1
|
Naves HB, Stafussa AP, Madrona GS, Tanaka FC, Aouada FA, de Moura MR. Development of New Edible Biodegradable Films Containing Camu-Camu and Agro-Industry Residue. Polymers (Basel) 2024; 16:1826. [PMID: 39000681 PMCID: PMC11243893 DOI: 10.3390/polym16131826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
The use of edible films has garnered significant interest in the food and environmental sectors due to their potential to prevent food deterioration and their biodegradability. This study aimed to develop and characterize edible films based on camu-camu residue, gelatin, and glycerol, evaluating their solubility, thermal, degradability, antioxidant, and water vapor permeability properties of the gelatin matrix. This is the first study incorporating camu-camu into a gelatin and glycerol matrix. The films produced with camu-camu residue were manageable and soluble, with some non-soluble residues, providing a shiny and well-presented appearance. In the biodegradation results, samples 3 and 4 appeared to degrade the most, being two of the three most affected samples in the triplicate. The films showed degradation modifications from the third day of the experiment. In the germination and plant growth analysis, sample 4 exhibited satisfactory development compared to the other samples, emerging as the sample with the best overall result in the analyses, attributed to a 13.84 cm increase in the growth of the upper part of the seedling. These results indicate that the produced materials have potential for food packaging applications.
Collapse
Affiliation(s)
- Huéberton Barbosa Naves
- Programa de Pós-Graduação em Ciência dos Materiais, Faculdade de Engenharia do Campus de Ilha Solteira-SP, Universidade Estadual Paulista, Avenida Brasil 56, Ilha Solteira 15385-000, SP, Brazil
| | - Ana Paula Stafussa
- Programa de Pós-Graduação em Ciência de Alimentos, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900, PR, Brazil
| | - Grasiele Scaramal Madrona
- Departamento de Engenharia de Alimentos, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900, PR, Brazil
| | - Fabrício Cerizza Tanaka
- Programa de Pós-Graduação em Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Campus Fernando Costa, Avenida Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil
- Departamento de Física e Química, Faculdade de Engenharia do Campus de Ilha Solteira-SP, Universidade Estadual Paulista, Avenida Brasil 56, Ilha Solteira 15385-000, SP, Brazil
| | - Fauze Ahmad Aouada
- Departamento de Física e Química, Faculdade de Engenharia do Campus de Ilha Solteira-SP, Universidade Estadual Paulista, Avenida Brasil 56, Ilha Solteira 15385-000, SP, Brazil
| | - Márcia Regina de Moura
- Departamento de Física e Química, Faculdade de Engenharia do Campus de Ilha Solteira-SP, Universidade Estadual Paulista, Avenida Brasil 56, Ilha Solteira 15385-000, SP, Brazil
| |
Collapse
|
2
|
Ding Q, Mo Z, Wang X, Chen M, Zhou F, Liu Z, Long Y, Xia X, Zhao P. The antibacterial and hemostatic curdlan hydrogel-loading epigallocatechin gallate for facilitating the infected wound healing. Int J Biol Macromol 2024; 266:131257. [PMID: 38554908 DOI: 10.1016/j.ijbiomac.2024.131257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
The infected wounds pose one of the major threats to human health today. To address this issue, it is necessary to develop innovative wound dressings with superior antibacterial activity and other properties. Due to its potent antibacterial, antioxidant, and immune-boosting properties, epigallocatechin gallate (EGCG) has been widely utilized. In this study, a multifunctional curdlan hydrogel loading EGCG (Cur-EGCGH3) was designed. Cur-EGCGH3 exhibited excellent physicochemical properties, good biocompatibility, hemostatic, antibacterial, and antioxidant activities. Also, ELISA data showed that Cur-EGCGH3 stimulated macrophages to secrete pro-inflammatory and pro-regenerative cytokines. Cell scratch results indicated that Cur-EGCGH3 promoted the migration of NIH3T3 and HUVECs. In vivo experiments confirmed that Cur-EGCGH3 could inhibit bacterial infection of the infected wounds, accelerate hemostasis, and promote epithelial regeneration and collagen deposition. These results demonstrated that Cur-EGCGH3 holds promise for promoting healing of the infected wounds.
Collapse
Affiliation(s)
- Qiang Ding
- Department of Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan 512025, China; Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan 512025, China
| | - Zhendong Mo
- Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xinyue Wang
- Department of Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan 512025, China; Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan 512025, China
| | - Meiling Chen
- Department of Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan 512025, China; Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan 512025, China
| | - Fan Zhou
- Department of Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan 512025, China; Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan 512025, China
| | - Zhengquan Liu
- Department of Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan 512025, China; Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan 512025, China
| | - Ying Long
- Department of Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan 512025, China; Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan 512025, China
| | - Xianzhu Xia
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512025, China; Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan 512025, China; Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan 512025, China.
