in the human brain. However, the peripheral side effects of the usage of E2 for PD therapy and less understanding of the molecular mechanism hinder establishing its neurotherapeutic potential. In the present work, systemic side effects were overcome by targeted delivery using Dopamine receptor D3 (DRD3) conjugated E2-loaded chitosan nanoparticles (Ab-ECSnps) that showed a promising delivery to the brain. E2 is a specific calpain inhibitor that fosters neurodegeneration by disrupting mitochondrial function, while B-cell-specific Moloney murine leukemia virus integration region 1 (BMI1), an epigenetic regulator, is crucial in preserving mitochondrial homeostasis. We showed the administration of Ab-ECSnps inhibits calpain's translocation into mitochondria while promoting the translocation of BMI1 to mitochondria, thereby conferring neurotherapeutic benefits by enhancing cell viability, increasing mitochondrial DNA copy number, and preserving mitochondrial membrane potential. Further, we showed a novel molecular mechanism of BMI1 regulation by calpain that might contribute to maintaining mitochondrial homeostasis for attenuating PD. Concomitantly, Ab-ECSnps showed neurotherapeutic potential in the in vivo PD model. We showed for the first time that our brain-specific targeted delivery might regulate calpain-mediated BMI1 expression, thereby preserving mitochondrial homeostasis to alleviate PD.
Collapse
Affiliation(s)
- Liku Biswal
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Vikas Kumar Sahu
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Mohammed Nadim Sardoiwala
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Surajit Karmakar
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Subhasree Roy Choudhury
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
2
|
Khodadadi M, Pirzad Jahromi G, Meftahi GH, Khodadadi H, Hadipour M, Ezami M. Crocin nano-chitosan-coated compound mitigates hippocampal blood-brain barrier disruption, anxiety, and cognitive deficits in chronic immobilization stress-induced rats. Heliyon 2024; 10:e39203. [PMID: 39640648 PMCID: PMC11620202 DOI: 10.1016/j.heliyon.2024.e39203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Stressful conditions can disrupt the central nervous system's normal homeostasis and physiological functions, resulting in blood-brain barrier malfunction, memory and learning impairment, anxiety, etc. Crocin is a long-investigated natural compound that has been documented to have anti-inflammation and neuroprotective effects, albeit it comes with some limitations such as low stability and bioavailability. Therefore, we aimed to overcome crocin's limitations by coating crocin with a nano-carrier (chitosan) in the chronic immobilization stress-induced rat model. Crocin was encapsulated into chitosan nanoparticles by a modified method. A total of 35 male Wistar rats were selected as our study subjects (220-250 g) which were randomly divided into 5 groups (control, stress, nanoparticle, crocin, and chitosan). Chronic immobilization stress was induced by placing rats for 2 h into a plastic bottle with specific measurements (for 14 consecutive days) to prevent animals from moving. To evaluate the memory and learning changes, we used the Barnes maze test and the Passive avoidance test followed by the evaluation of the N-methyl-D-aspartate |(NMDA) receptor subunits genes (GRIN1 and GRIN2A) expression. Anxiety levels were evaluated by elevated plus maze test. Furthermore, the changes in the expression of genes responsible for encoding the tight junction proteins of BBB including ZO1, CLDN5, and OCLN were assessed by RT-PCR. Compared to intact crocin, the administration of crocin nano-chitosan-coated compound resulted in significant improvement of specific memory and learning indicators as well as a significant reduction of anxiety levels in chronic immobilization stress-induced rats. Finally, we observed that treatment with the crocin nano-chitosan-coated compound can elevate the expression levels of the genes responsible for encoding NMDA receptor subunits, and the genes responsible for encoding the tight junction proteins of blood-brain barriers in the hippocampus.
Collapse
Affiliation(s)
- Mohsen Khodadadi
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gila Pirzad Jahromi
- Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hossein Khodadadi
- The Polish Academy of Sciences, Institute of Genetics and Animal Biotechnology, Warsaw, Poland
| | | | - Masoud Ezami
- Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Safarov R, Fedotova O, Uvarova A, Gordienko M, Menshutina N. Review of Intranasal Active Pharmaceutical Ingredient Delivery Systems. Pharmaceuticals (Basel) 2024; 17:1180. [PMID: 39338342 PMCID: PMC11435088 DOI: 10.3390/ph17091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
In recent decades, there has been an increased interest in the development of intranasal delivery systems for active pharmaceutical ingredients (APIs) not only for treating local nasal diseases but also for treating systemic diseases, central nervous system (CNS) disorders, and vaccine delivery. The nasal cavity possesses a unique set of anatomical characteristics for delivering active pharmaceutical ingredients, but there are several limitations that recent research in the field of the intranasal administration of APIs aims to overcome. For the effective delivery of nasal preparations, active pharmaceutical ingredients are incorporated into various micro- and nanosystems. Some of the most commonly encountered API delivery systems in the scientific literature include liposomal systems, polymer particles with mucoadhesive properties, in situ gels, nano- and microemulsions, and solid lipid particles. This article provides a review of research on the development of nasal preparations for treating local nasal cavity diseases (in particular, for antibiotic delivery), systemic diseases (analgesics, drugs for cardiovascular diseases, antiviral and antiemetic drugs), CNS disorders (Alzheimer's disease, Parkinson's disease, epilepsy, schizophrenia, depression), and vaccine delivery. The literature data show that active research is underway to reformulate drugs of various pharmacotherapeutic groups into a nasal form.
Collapse
Affiliation(s)
| | - Olga Fedotova
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia (A.U.)
| | | | | | | |
Collapse
|
4
|
Ahmed T. Lipid nanoparticle mediated small interfering RNA delivery as a potential therapy for Alzheimer's disease. Eur J Neurosci 2024; 59:2915-2954. [PMID: 38622050 DOI: 10.1111/ejn.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that exhibits a gradual decline in cognitive function and is prevalent among a significant number of individuals globally. The use of small interfering RNA (siRNA) molecules in RNA interference (RNAi) presents a promising therapeutic strategy for AD. Lipid nanoparticles (LNPs) have been developed as a delivery vehicle for siRNA, which can selectively suppress target genes, by enhancing cellular uptake and safeguarding siRNA from degradation. Numerous research studies have exhibited the effectiveness of LNP-mediated siRNA delivery in reducing amyloid beta (Aβ) levels and enhancing cognitive function in animal models of AD. The feasibility of employing LNP-mediated siRNA delivery as a therapeutic approach for AD is emphasized by the encouraging outcomes reported in clinical studies for other medical conditions. The use of LNP-mediated siRNA delivery has emerged as a promising strategy to slow down or even reverse the progression of AD by targeting the synthesis of tau phosphorylation and other genes linked to the condition. Improvement of the delivery mechanism and determination of the most suitable siRNA targets are crucial for the efficacious management of AD. This review focuses on the delivery of siRNA through LNPs as a promising therapeutic strategy for AD, based on the available literature.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
5
|
Zhao F, Yang H, Gao Z, Liu H, Wu P, Li B, Yu H, Shao J. Novel fabrication of Cu(II)-incorporated chiral d-penicillamine-chitosan nanocomposites enantio-selectively inhibit the induced amyloid β aggregation for Alzheimer's disease therapy. Heliyon 2024; 10:e23563. [PMID: 38223723 PMCID: PMC10784170 DOI: 10.1016/j.heliyon.2023.e23563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024] Open
Abstract
It is well known that the chiral materials combined with metal ion's structure have been identified as promising candidate for the nursing Alzheimer Disease (AD) treatment, particularly to inhibit amyloid (Aβ) due to their significant pharmacological effect on the living bodies. In the present study, Cu(II)/Chitosan nanocomposite caped with chiral penicillamine (Cu@D-PEN/Chitosan) have been synthesized and used as an effective amyloid-β (Aβ) inhibitor. The composite formations of the samples were confirmed from the FTIR and XRD, studies. FE-SEM, TEM and AFM studies have been carried out to depict the morphological analysis of the nanocomposites. The prepared samples have also been subjected to various in vitro studies such as encapsulation efficiency, drug loading capacity, drug release and biodegrading or compatibility of the nanocomposites to support the Aβ aggregation inhibiting ability investigations. It was observed that the increase in the concentration of the Cu@D-PEN/Chitosan enhancing the Aβ inhibiting ability. Thus, the Cu(II)@D-PEN/Chitosan showed improving memory effect suggesting that Cu(II)@D-PEN/Chitosan nanocomposites may be a potential candidate for inhibiting the Aβ aggregation in nursing AD treatment.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210012, China
| | - Hui Yang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zehong Gao
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210012, China
| | - Huamei Liu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Pingling Wu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Binbin Li
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Heming Yu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210012, China
| | - Jiahui Shao
- Department of Neurology, Wenling First People's Hospital Affiliated to Wenzhou Medical University, Wenling 317500, China
| |
Collapse
|
6
|
Arora R, Babbar R, Dabra A, Chopra B, Deswal G, Grewal AS. Marine-derived Compounds: A Powerful Platform for the Treatment of Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:166-181. [PMID: 38305396 DOI: 10.2174/0118715249269050231129103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 10/31/2023] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is a debilitating form of dementia that primarily affects cholinergic neurons in the brain, significantly reducing an individual's capacity for learning and creative skills and ultimately resulting in an inability to carry out even basic daily tasks. As the elderly population is exponentially increasing, the disease has become a significant concern for society. Therefore, neuroprotective substances have garnered considerable interest in addressing this universal issue. Studies have shown that oxidative damage to neurons contributes to the pathophysiological processes underlying AD progression. In AD, tau phosphorylation and glutamate excitotoxicity may play essential roles, but no permanent cure for AD is available. The existing therapies only manage the early symptoms of AD and often come with numerous side effects and toxicities. To address these challenges, researchers have turned to nature and explored various sources such as plants, animals, and marine organisms. Many historic holy books from different cultures emphasize that adding marine compounds to the regular diet enhances brain function and mitigates its decline. Consequently, researchers have devoted significant time to identifying potentially active neuroprotective substances from marine sources. Marine-derived compounds are gaining recognition due to their abundant supply of diverse chemical compounds with biological and pharmacological potential and unique mechanisms of action. Several studies have reported that plants exhibit multitarget potential in treating AD. In light of this, the current study focuses on marine-derived components with excellent potential for treating this neurodegenerative disease.