| |
Collapse
|
3
|
Rahman A, Rehmani R, Pirvu DG, Huang SM, Puri S, Arcos M. Unlocking the Therapeutic Potential of Marine Collagen: A Scientific Exploration for Delaying Skin Aging. Mar Drugs 2024; 22:159. [PMID: 38667776 PMCID: PMC11050892 DOI: 10.3390/md22040159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Aging is closely associated with collagen degradation, impacting the structure and strength of the muscles, joints, bones, and skin. The continuous aging of the skin is a natural process that is influenced by extrinsic factors such as UV exposure, dietary patterns, smoking habits, and cosmetic supplements. Supplements that contain collagen can act as remedies that help restore vitality and youth to the skin, helping combat aging. Notably, collagen supplements enriched with essential amino acids such as proline and glycine, along with marine fish collagen, have become popular for their safety and effectiveness in mitigating the aging process. To compile the relevant literature on the anti-aging applications of marine collagen, a search and analysis of peer-reviewed papers was conducted using PubMed, Cochrane Library, Web of Science, and Embase, covering publications from 1991 to 2024. From in vitro to in vivo experiments, the reviewed studies elucidate the anti-aging benefits of marine collagen, emphasizing its role in combating skin aging by minimizing oxidative stress, photodamage, and the appearance of wrinkles. Various bioactive marine peptides exhibit diverse anti-aging properties, including free radical scavenging, apoptosis inhibition, lifespan extension in various organisms, and protective effects in aging humans. Furthermore, the topical application of hyaluronic acid is discussed as a mechanism to increase collagen production and skin moisture, contributing to the anti-aging effects of collagen supplementation. The integration of bio-tissue engineering in marine collagen applications is also explored, highlighting its proven utility in skin healing and bone regeneration applications. However, limitations to the scope of its application exist. Thus, by delving into these nuanced considerations, this review contributes to a comprehensive understanding of the potential and challenges associated with marine collagen in the realm of anti-aging applications.
Collapse
Affiliation(s)
- Azizur Rahman
- Centre for Climate Change Research (CCCR), University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (R.R.); (D.G.P.); (S.M.H.); (S.P.); (M.A.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
- AR Biotech Canada, Toronto, ON M2H 3P8, Canada
| | - Rameesha Rehmani
- Centre for Climate Change Research (CCCR), University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (R.R.); (D.G.P.); (S.M.H.); (S.P.); (M.A.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
- Department of Biological Anthropology, University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Diana Gabby Pirvu
- Centre for Climate Change Research (CCCR), University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (R.R.); (D.G.P.); (S.M.H.); (S.P.); (M.A.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Siqi Maggie Huang
- Centre for Climate Change Research (CCCR), University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (R.R.); (D.G.P.); (S.M.H.); (S.P.); (M.A.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, St. George, Toronto, ON M5S 3B2, Canada
| | - Simron Puri
- Centre for Climate Change Research (CCCR), University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (R.R.); (D.G.P.); (S.M.H.); (S.P.); (M.A.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Mateo Arcos
- Centre for Climate Change Research (CCCR), University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (R.R.); (D.G.P.); (S.M.H.); (S.P.); (M.A.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
- Computer Science, Mathematics and Statistics, University of Toronto, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
4
|
Shabeena M, Warale D, Prabhu A, Kouser S, Manasa DJ, Nagaraja GK. Pectin wrapped halloysite nanotube reinforced Polycaprolactone films for potential wound healing application. Int J Biol Macromol 2024; 262:130140. [PMID: 38365152 DOI: 10.1016/j.ijbiomac.2024.130140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
The current research work focuses on preparing the polycaprolactone (PCL) based nanocomposite films embedded with surface modified Halloysite Nanotube (HNT). The avenue of the study is to unravel the applicability of polymer nanocomposites for wound healing. The flexible property of HNT was taken as the major force to accomplish the addition of biopolymer pectin onto its surface. Functionalization of HNT with pectin has certainly enhanced its binding nature with the polymer. The PCL nanocomposite films were characterized by several promising techniques such as FTIR, XRD, DSC-TGA, FESEM, TEM, AFM, and mechanical properties were too examined along. When compared to the plane PCL film, the nanocomposite films manifested favorable results in terms of mechanical and chemical properties. Additionally, biometric studies such as in-vitro swelling, enzymatic degradation, and hemolysis performed on the films gave extremely good results. The haemolytic percentage recorded for the films exhibited a steady decrease with increasing amount of nanofillers. The MTT assay showed cell proliferation and its increase as the embedded HNT is more in the matrix. Wound closure study performed on NIH3T3 cell line with 1, 3 and 5wt% of films has given a strong proof for the involvement of polymer and HNT in the healing procedure.
Collapse
Affiliation(s)
- M Shabeena
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199 Dakshina Kannada, Karnataka, India
| | - Deepali Warale
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199 Dakshina Kannada, Karnataka, India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Sabia Kouser
- Department of P.G.Studies in chemistry, Karnataka Science College, Dharwad 577007, Karnataka, India
| | - D J Manasa
- Department of Botany, Davangere university, Davangere 577007, Karnataka, India
| | - G K Nagaraja
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199 Dakshina Kannada, Karnataka, India.
| |
Collapse
|
5
|
Gao C, Lu C, Liu H, Zhang Y, Qiao H, Jin A, Dai Q, Liu Y. Biofabrication of biomimetic undulating microtopography at the dermal-epidermal junction and its effects on the growth and differentiation of epidermal cells. Biofabrication 2024; 16:025018. [PMID: 38306682 DOI: 10.1088/1758-5090/ad2536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
The undulating microtopography located at the junction of the dermis and epidermis of the native skin is called rete ridges (RRs), which plays an important role in enhancing keratinocyte function, improving skin structure and stability, and providing three-dimensional (3D) microenvironment for skin cells. Despite some progress in recent years, most currently designed and manufactured tissue-engineered skin models still cannot replicate the RRs, resulting in a lack of biological signals in the manufactured skin models. In this study, a composite manufacturing method including electrospinning, 3D printing, and functional coating was developed to produce the epidermal models with RRs. Polycaprolactone (PCL) nanofibers were firstly electrospun to mimic the extracellular matrix environment and be responsible for cell attachment. PCL microfibers were then printed onto top of the PCL nanofibers layer by 3D printing to quickly prepare undulating microtopography and finally the entire structures were dip-coated with gelatin hydrogel to form a functional coating layer. The morphology, chemical composition, and structural properties of the fabricated models were studied. The results proved that the multi-process composite fabricated models were suitable for skin tissue engineering. Live and dead staining, cell counting kit-8 (CCK-8) as well as histology (haematoxylin and eosin (HE) methodology) and immunofluorescence (primary and secondary antibodies combination assay) were used to investigate the viability, metabolic activity, and differentiation of skin cells forin vitroculturing.In vitroresults showed that each model had high cell viability, good proliferation, and the expression of differentiation marker. It was worth noting that the sizes of the RRs affected the cell growth status of the epidermal models. In addition, the unique undulation characteristics of the epidermal-dermal junction can be reproduced in the developed epidermal models. Overall, thesein vitrohuman epidermal models can provide valuable reference for skin transplantation, screening and safety evaluation of drugs and cosmetics.
Collapse
Affiliation(s)
- Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - Huazhen Liu
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - Hao Qiao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - Aoxiang Jin
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| | - Qiqi Dai
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
6
|
Gaikwad S, Kim MJ. Fish By-Product Collagen Extraction Using Different Methods and Their Application. Mar Drugs 2024; 22:60. [PMID: 38393031 PMCID: PMC10890078 DOI: 10.3390/md22020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The processing of fishery resources results in the production of a growing quantity of byproducts, including heads, skins, viscera, intestines, frames, and fillet cutoffs. These byproducts are either wasted or utilized for the production of low-value items and fish oil. Typically, fish processing industries use only 25%, while the remaining 75% is considered as waste by-products. This review presents a comprehensive review on the extraction of collagen from fish byproducts, highlighting numerous techniques including acid-soluble collagen (ASC), enzyme-soluble collagen (ESC), ultrasound extraction, deep eutectic solvent (DES) extraction, and supercritical fluid extraction (SFE). A detailed explanation of various extraction parameters such as time, temperature, solid to liquid (S/L) ratio, and solvent/pepsin concentration is provided, which needs to be considered to optimize the collagen yield. Moreover, this review extends its focus to a detailed investigation of fish collagen applications in the biomedical sector, food sector, and in cosmetics. The comprehensive review explaining the extraction methods, extraction parameters, and the diverse applications of fish collagen provides a basis for the complete understanding of the potential of fish-derived collagen. The review concludes with a discussion of the current research and a perspective on the future development in this research field.
Collapse
Affiliation(s)
- Sunita Gaikwad
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Changwon 51140, Republic of Korea;
| | - Mi Jeong Kim
- Interdisciplinary Program in Senior Human Ecology, Changwon National University, Changwon 51140, Republic of Korea;
- Department of Food and Nutrition, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
7
|
Flórez-Fernández N, Rodríguez-Coello A, Latire T, Bourgougnon N, Torres MD, Buján M, Muíños A, Muiños A, Meijide-Faílde R, Blanco FJ, Vaamonde-García C, Domínguez H. Anti-inflammatory potential of ulvan. Int J Biol Macromol 2023; 253:126936. [PMID: 37722645 DOI: 10.1016/j.ijbiomac.2023.126936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Green seaweeds are a widespread group of marine macroalgae that could be regarded as biorenewable source of valuable compounds, in particular sulfated polysaccharides like ulvans with interesting biological properties. Among them, anti-inflammatory activity represents an interesting target, since ulvans could potentially avoid side effects of conventional therapies. However, a great variability in ulvan content, composition, structure and properties occurs depending on seaweed specie and growth and processing conditions. All these aspects should be carefully considered in order to have reproducible and well characterized products. This review presents some concise ideas on ulvan composition and general concepts on inflammation mechanisms. Then, the main focus is on the importance of adequate selection of extraction, depolymerization and purification technologies followed by an updated survey on anti-inflammatory properties of ulvans through modulation of different signaling pathways. The potential application in a number of diseases, with special emphasis on inflammaging, gut microbiota dysbiosis, wound repair, and metabolic diseases is also discussed. This multidisciplinary overview tries to present the potential of ulvans considering not only mechanistic, but also processing and applications aspects, trusting that it can aid in the development and application of this widely available and renewable resource as an efficient and versatile anti-inflammatory agent.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| | - Arianna Rodríguez-Coello
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain.
| | - Thomas Latire
- Laboratoire de Biotechnologie et Chimie Marines, EMR CNRS 6076, UBS, IUEM, F-56000 Vannes, France; Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France.
| | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines, EMR CNRS 6076, UBS, IUEM, F-56000 Vannes, France.
| | - M Dolores Torres
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| | - Manuela Buján
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, 15185 Cerceda, A Coruña, Spain.
| | - Alexandra Muíños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, 15185 Cerceda, A Coruña, Spain.
| | - Antonio Muiños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, 15185 Cerceda, A Coruña, Spain.
| | - Rosa Meijide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidade da Coruña, CICA-Centro Interdisciplinar de Química y Biología, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain.
| | - Francisco J Blanco
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain.
| | - Carlos Vaamonde-García
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain.