Collapse
Affiliation(s)
- Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Abhishek Dabra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Geeta Deswal
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | | |
Collapse
|
7
|
Shen Y, Wang M, Li S, Yang J. Current emerging novel therapies for Alzheimer's disease and the future prospects of magneto-mechanical force therapy. J Mater Chem B 2023; 11:9404-9418. [PMID: 37721092 DOI: 10.1039/d3tb01629c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease among the elderly, and the morbidity increases with the aging population aggravation. The clinical symptoms of AD mainly include cognitive impairment and memory loss, which undoubtedly bring a huge burden to families and society. Currently, the drugs in clinical use only improve the symptoms of AD but do not cure or prevent the progression of the disease. Therefore, it is urgent for us to develop novel therapeutic strategies for effective AD treatment. To provide a better theoretical basis for exploring novel therapeutic strategies in future AD treatment, this review introduces the recent AD treatment technologies from three aspects, including nanoparticle (NP) based drug therapy, biological therapy and physical therapy. The nanoparticle-mediated therapeutic approaches at the nanomaterial-neural interface and biological system are described in detail, and in particular the magneto-regulated strategies by magnetic field actuating magnetic nanoparticles are highlighted. Promising application of magneto-mechanical force regulated strategy in future AD treatment is also addressed, which offer possibilities for the remote manipulation in a precise manner. In the future, it may be possible for physicians to realize a remote, precise and effective therapy for AD using magneto-mechanical force regulated technology based on the combination of magnetic nanoparticles and an external magnetic field.
Collapse
Affiliation(s)
- Yajing Shen
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Meng Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Shutang Li
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Jinfei Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| |
Collapse
|
8
|
Karimi K, Mojtabavi S, Tehrany PM, Nejad MM, Rezaee A, Mohtashamian S, Hamedi E, Yousefi F, Salmani F, Zandieh MA, Nabavi N, Rabiee N, Ertas YN, Salimimoghadam S, Rashidi M, Rahmanian P, Hushmandi K, Yu W. Chitosan-based nanoscale delivery systems in hepatocellular carcinoma: Versatile bio-platform with theranostic application. Int J Biol Macromol 2023; 242:124935. [PMID: 37230442 DOI: 10.1016/j.ijbiomac.2023.124935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The field of nanomedicine has provided a fresh approach to cancer treatment by addressing the limitations of current therapies and offering new perspectives on enhancing patients' prognoses and chances of survival. Chitosan (CS) is isolated from chitin that has been extensively utilized for surface modification and coating of nanocarriers to improve their biocompatibility, cytotoxicity against tumor cells, and stability. HCC is a prevalent kind of liver tumor that cannot be adequately treated with surgical resection in its advanced stages. Furthermore, the development of resistance to chemotherapy and radiotherapy has caused treatment failure. The targeted delivery of drugs and genes can be mediated by nanostructures in treatment of HCC. The current review focuses on the function of CS-based nanostructures in HCC therapy and discusses the newest advances of nanoparticle-mediated treatment of HCC. Nanostructures based on CS have the capacity to escalate the pharmacokinetic profile of both natural and synthetic drugs, thus improving the effectiveness of HCC therapy. Some experiments have displayed that CS nanoparticles can be deployed to co-deliver drugs to disrupt tumorigenesis in a synergistic way. Moreover, the cationic nature of CS makes it a favorable nanocarrier for delivery of genes and plasmids. The use of CS-based nanostructures can be harnessed for phototherapy. Additionally, the incur poration of ligands including arginylglycylaspartic acid (RGD) into CS can elevate the targeted delivery of drugs to HCC cells. Interestingly, smart CS-based nanostructures, including ROS- and pH-sensitive nanoparticles, have been designed to provide cargo release at the tumor site and enhance the potential for HCC suppression.
Collapse
Affiliation(s)
- Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Melina Maghsodlou Nejad
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Shahab Mohtashamian
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Erfan Hamedi
- Department of Aquatic Animal Health & Diseases, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
9
|
Chitosan-Based Nanoparticles for Targeted Nasal Galantamine Delivery as a Promising Tool in Alzheimer’s Disease Therapy. Pharmaceutics 2023; 15:pharmaceutics15030829. [PMID: 36986689 PMCID: PMC10056147 DOI: 10.3390/pharmaceutics15030829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Natural alkaloid galantamine is widely used for the treatment of mild to moderate Alzheimer’s dementia. Galantamine hydrobromide (GH) is available as fast-release tablets, extended-release capsules, and oral solutions. However, its oral delivery can cause some unwanted side effects, such as gastrointestinal disturbances, nausea, and vomiting. Intranasal administration is one possible way to avoid such unwanted effects. In this work, chitosan-based nanoparticles (NPs) were studied as potential GH delivery vehicles for nasal application. The NPs were synthesized via ionic gelation and studied using dynamic light scattering (DLS) as well as by spectroscopic and thermal methods. The GH-loaded chitosan–alginate complex particles were also prepared as a way to modify the release of GH. The high loading efficiency of the GH was confirmed for both types of particles, at 67% for the GH-loaded chitosan NPs and 70% for the complex chitosan/alginate GH-loaded particles. The mean particle size of the GH-loaded chitosan NPs was about 240 nm, while the sodium alginate coated chitosan particles loaded with GH were expectedly bigger, with a mean particle size of ~286 nm. GH release profiles in PBS at 37 °C were obtained for both types of NPs, and it was found that the GH-loaded chitosan NPs allowed the prolonged release of the incorporated drug for a period of 8 h, while the complex GH-loaded chitosan/alginate NPs released the incorporated GH faster. The stability of the prepared GH-loaded NPs was also demonstrated after 1 year of storage at 5 °C ± 3 °C.
Collapse
|
10
|
Formulation and characterization of chitosan nanoparticles loaded with neuroprotective flavonoid from Phyllanthus niruri Linn. Macromol Res 2023. [DOI: 10.1007/s13233-023-00114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
11
|
Glioma diagnosis and therapy: Current challenges and nanomaterial-based solutions. J Control Release 2022; 352:338-370. [PMID: 36206948 DOI: 10.1016/j.jconrel.2022.09.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Glioma is often referred to as one of the most dreadful central nervous system (CNS)-specific tumors with rapidly-proliferating cancerous glial cells, accounting for nearly half of the brain tumors at an annual incidence rate of 30-80 per a million population. Although glioma treatment remains a significant challenge for researchers and clinicians, the rapid development of nanomedicine provides tremendous opportunities for long-term glioma therapy. However, several obstacles impede the development of novel therapeutics, such as the very tight blood-brain barrier (BBB), undesirable hypoxia, and complex tumor microenvironment (TME). Several efforts have been dedicated to exploring various nanoformulations for improving BBB permeation and precise tumor ablation to address these challenges. Initially, this article briefly introduces glioma classification and various pathogenic factors. Further, currently available therapeutic approaches are illustrated in detail, including traditional chemotherapy, radiotherapy, and surgical practices. Then, different innovative treatment strategies, such as tumor-treating fields, gene therapy, immunotherapy, and phototherapy, are emphasized. In conclusion, we summarize the article with interesting perspectives, providing suggestions for future glioma diagnosis and therapy improvement.