| | - Herminia Domínguez
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| |
Collapse
|
8
|
Khan A, Rehman W, Alanazi MM, Khan Y, Rasheed L, Saboor A, Iqbal S. Development of Novel Multifunctional Electroactive, Self-Healing, and Tissue Adhesive Scaffold To Accelerate Cutaneous Wound Healing and Hemostatic Materials. ACS OMEGA 2023; 8:39110-39134. [PMID: 37901557 PMCID: PMC10600885 DOI: 10.1021/acsomega.3c04135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023]
Abstract
Designing a multifunctional conducting hydrogel wound dressing of suitable mechanical properties, adhesiveness, self-healing, autolytic debridement, antibacterial properties, and radical scavenging ability, as well as retaining an appropriate level of moisture around the wound is highly desirable in clinical application for treating cutaneous wounds healing. Here, we designed a novel class of electroactive hydrogel based on thiol-functionalized silver-graphene oxide nanoparticles (GO/Ag/TGA) core polyaniline (PANI) shell GO/Ag/TGA/PANI nanocomposites. Thus, a series of physically cross-linked hydrogel based on GO/Ag/TGA/PANI and poly(vinyl alcohol) (PVA) was prepared by freeze-thawing method. The hydrogel was characterized by XRD, UV, FTIR, TGA, TEM, SEM, Raman spectroscopy, cyclic voltammetry (CV), and four probes test. The hydrogel showed favorable properties such as excellent tensile strength, suitable gelation time (30-56 s), tunable rheological properties (G' ∼ 1 kPa), adhesiveness, and interconnected porous structure (freeze-dried). Besides this, the hydrogel also exhibits excellent exudate uptake capacity (10.4-0.2 g/g), high swelling ratio (72.4 to 93.5%), long-term antibacterial activity against multidrug-resistant (MDR) bacterial isolates, promising antioxidant (radical scavenging) efficiency, keeping the wound moisturized, prominent hemostatic efficiency, and fast self-healing ability to bear deformation. Interestingly, in vivo experiments indicated that electroactive hydrogels can significantly promote the healing rate of artificial wounds in rats, and histological analysis by H&E reveals higher granulation tissue thickness, collagen deposition, hair follicles, dermal papillary, keratinocytes, and marked increase (P < 0.05) in hydroxyproline at the wound site during 15 days of healing of impaired wounds. On the basis of vivo and vitro assay results, it is concluded that electroactive-hydrogel-attributed multifunctional properties may serve as suitable scaffold for treating chronic wound healing and skin regeneration.
Collapse
Affiliation(s)
- Asghar Khan
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Wajid Rehman
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Mohammed M. Alanazi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yaqoob Khan
- Nano
Science and Technology Department, National Centre for Physics, Quaid-I-Azam University, Islamabad44000,Pakistan
| | - Liaqat Rasheed
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Abdul Saboor
- Department
of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Shahid Iqbal
- School
of Chemical and Environmental Engineering, College of Chemistry, Chemical
Engineering and Materials Science, Soochow
University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
9
|
Yang D, Cai C, Liu K, Peng Z, Yan C, Xi J, Xie F, Li X. Recent advances in glucose-oxidase-based nanocomposites for diabetes diagnosis and treatment. J Mater Chem B 2023; 11:7582-7608. [PMID: 37522237 DOI: 10.1039/d3tb01097j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Glucose oxidase (GOx) has attracted a lot of attention in the field of diabetes diagnosis and treatment in recent years owing to its inherent biocompatibility and glucose-specific catalysis. GOx can effectively catalyze the oxidation of glucose in the blood to hydrogen peroxide (H2O2) and glucuronic acid and can be used as a sensitive element in biosensors to detect blood glucose concentrations. Nanomaterials based on the immobilization of GOx can significantly improve the performance of glucose sensors through, for example, reduced electron tunneling distance. Moreover, various insulin-loaded nanomaterials (e.g., metal-organic backbones, and mesoporous silica nanoparticles) have been developed for the control of blood glucose concentrations based on GOx catalytic chemistry. These nano-delivery carriers are capable of releasing insulin in response to GOx-mediated changes in the microenvironment, allowing for a rapid return of the blood microenvironment to a normal state. Therefore, glucose biosensors and insulin delivery vehicles immobilized with GOx are important tools for the diagnosis and treatment of diabetes. This paper reviews the characteristics of various GOx-based nanomaterials developed for glucose biosensing and insulin-responsive release as well as research progress, and also highlights the current challenges and opportunities facing this field.
Collapse
Affiliation(s)
- Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
10
|
Fiorentini F, Suarato G, Summa M, Miele D, Sandri G, Bertorelli R, Athanassiou A. Plant-Based, Hydrogel-like Microfibers as an Antioxidant Platform for Skin Burn Healing. ACS APPLIED BIO MATERIALS 2023; 6:3103-3116. [PMID: 37493659 PMCID: PMC10445266 DOI: 10.1021/acsabm.3c00214] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Natural polymers from organic wastes have gained increasing attention in the biomedical field as resourceful second raw materials for the design of biomedical devices which can perform a specific bioactive function and eventually degrade without liberating toxic residues in the surroundings. In this context, patches and bandages, that need to support the skin wound healing process for a short amount of time to be then discarded, certainly constitute good candidates in our quest for a more environmentally friendly management. Here, we propose a plant-based microfibrous scaffold, loaded with vitamin C (VitC), a bioactive molecule which acts as a protecting agent against UV damages and as a wound healing promoter. Fibers were fabricated via electrospinning from various zein/pectin formulations, and subsequently cross-linked in the presence of Ca2+ to confer them a hydrogel-like behavior, which we exploited to tune both the drug release profile and the scaffold degradation. A comprehensive characterization of the physico-chemical properties of the zein/pectin/VitC scaffolds, either pristine or cross-linked, has been carried out, together with the bioactivity assessment with two representative skin cell populations (human dermal fibroblast cells and skin keratinocytes, HaCaT cells). Interestingly, col-1a gene expression of dermal fibroblasts increased after 3 days of growth in the presence of the microfiber extraction media, indicating that the released VitC was able to stimulate collagen mRNA production overtime. Antioxidant activity was analyzed on HaCaT cells via DCFH-DA assay, highlighting a fluorescence intensity decrease proportional to the amount of loaded VitC (down to 50 and 30%), confirming the protective effect of the matrices against oxidative stress. Finally, the most performing samples were selected for the in vivo test on a skin UVB-burn mouse model, where our constructs demonstrated to significantly reduce the inflammatory cytokines expression in the injured area (50% lower than the control), thus constituting a promising, environmentally sustainable alternative to skin patches.