Collapse
|
12
|
Rezaei A, Hooman Vahidi S, Nasrabadi M, Ali Beyramabadi S, Morsali A. Quantum chemical study of 2-hydroxypropyl-β-cyclodextrin and genipin-crosslinked chitosan nanocarriers functionalized with cytarabine anticancer drug. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Wang Y, Chen R, Yang Z, Wen Q, Cao X, Zhao N, Yan J. Protective Effects of Polysaccharides in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:917629. [PMID: 35860666 PMCID: PMC9289469 DOI: 10.3389/fnagi.2022.917629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive degeneration and necrosis of neurons, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease and others. There are no existing therapies that correct the progression of these diseases, and current therapies provide merely symptomatic relief. The use of polysaccharides has received significant attention due to extensive biological activities and application prospects. Previous studies suggest that the polysaccharides as a candidate participate in neuronal protection and protect against NDs. In this review, we demonstrate that various polysaccharides mediate NDs, and share several common mechanisms characterized by autophagy, apoptosis, neuroinflammation, oxidative stress, mitochondrial dysfunction in PD and AD. Furthermore, this review reveals potential role of polysaccharides in vitro and in vivo models of NDs, and highlights the contributions of polysaccharides and prospects of their mechanism studies for the treatment of NDs. Finally, we suggest some remaining questions for the field and areas for new development.
Collapse
Affiliation(s)
- Yinying Wang
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Rongsha Chen
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Zhongshan Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sino Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Qian Wen
- The Neurosurgery Department of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Xia Cao
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Ninghui Zhao
- The Neurosurgery Department of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Jinyuan Yan
- The Central Laboratory of the Second Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
14
|
Borah R, Das JM, Upadhyay J. Surface Functionalized Polyaniline Nanofibers:Chitosan Nanocomposite for Promoting Neuronal-like Differentiation of Primary Adipose Derived Mesenchymal Stem Cells and Urease Activity. ACS APPLIED BIO MATERIALS 2022; 5:3193-3211. [PMID: 35775198 DOI: 10.1021/acsabm.2c00171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bioscaffolds having electrically conducting polymers (CPs) have become increasingly relevant in tissue engineering (TE) because of their ability to regulate conductivity and promote biological function. With this in mind, the current study shows a conducting polyaniline nanofibers (PNFs) dispersed chitosan (Ch) nanocomposites scaffold with a simple one-step surface functionalization approach using glutaraldehyde for potential neural regeneration applications. According to the findings, 4 wt % PNFs dispersion in Ch matrix is an optimal concentration for achieving desirable biological functions while maintaining required physicochemical properties as evidenced by SEM, XRD, current-voltage (I-V) measurement, mechanical strength test, and in vitro biodegradability test. Surface chemical compositional analysis using XPS and ATR FT-IR confirms the incorporation of aldehyde functionality after functionalization, which is corroborated by surface energy calculations following the Van Oss-Chaudhury-Good method. Surface functionalization induced enhancement in surface hydrophilicity in terms of the polar component of surface energy (γiAB) from 6.35 to 12.54 mN m-1 along with an increase in surface polarity from 13.61 to 22.54%. Functionalized PNF:Ch scaffolds demonstrated improvement in enzyme activity from 67 to 94% and better enzyme kinetics with a reduction of Michaelis constants (Km) from 21.55 to 13.81 mM, indicating favorable protein-biomaterial interactions and establishing them as biologically perceptible materials. Surface functionalization mediated improved cell-biomaterial interactions led to improved viability, adhesion, and spreading of primary adipose derived mesenchymal stem cells (ADMSCs) as well as improved immunocompatibility. Cytoskeletal architecture assessment under differentiating media containing 10 ng/mL of each basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) revealed significant actin remodeling with neurite-like projections on the functionalized scaffolds after 14 days. Immunocytochemistry results showed that more than 85% of cells expressed early neuron specific β III tubulin protein on the functionalized scaffolds, whereas glial fibrillary acidic protein (GFAP) expression was limited to approximately 40% of cells. The findings point to the functionalized nanocomposites' potential as a smart scaffold for electrically stimulated neural regeneration, as they are flexible enough to be designed into microchanneled or conduit-like structures that mimic the microstructures and mechanical properties of peripheral nerves.
Collapse
Affiliation(s)
- Rajiv Borah
- Seri-Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati 781035, India
| | - Jitu Mani Das
- Seri-Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati 781035, India
| | - Jnanendra Upadhyay
- Department of Physics, Dakshin Kamrup College, Kamrup, Assam 781125, India
| |
Collapse
|
15
|
Yasir M, Zafar A, Noorulla KM, Tura AJ, Sara UVS, Panjwani D, Khalid M, Haji MJ, Gobena WG, Gebissa T, Dalecha DD. Nose to brain delivery of donepezil through surface modified NLCs: Formulation development, optimization, and brain targeting study. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Oral delivery of polyester nanoparticles for brain-targeting: Challenges and opportunities. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Mohanbhai SJ, Sardoiwala MN, Gupta S, Shrimali N, Choudhury SR, Sharma SS, Guchhait P, Karmakar S. Colon targeted chitosan-melatonin nanotherapy for preclinical Inflammatory Bowel Disease. BIOMATERIALS ADVANCES 2022; 136:212796. [PMID: 35929295 DOI: 10.1016/j.bioadv.2022.212796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Inflammatory Bowel (IBD) is an umbrella term which includes Crohn's Disease (CD) and Ulcerative Colitis (UC). At present, therapies available for management of the UC includes, corticosteroid, immuno-suppressants and antibiotics are used for mild to moderate UC conditions which can cause nephrotoxicity, hepatotoxicity and cardiotoxicity. Hence, a novel therapeutic candidate having potent anti-inflammatory effect is urgently warranted for the management of UC. Melatonin has emerged as a potent anti-inflammatory agent. However, poor solubility limits its therapeutic potential. Therefore, colon targeted Eudragit-S-100 coated chitosan nanoparticles have been demonstrated to improve melatonin therapeutic efficacy. It was found that melatonin loaded chitosan and colon targeted chitosan nanoparticles had promising anti-inflammatory efficacy in terms of NO scavenging activity in an in-vitro LPS challenged macrophages. Also, colon targeted oral chitosan nano-formulation exhibited remarkable protection in an in vivo UC mice model by improving gross pathological parameters, histo-architectural protection, goblet cell depletion, and immune cells infiltration which can be extrapolated to clinical studies.
Collapse
Affiliation(s)
- Soni Jignesh Mohanbhai
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Mohammed Nadim Sardoiwala
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Shiwangi Gupta
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Nishith Shrimali
- Disease Biology Laboratory, Regional Centre for Biotechnology (RCB), National Capital Region Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Subhasree Roy Choudhury
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Prasenjit Guchhait
- Disease Biology Laboratory, Regional Centre for Biotechnology (RCB), National Capital Region Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Surajit Karmakar
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
18
|
de Sousa NF, Scotti L, de Moura ÉP, dos Santos Maia M, Soares Rodrigues GC, de Medeiros HIR, Lopes SM, Scotti MT. Computer Aided Drug Design Methodologies with Natural Products in the Drug Research Against Alzheimer's Disease. Curr Neuropharmacol 2022; 20:857-885. [PMID: 34636299 PMCID: PMC9881095 DOI: 10.2174/1570159x19666211005145952] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Natural products are compounds isolated from plants that provide a variety of lead structures for the development of new drugs by the pharmaceutical industry. The interest in these substances increases because of their beneficial effects on human health. Alzheimer's disease (AD) affects occur in about 80% of individuals aged 65 years. AD, the most common cause of dementia in elderly people, is characterized by progressive neurodegenerative alterations, as decrease of cholinergic impulse, increased toxic effects caused by reactive oxygen species and the inflammatory process that the amyloid plaque participates. In silico studies is relevant in the process of drug discovery; through technological advances in the areas of structural characterization of molecules, computational science and molecular biology have contributed to the planning of new drugs used against neurodegenerative diseases. Considering the social impairment caused by an increased incidence of disease and that there is no chemotherapy treatment effective against AD; several compounds are studied. In the researches for effective neuroprotectants as potential treatments for Alzheimer's disease, natural products have been extensively studied in various AD models. This study aims to carry out a literature review with articles that address the in silico studies of natural products aimed at potential drugs against Alzheimer's disease (AD) in the period from 2015 to 2021.
Collapse
Affiliation(s)
- Natália Ferreira de Sousa
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Luciana Scotti
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil;,Lauro Wanderley University Hospital (HULW), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil,Address correspondence to this author at the Health Sciences Center, Chemioinformatic Laboratory, Federal University of Paraíba, Paraíba, Brazil; E-mail:
| | - Érika Paiva de Moura
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Mayara dos Santos Maia
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Gabriela Cristina Soares Rodrigues
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Herbert Igor Rodrigues de Medeiros
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Simone Mendes Lopes
- Postgraduate Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| | - Marcus Tullius Scotti
- Lauro Wanderley University Hospital (HULW), Health Sciences Center, Federal University of Paraíba, João Pessoa-PB, Brazil
| |
Collapse
|
19
|
Salehi S, Nourbakhsh MS, Yousefpour M, Rajabzadeh G, Sahab-Negah S. Chitosan-coated niosome as an efficient curcumin carrier to cross the blood-brain barrier: an animal study. J Liposome Res 2021; 32:284-292. [PMID: 34957899 DOI: 10.1080/08982104.2021.2019763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study aims to improve the curcumin bio-stability and brain permeability by loading in bare niosome (BN) and chitosan-coated niosome (ChN). Span 60, tween 60, and cholesterol were optimized as niosome shell components to attain the highest encapsulation efficiency (EE), besides the lowest particle size, using the mixture design method. The resulting optimized BN had a mean diameter of 80 ± 0.2 nm and surface charge of -31 ± 0.1 mv, which changed to 85 ± 0.15 nm and 35 ± 0.12 mv, respectively, after applying the chitosan layer. The EE% in bare niosome were about 80 ± 0.2, which changed to 82 ± 0.21 in ChN. The optimized formulation displayed sustained release, following the Hixson-Crowell model.Wistar rats were subjected to intraperitoneal injection (i.p.) of BN and ChN to evaluate the blood-brain barrier permeability of the curcumin. In this regard, ChN significantly increased curcumin concentration in different parts of the liver, plasma, and central nervous system (cerebral cortex, cerebellum, and stratum), compared with BN. Altogether, our results showed that ChN could be used as a promising delivery system for the treatment of some neurological diseases such as Alzheimer's.
Collapse
Affiliation(s)
- Sahar Salehi
- Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran
| | | | - Mardali Yousefpour
- Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran
| | - Ghadir Rajabzadeh
- Department of Food Nanotechnology, Research Institute of Food Science and Technology, Mashhad, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Teharn, Iran
| |
Collapse
|
20
|
Overview of chitosan-based nanosystems for prostate cancer therapy. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Song J, Lu C, Leszek J, Zhang J. Design and Development of Nanomaterial-Based Drug Carriers to Overcome the Blood-Brain Barrier by Using Different Transport Mechanisms. Int J Mol Sci 2021; 22:10118. [PMID: 34576281 PMCID: PMC8465340 DOI: 10.3390/ijms221810118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Central nervous system (CNS) diseases are the leading causes of death and disabilities in the world. It is quite challenging to treat CNS diseases efficiently because of the blood-brain barrier (BBB). It is a physical barrier with tight junction proteins and high selectivity to limit the substance transportation between the blood and neural tissues. Thus, it is important to understand BBB transport mechanisms for developing novel drug carriers to overcome the BBB. This paper introduces the structure of the BBB and its physiological transport mechanisms. Meanwhile, different strategies for crossing the BBB by using nanomaterial-based drug carriers are reviewed, including carrier-mediated, adsorptive-mediated, and receptor-mediated transcytosis. Since the viral-induced CNS diseases are associated with BBB breakdown, various neurotropic viruses and their mechanisms on BBB disruption are reviewed and discussed, which are considered as an alternative solution to overcome the BBB. Therefore, most recent studies on virus-mimicking nanocarriers for drug delivery to cross the BBB are also reviewed and discussed. On the other hand, the routes of administration of drug-loaded nanocarriers to the CNS have been reviewed. In sum, this paper reviews and discusses various strategies and routes of nano-formulated drug delivery systems across the BBB to the brain, which will contribute to the advanced diagnosis and treatment of CNS diseases.
Collapse
Affiliation(s)
- Jisu Song
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
| | - Chao Lu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-367 Wroclaw, Poland;
| | - Jin Zhang
- School of Biomedical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
- Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond Str., London, ON N6A 5B9, Canada;
| |
Collapse
|
22
|
Cyclodextrin Multicomponent Complexes: Pharmaceutical Applications. Pharmaceutics 2021; 13:pharmaceutics13071099. [PMID: 34371790 PMCID: PMC8309128 DOI: 10.3390/pharmaceutics13071099] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Cyclodextrins (CDs) are naturally available water-soluble cyclic oligosaccharides widely used as carriers in the pharmaceutical industry for their ability to modulate several properties of drugs through the formation of drug-CD complexes. The addition of an auxiliary substance when forming multicomponent complexes is an adequate strategy to enhance complexation efficiency and to facilitate the therapeutic applicability of different drugs. This review discusses multicomponent complexation using amino acids; organic acids and bases; and water-soluble polymers as auxiliary excipients. Special attention is given to improved properties by including information on the solubility, dissolution, permeation, stability and bioavailability of several relevant drugs. In addition, the use of multicomponent CD complexes to enhance therapeutic drug effects is summarized.
Collapse
|
23
|
Zeng H, Qi Y, Zhang Z, Liu C, Peng W, Zhang Y. Nanomaterials toward the treatment of Alzheimer’s disease: Recent advances and future trends. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
El-Ganainy SO, Gowayed MA, Agami M, Mohamed P, Belal M, Farid RM, Hanafy AS. Galantamine nanoparticles outperform oral galantamine in an Alzheimer's rat model: pharmacokinetics and pharmacodynamics. NANOMEDICINE (LONDON, ENGLAND) 2021; 16:1281-1296. [PMID: 34013783 DOI: 10.2217/nnm-2021-0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Galantamine is an acetylcholinesterase inhibitor frequently used in Alzheimer's disease management. Its cholinergic adverse effects and rapid elimination limit its therapeutic outcomes. We investigated the pharmacodynamics and pharmacokinetics of 2-week intranasal galantamine-bound chitosan nanoparticles (G-NP) treatment in scopolamine-induced Alzheimer's disease rat model. Materials & methods: Behavioral, neurobiochemical and histopathological changes were assessed and compared with oral and nasal solutions. Brain uptake and pharmacokinetics were determined using a novel validated LC/MS assay. Results: G-NP enhanced spatial memory, exploring behavior and cholinergic transmission in rats. Beta-amyloid deposition and Notch signaling were suppressed and the histopathological degeneration was restored. G-NP potentiated galantamine brain delivery and delayed its elimination. Conclusion: G-NP hold promising therapeutic potentials and brain targeting, outperforming conventional galantamine therapy.
Collapse
Affiliation(s)
- Samar O El-Ganainy
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Mahmoud Agami
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21500, Egypt
| | - Passant Mohamed
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Marwa Belal
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Beheira, 22511, Egypt
| | - Ragwa M Farid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| | - Amira S Hanafy
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, 21500, Egypt
| |
Collapse
|
25
|
Carvalho IC, Mansur HS, Leonel AG, Mansur AAP, Lobato ZIP. Soft matter polysaccharide-based hydrogels as versatile bioengineered platforms for brain tissue repair and regeneration. Int J Biol Macromol 2021; 182:1091-1111. [PMID: 33892028 DOI: 10.1016/j.ijbiomac.2021.04.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Acute or chronic brain injuries promote deaths and the life-long debilitating neurological status where, despite advances in therapeutic strategies, clinical outcome hardly achieves total patient recovery. In recent decades, brain tissue engineering emerged as an encouraging area of research for helping in damaged central nervous system (CNS) recovery. Polysaccharides are abundant naturally occurring biomacromolecules with a great potential enhancement of advanced technologies in brain tissue repair and regeneration (BTRR). Besides carrying rich biological information, polysaccharides can interact and communicate with biomolecules, including glycosaminoglycans present in cell membranes and many signaling moieties, growth factors, chemokines, and axon guidance molecules. This review includes a comprehensive investigation of the current progress on designing and developing polysaccharide-based soft matter biomaterials for BTRR. Although few interesting reviews concerning BTRR have been reported, this is the first report specifically focusing on covering multiple polysaccharides and polysaccharide-based functionalized biomacromolecules in this emerging and intriguing field of multidisciplinary knowledge. This review aims to cover the state of art challenges and prospects of this fascinating field while presenting the richness of possibilities of using these natural biomacromolecules for advanced biomaterials in prospective neural tissue engineering applications.