Collapse
Affiliation(s)
- Fabrizio Fiorentini
- Smart
Materials Group, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
- DIBRIS, Università di
Genova, Via Opera Pia
13, Genova 16145, Italy
| | - Giulia Suarato
- Smart
Materials Group, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
- Translational
Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Maria Summa
- Translational
Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Dalila Miele
- Department
of Drug Science, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Giuseppina Sandri
- Department
of Drug Science, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy
| | - Rosalia Bertorelli
- Translational
Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Athanassia Athanassiou
- Smart
Materials Group, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| |
Collapse
|
11
|
Kim NG, Kim SC, Kim TH, Je JY, Lee B, Lee SG, Kim YM, Kang HW, Qian ZJ, Kim N, Jung WK. Ishophloroglucin A-based multifunctional oxidized alginate/gelatin hydrogel for accelerating wound healing. Int J Biol Macromol 2023; 245:125484. [PMID: 37348579 DOI: 10.1016/j.ijbiomac.2023.125484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
This study investigated the potential applicability of wound dressing hydrogels for tissue engineering, focusing on their ability to deliver pharmacological agents and absorb exudates. Specifically, we explored the use of polyphenols, as they have shown promise as bioactive and cross-linking agents in hydrogel fabrication. Ishophloroglucin A (IPA), a polyphenol not previously utilized in tissue engineering, was incorporated as both a drug and cross-linking agent within the hydrogel. We integrated the extracted IPA, obtained through the utilization of separation and purification techniques such as high-performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR) into oxidized alginate (OA) and gelatin (GEL) hydrogels. Our findings revealed that the mechanical properties, thermal stability, swelling, and degradation of the multifunctional hydrogel can be modulated via intermolecular interactions between the natural polymer and IPA. Moreover, the controlled release of IPA endows the hydrogel with antioxidant and antimicrobial characteristics. Overall, the wound healing efficacy, based on intermolecular interactions and drug potency, has been substantiated through accelerated wound closure and collagen deposition in an ICR mouse full-thickness wound model. These results suggest that incorporating IPA into natural polymers as both a drug and cross-linking agent has significant implications for tissue engineering applications.
Collapse
Affiliation(s)
- Nam-Gyun Kim
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Se-Chang Kim
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Tae-Hee Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Jae-Young Je
- Major of Human Bioconvergence, School of Smart Healthcare, Pukyong National University, Busan 48513, South Korea
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang Gil Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyun Wook Kang
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Shenzhen Institute of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
| | - Namwon Kim
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA; Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea; Materials Science, Engineering, and Commercialization (MSEC), Texas State University, San Marcos, TX 78666, USA
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
12
|
Wang Y, Wang X, Zhou D, Xia X, Zhou H, Wang Y, Ke H. Preparation and Characterization of Polycaprolactone (PCL) Antimicrobial Wound Dressing Loaded with Pomegranate Peel Extract. ACS OMEGA 2023; 8:20323-20331. [PMID: 37332800 PMCID: PMC10268609 DOI: 10.1021/acsomega.2c08180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
In recent years, medicinal plant extracts have received remarkable attention due to their wound-healing properties. In this study, polycaprolactone (PCL) electrospun nanofiber membranes incorporated with different concentrations of pomegranate peel extract (PPE) were prepared. The results of the SEM and FTIR experiments demonstrated that the morphology of nanofiber is smooth, fine, and bead-free, and the PPE was well introduced into the nanofiber membranes. Moreover, the outcomes of the mechanical property tests demonstrated that the nanofiber membrane made of PCL and loaded with PPE exhibited remarkable mechanical characteristics, indicating that it could fulfill the essential mechanical requisites for wound dressings. The findings of the in vitro drug release investigations indicated that PPE was instantly released within 20 h and subsequently released gradually over an extended period by the composite nanofiber membranes. Meanwhile, the DPPH radical scavenging test confirmed that the nanofiber membranes loaded with PPE exhibited significant antioxidant properties. Antimicrobial experiments showed higher PPE loading, and the nanofiber membranes showed higher antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans. The results of the cellular experiments showed that the composite nanofiber membranes were nontoxic and promoted the proliferation of L929 cells. In summary, electrospun nanofiber membranes loaded with PPE can be used as a wound dressing.