Collapse
Affiliation(s)
- Isadora C Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil.
| | - Alice G Leonel
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/M.G., Brazil
| | - Zelia I P Lobato
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais - UFMG, Brazil
| |
Collapse
|
26
|
Zhong M, Kou H, Zhao P, Zheng W, Xu H, Zhang X, Lan W, Guo C, Wang T, Guo F, Wang Z, Gao H. Nasal Delivery of D-Penicillamine Hydrogel Upregulates a Disintegrin and Metalloprotease 10 Expression via Melatonin Receptor 1 in Alzheimer's Disease Models. Front Aging Neurosci 2021; 13:660249. [PMID: 33935689 PMCID: PMC8081912 DOI: 10.3389/fnagi.2021.660249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a type of neurodegenerative disease that is associated with the accumulation of amyloid plaques. Increasing non-amyloidogenic processing and/or manipulating amyloid precursor protein signaling could reduce AD amyloid pathology and cognitive impairment. D-penicillamine (D-Pen) is a water-soluble metal chelator and can reduce the aggregation of amyloid-β (Aβ) with metals in vitro. However, the potential mechanism of D-Pen for treating neurodegenerative disorders remains unexplored. In here, a novel type of chitosan-based hydrogel to carry D-Pen was designed and the D-Pen-CS/β-glycerophosphate hydrogel were characterized by scanning electron microscopy and HPLC. Behavior tests investigated the learning and memory levels of APP/PS1 mice treated through the D-Pen hydrogel nasal delivery. In vivo and in vitro findings showed that nasal delivery of D-Pen-CS/β-GP hydrogel had properly chelated metal ions that reduced Aβ deposition. Furthermore, D-Pen mainly regulated A disintegrin and metalloprotease 10 (ADAM10) expression via melatonin receptor 1 (MTNR1α) and the downstream PKA/ERK/CREB pathway. The present data demonstrated D-Pen significantly improved the cognitive ability of APP/PS1 mice and reduced Aβ generation through activating ADAM10 and accelerating non-amyloidogenic processing. Hence, these findings indicate the potential of D-Pen as a promising agent for treating AD.
Collapse
Affiliation(s)
- Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hejia Kou
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, School of Basic Medical Sciences, China Medical University, Shenyang, China
| | - He Xu
- Department of Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xiaoyu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wang Lan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, China
| | - Zhanyou Wang
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, China
| | - Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
27
|
Sibarani J, Sirait SH, Widihati IAG, Manurung M. Positively charged nanomicelles in water of amphiphilic copolymer
chitosan‐g‐polylactide
as drug carrier of photoporphyrin
IX
for photodynamic therapy. J Appl Polym Sci 2021. [DOI: 10.1002/app.50729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- James Sibarani
- Department of Chemistry, Faculty of Mathematics and Sciences Udayana University Denpasar Indonesia
| | - Simon Hamonangan Sirait
- Department of Chemistry, Faculty of Mathematics and Sciences Udayana University Denpasar Indonesia
| | - Ida Ayu Gede Widihati
- Department of Chemistry, Faculty of Mathematics and Sciences Udayana University Denpasar Indonesia
| | - Manuntun Manurung
- Department of Chemistry, Faculty of Mathematics and Sciences Udayana University Denpasar Indonesia
| |
Collapse
|
28
|
Manek E, Petroianu GA. Chitosan-based nanoparticles in Alzheimer's disease: messenger or message? Neural Regen Res 2021; 16:2204-2205. [PMID: 33818494 PMCID: PMC8354127 DOI: 10.4103/1673-5374.310685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Eniko Manek
- College of Medicine & Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Georg A Petroianu
- College of Medicine & Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
29
|
Nasrabadi M, Morsali A, Beyramabadi SA. An applied quantum-chemical model for genipin-crosslinked chitosan (GCS) nanocarrier. Int J Biol Macromol 2020; 165:1229-1240. [PMID: 33038394 DOI: 10.1016/j.ijbiomac.2020.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
Abstract
The genipin-crosslinked chitosan (GCS) nanocarrier has received a lot of attention due to its unique biological and chemical properties as an effective drug delivery system. GCS was modeled by considering two chitosan (CS) polymer sequences with six monomer units that are crosslinked by genipin. To investigate the characteristics of this model, we considered it as a nanocarrier of the anti-cancer drug cladribine (2CdA). Seven configurations of GCS and 2CdA (GCS/2CdA1-7) were optimized at M06-2X/6-31G(d,p) in aqueous solution. The average binding energy above 100 kJ mol-1 indicates a high drug loading amount. The high adsorption of the drug on GCS is due to the hydrogen bonds that were investigated by AIM analysis. Hydrogen bonds also allow the drug to be released more slowly. These results were confirmed by experimental evidence and the comparison of this model with the simple model of one polymer chain. Also, the mechanism of GCS formation was investigated by calculating the activation parameters, which indicates that solvent (H2O) molecules are explicitly involved in the formation of GCS.
Collapse
Affiliation(s)
- Marjan Nasrabadi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran; Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran
| | - Ali Morsali
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran; Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran.
| | - S Ali Beyramabadi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran; Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 917568, Iran
| |
Collapse
|
30
|
M. Tóth O, Menyhárt Á, Frank R, Hantosi D, Farkas E, Bari F. Tissue Acidosis Associated with Ischemic Stroke to Guide Neuroprotective Drug Delivery. BIOLOGY 2020; 9:biology9120460. [PMID: 33322264 PMCID: PMC7764344 DOI: 10.3390/biology9120460] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Simple Summary Ischemic stroke is caused by the blockade of a blood vessel in the brain. Consequently, the brain region supplied by the blocked vessel suffers brain damage and becomes acidic. Here we provide a summary of the causes and consequences of acid accumulation in the brain tissue. Ischemic stroke requires immediate medical attention to minimize the damage of brain tissue, and to save function. It would be desirable for the medical treatment to target the site of injury selectively, to enrich the site of ongoing injury with the protective agent, and to avoid undesirable side effects at the same time. We propose that acid accumulation at the sight of brain tissue injury can be used to delineate the region that would benefit most from medical treatment. Tiny drug carriers known as nanoparticles may be loaded with drugs that protect the brain tissue. These nanoparticles may be designed to release their drug cargo in response to an acidic environment. This would ensure that the therapeutic agent is directed selectively to the site where it is needed. Ultimately, this approach may offer a new way to treat stroke patients with the hope of more effective therapy, and better stroke outcome. Abstract Ischemic stroke is a leading cause of death and disability worldwide. Yet, the effective therapy of focal cerebral ischemia has been an unresolved challenge. We propose here that ischemic tissue acidosis, a sensitive metabolic indicator of injury progression in cerebral ischemia, can be harnessed for the targeted delivery of neuroprotective agents. Ischemic tissue acidosis, which represents the accumulation of lactic acid in malperfused brain tissue is significantly exacerbated by the recurrence of spreading depolarizations. Deepening acidosis itself activates specific ion channels to cause neurotoxic cellular Ca2+ accumulation and cytotoxic edema. These processes are thought to contribute to the loss of the ischemic penumbra. The unique metabolic status of the ischemic penumbra has been exploited to identify the penumbra zone with imaging tools. Importantly, acidosis in the ischemic penumbra may also be used to guide therapeutic intervention. Agents with neuroprotective promise are suggested here to be delivered selectively to the ischemic penumbra with pH-responsive smart nanosystems. The administered nanoparticels release their cargo in acidic tissue environment, which reliably delineates sites at risk of injury. Therefore, tissue pH-targeted drug delivery is expected to enrich sites of ongoing injury with the therapeutical agent, without the risk of unfavorable off-target effects.
Collapse
|
31
|
Baidamshina DR, Koroleva VA, Trizna EY, Pankova SM, Agafonova MN, Chirkova MN, Vasileva OS, Akhmetov N, Shubina VV, Porfiryev AG, Semenova EV, Sachenkov OA, Bogachev MI, Artyukhov VG, Baltina TV, Holyavka MG, Kayumov AR. Anti-biofilm and wound-healing activity of chitosan-immobilized Ficin. Int J Biol Macromol 2020; 164:4205-4217. [DOI: 10.1016/j.ijbiomac.2020.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
|
32
|
Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, Fatahi Y, Dinarvand R, Tahriri M, Tayebi L, Hamblin MR, Webster TJ. Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer's Disease. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000076] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Navid Rabiee
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Sepideh Ahmadi
- Student Research Committee Department of Medical Biotechnology School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
- Cellular and Molecular Biology Research Center Shahid Beheshti University of Medical Sciences Tehran 19857‐17443 Iran
| | - Ronak Afshari
- Department of Physics Sharif University of Technology P.O. Box 11155‐9161 Tehran Iran
| | - Samira Khalaji
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mohammad Rabiee
- Biomaterial Group Department of Biomedical Engineering Amirkabir University of Technology Tehran 15875‐4413 Iran
| | - Mojtaba Bagherzadeh
- Department of Chemistry Sharif University of Technology Tehran 11155‐3516 Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Universal Scientific Education and Research Network (USERN) Tehran 15875‐4413 Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
- Nanotechnology Research Center Faculty of Pharmacy Tehran University of Medical Sciences Tehran 14155‐6451 Iran
| | - Mohammadreza Tahriri
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Lobat Tayebi
- Department of Developmental Sciences Marquette University Milwaukee WI 53233 USA
| | - Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston USA
- Department of Dermatology Harvard Medical School Boston USA
- Laser Research Centre Faculty of Health Science University of Johannesburg Doornfontein 2028 South Africa
| | - Thomas J. Webster
- Department of Chemical Engineering Northeastern University Boston MA 02115 USA
| |
Collapse
|
33
|
Chauhan PS, Yadav D, Koul B, Mohanta YK, Jin JO. Recent Advances in Nanotechnology: A Novel Therapeutic System for the Treatment of Alzheimer's Disease. Curr Drug Metab 2020; 21:1144-1151. [PMID: 33234100 DOI: 10.2174/1389200221666201124140518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/14/2020] [Accepted: 10/15/2020] [Indexed: 11/22/2022]
Abstract
A amyloid-β (Aβ) plaque formation in the brain is known to be the root cause of Alzheimer's disease (AD), which affects the behavior, memory, and cognitive ability in humans. The brain starts undergoing changes several years before the actual appearance of the symptoms. Nanotechnology could prove to be an alternative strategy for treating the disease effectively. It encompasses the diagnosis as well as the therapeutic aspect using validated biomarkers and nano-based drug delivery systems, respectively. A nano-based therapy may provide an alternate strategy, wherein one targets the protofibrillar amyloid-β (Aβ) structures, and this is followed by their disaggregation as random coils. Conventional/routine drug therapies are inefficient in crossing the blood-brain barrier; however, this hurdle can be overcome with the aid of nanoparticles. The present review highlights the various challenges in the diagnosis and treatment of AD. Meticulous and collaborative research using nanotherapeutic systems could provide remarkable breakthroughs in the early-stage diagnosis and therapy of AD.
Collapse
Affiliation(s)
- Pallavi Singh Chauhan
- Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior, 474005, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Bhupendra Koul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Yugal Kishore Mohanta
- Biochemistry Laboratory, Department of Botany, North Orissa University Baripada- 757003, India
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
34
|
Sardoiwala MN, Karmakar S, Choudhury SR. Chitosan nanocarrier for FTY720 enhanced delivery retards Parkinson's disease via PP2A-EzH2 signaling in vitro and ex vivo. Carbohydr Polym 2020; 254:117435. [PMID: 33357908 DOI: 10.1016/j.carbpol.2020.117435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) develops due to oxidative stress, mitochondrial aberrations, posttranslational modification, and α-Synuclein (α-Syn) aggregation. The α-synucleinopathy is attributed to phosphorylation and aggregation of α-Syn. A strategy to degrade or reduce phosphorylated protein paves the way to develop PD therapy. Hence, the neuroprotective efficiency of PP2A (Protein phosphatase 2) activator FTY720, loaded chitosan nanoformulation has been evaluated in vitro and ex vivo experimental PD models. Bio-compatible chitosan-based nanocarriers have been utilized to enhance the bio-availability and neuroprotective effect of FTY720. The neuroprotective effect of characterized nanoformulation was determined by the downregulation of PD hallmark phospho-serine 129 (pSer129) α-Syn, with anti-oxidative and anti-inflammatory potentials. The neuroprotective mechanism uncovered novel physical interaction of PP2A and polycomb group of protein Enhancer of zeste homolog 2 to mediate ubiquitination and degradation of agglomerated pSer129 α-Syn. Indeed, this study establishes the neuroprotective potential of chitosan based FTY720 nanoformulations by PP2A mediated epigenetic regulation for PD prevention.
Collapse
Affiliation(s)
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India.
| |
Collapse
|
35
|
Manek E, Darvas F, Petroianu GA. Use of Biodegradable, Chitosan-Based Nanoparticles in the Treatment of Alzheimer's Disease. Molecules 2020; 25:E4866. [PMID: 33096898 PMCID: PMC7587961 DOI: 10.3390/molecules25204866] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects more than 24 million people worldwide and represents an immense medical, social and economic burden. While a vast array of active pharmaceutical ingredients (API) is available for the prevention and possibly treatment of AD, applicability is limited by the selective nature of the blood-brain barrier (BBB) as well as by their severe peripheral side effects. A promising solution to these problems is the incorporation of anti-Alzheimer drugs in polymeric nanoparticles (NPs). However, while several polymeric NPs are nontoxic and biocompatible, many of them are not biodegradable and thus not appropriate for CNS-targeting. Among polymeric nanocarriers, chitosan-based NPs emerge as biodegradable yet stable vehicles for the delivery of CNS medications. Furthermore, due to their mucoadhesive character and intrinsic bioactivity, chitosan NPs can not only promote brain penetration of drugs via the olfactory route, but also act as anti-Alzheimer therapeutics themselves. Here we review how chitosan-based NPs could be used to address current challenges in the treatment of AD; with a specific focus on the enhancement of blood-brain barrier penetration of anti-Alzheimer drugs and on the reduction of their peripheral side effects.
Collapse
Affiliation(s)
- Eniko Manek
- College of Medicine & Health Sciences, Khalifa University, Abu Dhabi POB 12 77 88, UAE;
| | - Ferenc Darvas
- Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA;
| | - Georg A. Petroianu
- College of Medicine & Health Sciences, Khalifa University, Abu Dhabi POB 12 77 88, UAE;
| |
Collapse
|
36
|
Brain-Targeted Delivery of Pre-miR-29b Using Lactoferrin-Stearic Acid-Modified-Chitosan/Polyethyleneimine Polyplexes. Pharmaceuticals (Basel) 2020; 13:ph13100314. [PMID: 33076502 PMCID: PMC7602608 DOI: 10.3390/ph13100314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
The efficacy of brain therapeutics is largely hampered by the presence of the blood–brain barrier (BBB), mainly due to the failure of most (bio) pharmaceuticals to cross it. Accordingly, this study aims to develop nanocarriers for targeted delivery of recombinant precursor microRNA (pre-miR-29b), foreseeing a decrease in the expression of the BACE1 protein, with potential implications in Alzheimer’s disease (AD) treatment. Stearic acid (SA) and lactoferrin (Lf) were successfully exploited as brain-targeting ligands to modify cationic polymers (chitosan (CS) or polyethyleneimine (PEI)), and its BBB penetration behavior was evaluated. The intracellular uptake of the dual-targeting drug delivery systems by neuronal cell models, as well as the gene silencing efficiency of recombinant pre-miR-29b, was analyzed in vitro. Labeled pre-miR-29b-CS/PEI-SA-Lf systems showed very strong fluorescence in the cytoplasm and nucleus of RBE4 cells, being verified the delivery of pre-miR-29b to neuronal cells after 1 h transfection. The experiment of transport across the BBB showed that CS-SA-Lf delivered 65% of recombinant pre-miR-29b in a period of 4 h, a significantly higher transport ratio than the 42% found for PEI-SA-Lf in the same time frame. Overall, a novel procedure for the dual targeting of DDS is disclosed, opening new perspectives in nanomedicines delivery, whereby a novel drug delivery system harvests the merits and properties of the different immobilized ligands.