Collapse
Affiliation(s)
- Yize Wang
- College
of Textile and Clothing, XinJiang University, Wulumuqi 830046, China
| | - Xianzhu Wang
- College
of Textile and Clothing, XinJiang University, Wulumuqi 830046, China
| | - Dan Zhou
- College
of Textile and Clothing, XinJiang University, Wulumuqi 830046, China
| | - Xin Xia
- College
of Textile and Clothing, XinJiang University, Wulumuqi 830046, China
| | - Huimin Zhou
- College
of Textile and Clothing, XinJiang University, Wulumuqi 830046, China
| | - Ying Wang
- College
of Textile and Clothing, XinJiang University, Wulumuqi 830046, China
| | - Huizhen Ke
- College
of Fashion and Art Engineering, Minjiang
University, Fuzhou, Fujian 350108, China
| |
Collapse
|
13
|
Mazurkiewicz-Pisarek A, Baran J, Ciach T. Antimicrobial Peptides: Challenging Journey to the Pharmaceutical, Biomedical, and Cosmeceutical Use. Int J Mol Sci 2023; 24:ijms24109031. [PMID: 37240379 DOI: 10.3390/ijms24109031] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial peptides (AMPs), or host defence peptides, are short proteins in various life forms. Here we discuss AMPs, which may become a promising substitute or adjuvant in pharmaceutical, biomedical, and cosmeceutical uses. Their pharmacological potential has been investigated intensively, especially as antibacterial and antifungal drugs and as promising antiviral and anticancer agents. AMPs exhibit many properties, and some of these have attracted the attention of the cosmetic industry. AMPs are being developed as novel antibiotics to combat multidrug-resistant pathogens and as potential treatments for various diseases, including cancer, inflammatory disorders, and viral infections. In biomedicine, AMPs are being developed as wound-healing agents because they promote cell growth and tissue repair. The immunomodulatory effects of AMPs could be helpful in the treatment of autoimmune diseases. In the cosmeceutical industry, AMPs are being investigated as potential ingredients in skincare products due to their antioxidant properties (anti-ageing effects) and antibacterial activity, which allows the killing of bacteria that contribute to acne and other skin conditions. The promising benefits of AMPs make them a thrilling area of research, and studies are underway to overcome obstacles and fully harness their therapeutic potential. This review presents the structure, mechanisms of action, possible applications, production methods, and market for AMPs.
Collapse
Affiliation(s)
- Anna Mazurkiewicz-Pisarek
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Joanna Baran
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Tomasz Ciach
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
14
|
Rodrigues CV, Sousa RO, Carvalho AC, Alves AL, Marques CF, Cerqueira MT, Reis RL, Silva TH. Potential of Atlantic Codfish ( Gadus morhua) Skin Collagen for Skincare Biomaterials. Molecules 2023; 28:molecules28083394. [PMID: 37110628 PMCID: PMC10146550 DOI: 10.3390/molecules28083394] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Collagen is the major structural protein in extracellular matrix present in connective tissues, including skin, being considered a promising material for skin regeneration. Marine organisms have been attracting interest amongst the industry as an alternative collagen source. In the present work, Atlantic codfish skin collagen was analyzed, to evaluate its potential for skincare. The collagen was extracted from two different skin batches (food industry by-product) using acetic acid (ASColl), confirming the method reproducibility since no significant yield differences were observed. The extracts characterization confirmed a profile compatible with type I collagen, without significant differences between batches or with bovine skin collagen (a reference material in biomedicine). Thermal analyses suggested ASColl's native structure loss at 25 °C, and an inferior thermal stability to bovine skin collagen. No cytotoxicity was found for ASColl up to 10 mg/mL in keratinocytes (HaCaT cells). ASColl was used to develop membranes, which revealed smooth surfaces without significative morphological or biodegradability differences between batches. Their water absorption capacity and water contact angle indicated a hydrophilic feature. The metabolic activity and proliferation of HaCaT were improved by the membranes. Hence, ASColl membranes exhibited attractive characteristics to be applied in the biomedical and cosmeceutical field envisaging skincare.
Collapse
Affiliation(s)
- Cristina V Rodrigues
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Rita O Sousa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Ana C Carvalho
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Ana L Alves
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Catarina F Marques
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Mariana T Cerqueira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| |
Collapse
|
15
|
Jayabal P, Kannan Sampathkumar V, Vinothkumar A, Mathapati S, Pannerselvam B, Achiraman S, Venkatasubbu GD. Fabrication of a Chitosan-Based Wound Dressing Patch for Enhanced Antimicrobial, Hemostatic, and Wound Healing Application. ACS APPLIED BIO MATERIALS 2023; 6:615-627. [PMID: 36723448 DOI: 10.1021/acsabm.2c00903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Wounds are a serious life threat that occurs in daily life. The complex cascade of synchronized cellular and molecular phases in wound healing is impaired by different means, involving infection, neuropathic complexes, abnormal blood circulation, and cell proliferation at the wound region. Thus, to overcome these problems, a multifunctional wound dressing material is fabricated. In the current research work, we have fabricated a wound dressing polymeric patch, with poly(vinyl alcohol) (PVA) and chitosan (Cs) incorporated with a photocatalytic graphene nanocomposite (GO/TiO2(V-N)) and curcumin by a gel casting method, that focuses on multiple stages of the healing process. The morphology, swelling, degradation, moisture vapor transmission rate (MVTR), porosity, light-induced antibacterial activity, hemolysis, blood clotting, blood abortion, light-induced biocompatibility, migration assay, and drug release were analyzed for the polymeric patches under in vitro conditions. PVA/Cs/GO/TiO2(V-N)/Cur patches have shown enhanced wound healing in in vivo wound healing experiments on Wister rats. They show higher collagen deposition, thicker granulation tissue, and higher fibroblast density than conventional dressing. A histological study shows excellent re-epithelialization ability and dense collagen deposition. In vitro and in vivo analysis confirmed that PVA/Cs/GO/TiO2(V-N) and PVA/Cs/GO/TiO2(V-N)/Cur patches enhance the wound healing process.