Collapse
|
37
|
Guo Y, Amunyela HTNN, Cheng Y, Xie Y, Yu H, Yao W, Li HW, Qian H. Natural protein-templated fluorescent gold nanoclusters: Syntheses and applications. Food Chem 2020; 335:127657. [PMID: 32738539 DOI: 10.1016/j.foodchem.2020.127657] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/01/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022]
Abstract
For the past decades, the synthesis of metal nanoclusters has been a great interest for research, for their unique physicochemical properties and great contributions to the catalytic, electrical and biomedical applications. Protein-templated gold nanoclusters (AuNCs) is a kind of fluorescent nanomaterials with good solubility, excellent stability, biocompatibility, decent quantum yields and active groups (-COOH, -NH2) for facilitating modifications. Natural proteins are easily available, commercially affordable, diverse and multitudinous in animals, plants and foods, which provide a template pool for the exploration of AuNCs. This is one of the few reviews of specifically focusing on the natural protein-templated fluorescent AuNCs. The syntheses, properties and applications of different AuNCs were enumerated. Prospects were given on utilizing structure-modified proteins, bioactive enzymes, antibodies which should endow the AuNCs more favourable fluorescence performances and functional characteristics. The applications of AuNCs in analytical, biomedical and food sciences would be further heightened.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Helena T N N Amunyela
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - He Qian
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
38
|
The effect of baicalein-loaded Y-shaped miktoarm copolymer on spatial memory and hippocampal expression of DHCR24, SELADIN and SIRT6 genes in rat model of Alzheimer. Int J Pharm 2020; 586:119546. [PMID: 32544519 DOI: 10.1016/j.ijpharm.2020.119546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
Abstract
In the present study, we successfully synthesized nanocarriers (NCs) based on Y-shaped miktoarm copolymers, Poly Ethylene Glycol-Lysine-(Poly Caprolactone)2 (PEG-Lys-PCL2), which were loaded by baicalein (B) through the nanoprecipitation process to assess their in-vitro and in-vivo properties. We applied various methods and measurements including proton nuclear magnetic resonance (HNMR), dynamic light scattering (DLS), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), MTT assay, hemolysis test, lethal dose, real-time PCR, and Morris water maze. The results of DLS indicated that the size and zeta potential of the obtained NCs and B-loaded NCs were acceptable. Also, in-vivo and in-vitro biocompatibility examinations proved that miktoarm-based NCs were safe, and all rats treated with miktoarm-based NCs did not exhibit any remarkable weight loss during the experiment. The results of the Morris water maze (in-vivo test) revealed that the normal saline-treated group, as well as B-miktoarm + Scopolamine (M + B + S) and B-miktoarm-Tween80 + Scopolamine (M + B + T + S) pretreatment groups, spent more time in the target quadrant. Thus, this experiment showed that pretreatment of rats with M + B + S and M + B + T + S had the most effects on spatial memory. According to quantitative PCR analysis, we hypothesized that, in comparison with other experimental groups, pretreatment of rats with M + B + T + S could be more effective in preventing cholinergic dysfunction, brain oxidative stress and cognitive deficits which cause by Scopolamine HBr. This outcome may be partially due to the upregulation of DHCR24, SELADIN, and SIRT6 in entire of the hippocampal region of normal saline-treated and M + B + T + S pretreatment groups. These results may be because mimicking the cell membrane structure would be an excellent feature for miktoarm, and partial coating of Tween-80 can play a critical role for PEG-Lys-PCL2-based NCs in crossing the brain cell membrane, and they can easily be uptaken by the cells. Eventually, all of the obtained data confirmed that PEG-Lys-PCL2 miktoarm star copolymers are suitable for delivering therapeutic agents to the brain for the treatment of Alzheimer's disease (AD). Also, it seems that baicalein should be taken into account as a potent compound for the treatment of AD.
Collapse
|
39
|
Ojeda-Hernández DD, Canales-Aguirre AA, Matias-Guiu J, Gomez-Pinedo U, Mateos-Díaz JC. Potential of Chitosan and Its Derivatives for Biomedical Applications in the Central Nervous System. Front Bioeng Biotechnol 2020; 8:389. [PMID: 32432095 PMCID: PMC7214799 DOI: 10.3389/fbioe.2020.00389] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
It is well known that the central nervous system (CNS) has a limited regenerative capacity and that many therapeutic molecules cannot cross the blood brain barrier (BBB). The use of biomaterials has emerged as an alternative to overcome these limitations. For many years, biomedical applications of chitosan have been studied due to its remarkable biological properties, biocompatibility, and high versatility. Moreover, the interest in this biomaterial for CNS biomedical implementation has increased because of its ability to cross the BBB, mucoadhesiveness, and hydrogel formation capacity. Several chitosan-based biomaterials have been applied with promising results as drug, cell and gene delivery vehicles. Moreover, their capacity to form porous scaffolds and to bear cells and biomolecules has offered a way to achieve neural regeneration. Therefore, this review aims to bring together recent works that highlight the potential of chitosan and its derivatives as adequate biomaterials for applications directed toward the CNS. First, an overview of chitosan and its derivatives is provided with an emphasis on the properties that favor different applications. Second, a compilation of works that employ chitosan-based biomaterials for drug delivery, gene therapy, tissue engineering, and regenerative medicine in the CNS is presented. Finally, the most interesting trends and future perspectives of chitosan and its derivatives applications in the CNS are shown.
Collapse
Affiliation(s)
- Doddy Denise Ojeda-Hernández
- Biotecnología Industrial, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | - Alejandro A Canales-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Jorge Matias-Guiu
- Servicio de Neurología, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Ulises Gomez-Pinedo
- Servicio de Neurología, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Juan C Mateos-Díaz
- Biotecnología Industrial, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| |
Collapse
|
40
|
|
41
|
Anand A, Iyer BR, Ponnusamy C, Pandiyan R, Sugumaran A. Design and Development of Lomustine Loaded Chitosan Nanoparticles for Efficient Brain Targeting. Cardiovasc Hematol Agents Med Chem 2020; 18:45-54. [PMID: 32013840 DOI: 10.2174/1871525718666200203112502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 11/22/2022]
Abstract
AIMS The present research work discussed the preparation of lomustine loaded with chitosan nanoparticles (LNCp) by ionic gelation method with homogenization using the design on experiments by Box-Behnken design. METHODS The nanoparticles are evaluated by particle size, zeta potential, surface morphology, drug content, entrapment efficiency and in-vitro drug release. RESULTS The FT-IR results support that drug have no interaction with excipients, which are used in the preparation of nanoparticle. The particle size, drug content and encapsulation efficiency of the developed nanoparticles ranged from 190 to 255 nm, 80.88% to 94.02%, and 77.12 to 88.74%, respectively. The drug release rate is diffusion-controlled over 8 hours. The F-value for all of the responses shows that the models are significant. The p-value, less than 0.05 for all the responses reveals the significance of the models. Graphical optimisation is done by desirability plot and overlay plot, which contains optimal values of independent variables with the desirability of 1. CONCLUSION In conclusion, the results suggested that the optimised lomustine loaded chitosan nanoparticles are useful for brain targeting hence hold the potential for further research and clinical application.
Collapse
Affiliation(s)
- Anupriya Anand
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - Bharadhwaj Ramesh Iyer
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - Chandrasekar Ponnusamy
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, India
| | - Rajesh Pandiyan
- Department of Biochemistry, Karpagam Academy of Higher Education, Karpagam University, Coimbatore, India
| | - Abimanyu Sugumaran
- SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| |
Collapse
|
42
|
Zhou C, Yang Z, Zhang L, Dong E, He Z, Liu X, Wang C, Yang Y, Jiao J, Liu Y, Chen Y, Li P. Self-assembled nano-vesicles based on mPEG-NH2 modified carboxymethyl chitosan-graft-eleostearic acid conjugates for delivery of spinosad for Helicoverpa armigera. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Alavian F, Shams N. Oral and Intra-nasal Administration of Nanoparticles in the Cerebral Ischemia Treatment in Animal Experiments: Considering its Advantages and Disadvantages. CURRENT CLINICAL PHARMACOLOGY 2020; 15:20-29. [PMID: 31272358 PMCID: PMC7366001 DOI: 10.2174/1574884714666190704115345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/21/2019] [Accepted: 05/17/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Over the past few decades, nanotechnology has dramatically advanced; from the precise strategies of synthesizing modern nanostructures to methods of entry into the body. Using nanotechnology in diagnosis, drug delivery, determining signaling pathways, and tissue engineering is great hope for the treatment of stroke. The drug-carrying nanoparticles are a way to increase drug absorption through the mouth or nose in treating the stroke. OBJECTIVE In this article, in addition to explaining pros and cons of oral and intra-nasal administration of nanoparticles in the brain ischemia treatment of animal models, the researchers introduce some articles in this field and briefly mentioned their work outcomes. METHODS A number of relevant published articles 183 were initially collected from three popular databases including PubMed, Google Scholar, and Scopus. The articles not closely related to the main purpose of the present work were removed from the study process. The present data set finally included 125 published articles. RESULTS Direct delivery of the drug to the animal brain through the mouth and nose has more therapeutic effects than systemic delivery of drugs. The strategy of adding drugs to the nanoparticles complex can potentially improve the direct delivery of drugs to the CNS. CONCLUSION Despite the limitations of oral and intra-nasal routes, the therapeutic potential of oral and intra-nasal administration of nano-medicines is high in cerebral ischemia treatment.
Collapse
Affiliation(s)
- Firoozeh Alavian
- Address correspondence to this author at the Department of biology, Faculty of basic science, Farhangian University, Tehran, Iran;, Tel: +989133217068; E-mails: ;,
| | | |
Collapse
|
44
|
Li R, Wang J, Yu X, Xu P, Zhang S, Xu J, Bai Y, Dai Z, Sun Y, Ye R, Liu X, Ruan G, Xu G. Enhancing the effects of transcranial magnetic stimulation with intravenously injected magnetic nanoparticles. Biomater Sci 2019; 7:2297-2307. [PMID: 31050344 DOI: 10.1039/c9bm00178f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive and clinically approved method for treating neurological disorders. However, the relatively weak intracranial electric current induced by TMS is an obvious inferiority which can only produce limited treatment effects in clinical application. The present study aimed to investigate the possibility of enhancing the effects of TMS with intravenously administrated magnetic nanoparticles. To facilitate crossing of the blood-brain barrier (BBB), the superparamagnetic iron oxide nanoparticles (SPIONs) were coated with carboxylated chitosan and poly(ethylene glycol). To aid the nanoparticles in crossing the BBB and targeting the predesigned brain regions, an external permanent magnet was attached to the foreheads of the rats before the intravenous administration of SPIONs. The electrophysiological tests showed that the maximum MEP amplitude recorded in an individual rat was significantly higher in the SPIONs + magnet group than in the saline group (5.78 ± 2.54 vs. 1.80 ± 1.55 mV, P = 0.015). In the M1 region, biochemical tests detected that the number density of c-fos positive cells in the SPIONs + magnet group was 3.44 fold that of the saline group. These results suggest that intravenously injected SPIONs can enhance the effects of TMS in treating neurological disorders.
Collapse
Affiliation(s)
- Rongrong Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hettiarachchi SD, Zhou Y, Seven E, Lakshmana MK, Kaushik AK, Chand HS, Leblanc RM. Nanoparticle-mediated approaches for Alzheimer's disease pathogenesis, diagnosis, and therapeutics. J Control Release 2019; 314:125-140. [PMID: 31647979 DOI: 10.1016/j.jconrel.2019.10.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder manifested by memory loss and cognitive impairment. Deposition of the amyloid β plaques has been identified as the most common AD pathology; however, the excessive accumulation of phosphorylated or total tau proteins, reactive oxygen species, and higher acetylcholinesterase activity are also strongly associated with Alzheimer's dementia. Several therapeutic approaches targeting these pathogenic mechanisms have failed in clinical or preclinical trials, partly due to the limited bioavailability, poor cell, and blood-brain barrier penetration, and low drug half-life of current regimens. The nanoparticles (NPs)-mediated drug delivery systems improve drug solubility and bioavailability, thus renders as superior alternatives. Moreover, NPs-mediated approaches facilitate multiple drug loading and targeted drug delivery, thereby increasing drug efficacy. However, certain NPs can cause acute toxicity damaging cellular and tissue architecture, therefore, NP material should be carefully selected. In this review, we summarize the recent NPs-mediated studies that exploit various pathologic mechanisms of AD by labeling, identifying, and treating the affected brain pathologies. The disadvantages of the select NP-based deliveries and the future aspects will also be discussed.
Collapse
Affiliation(s)
- Sajini D Hettiarachchi
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Elif Seven
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Madepalli K Lakshmana
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Ajeet K Kaushik
- Department of Natural Sciences, Division of Sciences, Arts & Mathematics, Florida Polytechnic University, Lakeland, FL 33805-8531, USA
| | - Hitendra S Chand
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| |
Collapse
|
46
|
Estrada-Cabrera E, Torres-Ferrer L, Aztatzi-Aguilar O, De Vizcaya-Ruiz A, Meraz-Rios M, Zarate-Triviño D, Arizmendi-Morquecho A, de Luna Bugallo A, Prokhorov E, Luna-Barcenas G. Chitosan-bioglass coatings on partially nanostructured anodized Ti-6Al-4V alloy for biomedical applications. SURFACE AND COATINGS TECHNOLOGY 2019; 375:468-476. [DOI: 10.1016/j.surfcoat.2019.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
47
|
Mahajan CR, Joshi LB, Varma U, Naik JB, Chaudhari VR, Mishra S. Sustainable Drug Delivery of Famotidine Using Chitosan-Functionalized Graphene Oxide as Nanocarrier. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1900002. [PMID: 31592120 PMCID: PMC6777207 DOI: 10.1002/gch2.201900002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/16/2019] [Indexed: 05/21/2023]
Abstract
This work mainly focuses on the graphene oxide (GO)-assisted sustainable drug delivery of famotidine (FMT) drug. Famotidine is loaded onto GO and encapsulated by chitosan (CH). UV-visible spectroscopy, field emission scan electron microscopy, and atomic force microscopy confirm the loading of FMT on GO. An interaction of FMT with GO and CH through amine functionalities is confirmed by Fourier-transform infrared spectroscopy. Differential scanning calorimetric and cyclic voltammetric investigations confirm the compatibility of FMT and its retaining activity within chitosan-functionalized graphene oxide (CHGO) composite. Encapsulation efficiency of FMT is determined for various CHGO-FMT combinations and found to be higher at 1:9 ratio. The in vitro drug release profile is studied using a dissolution test apparatus in 0.1 m phosphate buffer medium (pH = 4.5), which shows sustainable drug release up to 12 h, which is greater than the market product (Complete release within 2 h). Comparative study of drug encapsulated with CH and without GO elucidates that GO is responsible for the sustainable release. The "n" value obtained from slope using Korsmeyer-Peppas model suggests the super case-II transport mechanism.
Collapse
Affiliation(s)
- Chetan Ramesh Mahajan
- University Institute of Chemical TechnologyNorth Maharashtra UniversityJalgaon425001MaharashtraIndia
| | - Lalit B. Joshi
- University Institute of Chemical TechnologyNorth Maharashtra UniversityJalgaon425001MaharashtraIndia
| | - Umakant Varma
- University Institute of Chemical TechnologyNorth Maharashtra UniversityJalgaon425001MaharashtraIndia
| | - Jitendra B. Naik
- University Institute of Chemical TechnologyNorth Maharashtra UniversityJalgaon425001MaharashtraIndia
| | - Vijay Raman Chaudhari
- University Institute of Chemical TechnologyNorth Maharashtra UniversityJalgaon425001MaharashtraIndia
| | - Satyendra Mishra
- University Institute of Chemical TechnologyNorth Maharashtra UniversityJalgaon425001MaharashtraIndia
| |
Collapse
|
48
|
Abstract
In the treatment of brain diseases, most potent drugs that have been developed exhibit poor therapeutic outcomes resulting from the inability of a therapeutic amount of the drug to reach the brain. These drugs do not exhibit targeted drug delivery mechanisms, resulting in a high concentration of the drugs in vital organs leading to drug toxicity. Chitosan (CS) is a natural-based polymer. It has unique properties such as good biodegradability, biocompatibility, mucoadhesive properties, and it has been approved for biomedical applications. It has been used to develop nanocarriers for brain targeting via intranasal administration. Nanocarriers such as nanoparticles, in situ gels, nanoemulsions, and liposomes have been developed. In vitro and in vivo studies revealed that these nanocarriers exhibited enhanced drug uptake to the brain with reduced side effects resulting from the prolonged contact time of the nanocarriers with the nasal mucosa, the surface charge of the nanocarriers, the nano size of the nanocarriers, and their capability to stretch the tight junctions within the nasal mucosa. The aforementioned unique properties make chitosan a potential material for the development of nanocarriers for targeted drug delivery to the brain. This review will focus on chitosan-based carriers for brain targeting.
Collapse
|
49
|
Yu S, Xu X, Feng J, Liu M, Hu K. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm 2019; 560:282-293. [DOI: 10.1016/j.ijpharm.2019.02.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022]
|
50
|
Cohen E, Merzendorfer H. Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications. EXTRACELLULAR SUGAR-BASED BIOPOLYMERS MATRICES 2019; 12. [PMCID: PMC7115017 DOI: 10.1007/978-3-030-12919-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chitin is a linear polysaccharide of N-acetylglucosamine, which is highly abundant in nature and mainly produced by marine crustaceans. Chitosan is obtained by hydrolytic deacetylation. Both polysaccharides are renewable resources, simply and cost-effectively extracted from waste material of fish industry, mainly crab and shrimp shells. Research over the past five decades has revealed that chitosan, in particular, possesses unique and useful characteristics such as chemical versatility, polyelectrolyte properties, gel- and film-forming ability, high adsorption capacity, antimicrobial and antioxidative properties, low toxicity, and biocompatibility and biodegradability features. A plethora of chemical chitosan derivatives have been synthesized yielding improved materials with suggested or effective applications in water treatment, biosensor engineering, agriculture, food processing and storage, textile additives, cosmetics fabrication, and in veterinary and human medicine. The number of studies in this research field has exploded particularly during the last two decades. Here, we review recent advances in utilizing chitosan and chitosan derivatives in different technical, agricultural, and biomedical fields.
Collapse
Affiliation(s)
- Ephraim Cohen
- Department of Entomology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hans Merzendorfer
- School of Science and Technology, Institute of Biology – Molecular Biology, University of Siegen, Siegen, Germany
| |
Collapse
|