Collapse
Affiliation(s)
- Prakash Jayabal
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur603203, Chengalpattu District, Tamil Nadu, India.,Translational Health Science and Technology Institute, Faridabad121001, Haryana, India
| | - Venkataprasanna Kannan Sampathkumar
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur603203, Chengalpattu District, Tamil Nadu, India.,Department of Physics, University of Tübingen, Geschwister-Scholl-Platz, 72074Tübingen, Germany
| | - Arumagam Vinothkumar
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli620024, Tamil Nadu, India
| | - Santosh Mathapati
- Translational Health Science and Technology Institute, Faridabad121001, Haryana, India
| | | | - Shanmugam Achiraman
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli620024, Tamil Nadu, India
| | - G Devanand Venkatasubbu
- Department of Nanotechnology, SRM Institute of Science and Technology, Kattankulathur603203, Chengalpattu District, Tamil Nadu, India
| |
Collapse
|
16
|
Chandika P, Tennakoon P, Kim TH, Kim SC, Je JY, Kim JI, Lee B, Ryu B, Kang HW, Kim HW, Kim YM, Kim CS, Choi IW, Park WS, Yi M, Jung WK. Marine Biological Macromolecules and Chemically Modified Macromolecules; Potential Anticoagulants. Mar Drugs 2022; 20:md20100654. [PMID: 36286477 PMCID: PMC9604568 DOI: 10.3390/md20100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Coagulation is a potential defense mechanism that involves activating a series of zymogens to convert soluble fibrinogen to insoluble fibrin clots to prevent bleeding and hemorrhagic complications. To prevent the extra formation and diffusion of clots, the counterbalance inhibitory mechanism is activated at levels of the coagulation pathway. Contrariwise, this system can evade normal control due to either inherited or acquired defects or aging which leads to unusual clots formation. The abnormal formations and deposition of excess fibrin trigger serious arterial and cardiovascular diseases. Although heparin and heparin-based anticoagulants are a widely prescribed class of anticoagulants, the clinical use of heparin has limitations due to the unpredictable anticoagulation, risk of bleeding, and other complications. Hence, significant interest has been established over the years to investigate alternative therapeutic anticoagulants from natural sources, especially from marine sources with good safety and potency due to their unique chemical structure and biological activity. This review summarizes the coagulation cascade and potential macromolecular anticoagulants derived from marine flora and fauna.
Collapse
Affiliation(s)
- Pathum Chandika
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
| | - Pipuni Tennakoon
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Tae-Hee Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
| | - Se-Chang Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Korea
| | - Jae-Il Kim
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - Bonggi Lee
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - BoMi Ryu
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - Hyun Wook Kang
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Hyun-Woo Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Department of Marine Biology, Pukyong National University, Busan 48513, Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Chang Su Kim
- Department of Orthopedic Surgery, Kosin University Gospel Hospital, Busan 49267, Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 47392, Korea
| | - Won Sun Park
- Department of Physiology, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Myunggi Yi
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
- Correspondence:
| |
Collapse
|
17
|
Jellyfish Polysaccharides for Wound Healing Applications. Int J Mol Sci 2022; 23:ijms231911491. [PMID: 36232791 PMCID: PMC9569628 DOI: 10.3390/ijms231911491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Jellyfishes are considered a new potential resource in food, pharmaceutical and biomedical industries. In these latter cases, they are studied as source of active principles but are also exploited to produce marine collagen. In the present work, jellyfish skin polysaccharides (JSP) with glycosaminoglycan (GAG) features were extracted from Rhizostoma pulmo, a main blooming species of Mediterranean Sea, massively augmented by climate leaded “jellyfishication” of the sea. Two main fractions of R. pulmo JSP (RP-JSPs) were isolated and characterized, namely a neutral fraction (RP-JSP1) and a sulphate rich, negatively charged fraction (RP-JSP2). The two fractions have average molecular weights of 121 kDa and 590 kDa, respectively. Their sugar composition was evaluated through LC-MS analysis and the result confirmed the presence of typical GAG saccharides, such as glucose, galactose, glucosamine and galactosamine. Their use as promoters of wound healing was evaluated through in vitro scratch assay on murine fibroblast cell line (BALB/3T3 clone A31) and human keratinocytes (HaCaT). Both RP-JSPs demonstrated an effective confluency rate activity leading to 80% of scratch repair in two days, promoting both cell migration and proliferation. Additionally, RP-JSPs exerted a substantial protection from oxidative stress, resulting in improved viability of treated fibroblasts exposed to H2O2. The isolated GAG-like polysaccharides appear promising as functional component for biomedical skin treatments, as well as for future exploitation as pharmaceutical excipients.
Collapse
|
18
|
In Vivo Comparison of Synthetic Macroporous Filamentous and Sponge-like Skin Substitute Matrices Reveals Morphometric Features of the Foreign Body Reaction According to 3D Biomaterial Designs. Cells 2022; 11:cells11182834. [PMID: 36139409 PMCID: PMC9496825 DOI: 10.3390/cells11182834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Synthetic macroporous biomaterials are widely used in the field of skin tissue engineering to mimic membrane functions of the native dermis. Biomaterial designs can be subclassified with respect to their shape in fibrous designs, namely fibers, meshes or fleeces, respectively, and porous designs, such as sponges and foams. However, synthetic matrices often have limitations regarding unfavorable foreign body responses (FBRs). Severe FBRs can result in unfavorable disintegration and rejection of an implant, whereas mild FBRs can lead to an acceptable integration of a biomaterial. In this context, comparative in vivo studies of different three-dimensional (3D) matrix designs are rare. Especially, the differences regarding FBRs between synthetically derived filamentous fleeces and sponge-like constructs are unknown. In the present study, the FBRs on two 3D matrix designs were explored after 25 days of subcutaneous implantation in a porcine model. Cellular reactions were quantified histopathologically to investigate in which way the FBR is influenced by the biomaterial architecture. Our results show that FBR metrics (polymorph-nucleated cells and fibrotic reactions) were significantly affected according to the matrix designs. Our findings contribute to a better understanding of the 3D matrix tissue interactions and can be useful for future developments of synthetically derived skin substitute biomaterials.
Collapse
|
19
|
Sakthi Devi R, Girigoswami A, Siddharth M, Girigoswami K. Applications of Gold and Silver Nanoparticles in Theranostics. Appl Biochem Biotechnol 2022; 194:4187-4219. [PMID: 35551613 PMCID: PMC9099041 DOI: 10.1007/s12010-022-03963-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023]
Abstract
Nanotechnology sculptures the current scenario of science and technology. The word nano refers 'small' which ranges from 10 to 100 nm in size. Silver and gold nanoparticles can be synthesized at nanoscale and have unique biological properties like antibacterial, antifungal, antiviral, antiparasitic, antiplatelet, anti-inflammatory, and anti-tumor activity. In this mini review, we shall discuss the various applications of silver and gold nanoparticles (AuNPs) in the field of therapy, imaging, biomedical devices and in cancer diagnosis. The usage of silver nanoparticles(AgNPs) in dentistry and dental implants, therapeutic abilities like wound dressings, silver impregnated catheters, ventricular drainage catheters, combating orthopedic infections, and osteointegration will be elaborated. Gold nanoparticles in recent years have garnered large importance in bio medical applications. They are being used in diagnosis and have recently seen a surge in therapeutics. In this mini review, we shall see about the various applications of AuNP and AgNP, and highlight their evolution in theranostics.
Collapse
Affiliation(s)
- R Sakthi Devi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - M Siddharth
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India.
| |
Collapse
|
20
|
Althomali RH, Alamry KA, Hussein MA, Tay GS. Versatile Applications Of Biopolymer Nanocomposites: A review. ChemistrySelect 2022. [DOI: 10.1002/slct.202200843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raed H. Althomali
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid A. Alamry
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Mahmoud A. Hussein
- Department of Chemistry, Faculty of Science King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Guan S. Tay
- School of Industrial Technology Universiti Sains Malaysia 11800 USM Penang Malaysia
| |
Collapse
|
21
|
Chandika P, Khan F, Heo SY, Kim YM, Yi M, Jung WK. Enhanced wound-healing capability with inherent antimicrobial activities of usnic acid incorporated poly(ε-caprolactone)/decellularized extracellular matrix nanofibrous scaffold. BIOMATERIALS ADVANCES 2022; 140:213046. [PMID: 35930818 DOI: 10.1016/j.bioadv.2022.213046] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 12/22/2022]
Abstract
An extracellular matrix-mimicking, biodegradable tissue-engineered skin substitute with improved antibacterial, antibiofilm, and wound healing capabilities is essential in skin tissue regeneration applications. The purpose of this study was to develop a novel biodegradable composite nanofibrous poly(ε-caprolactone) (PCL)/decellularized extracellular matrix (dECM) scaffolds loaded with usnic acid (UA); (PEU), where UA is employed as an antibacterial agent as well as a wound-healing accelerator. The architecture and fiber structure of the scaffolds were examined using scanning electron microscopy, and the results revealed that the average diameters decreased as the dECM content increased. The chemical composition, changes in the crystalline structure, homogeneity, and thermal stability of the nanofiber scaffolds with different material compositions were determined using Fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis, respectively. The composite nanofibrous scaffolds exhibited strong antibacterial activity against various bacterial species, such as Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, and Cutibactrium acnes, and fungal pathogens (such as Candida albicans). Additionally, the composite nanofibrous scaffolds exhibited biofilm inhibition properties against Klebsiella pneumoniae and Pseudomonas aeruginosa. An evaluation of the appearance of in vivo full-thickness excisional wounds treated with the composite nanofiber scaffolds, as well as a histological analysis of the wounds 21 days after surgery, revealed that treatment with nanofibrous PEU scaffolds enhanced wound healing. This study reveals that the proposed composite nanofibrous PEU scaffold has substantial potential for treating infectious full-thickness wounds.
Collapse
Affiliation(s)
- Pathum Chandika
- Major of Biomedical Engineering, Division of Smart Healthcare and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Seong-Yong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology, Jeju 63349, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Major of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Myunggi Yi
- Major of Biomedical Engineering, Division of Smart Healthcare and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
22
|
Gao C, Lu C, Qiao H, Zhang Y, Liu H, Jian Z, Guo Z, Liu Y. Strategies for vascularized skin models in vitro. Biomater Sci 2022; 10:4724-4739. [PMID: 35861381 DOI: 10.1039/d2bm00784c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As the largest organ of the human body, the skin has a complex multi-layered structure. The composition of the skin includes cells, extracellular matrix (ECM), vascular networks, and other appendages. Because of the shortage of donor sites, skin substitutes are of great significance in the field of skin tissue repair. Moreover, skin models for disease research, drug screening, and cosmetic testing fall far short of the demand. Skin tissue engineering has made remarkable progress in developing skin models over the years. However, there are still several problems to be resolved. One of the crucial aspects is the lack of vascular systems for nutrient transport and waste disposal. Here, we will focus on the discussion and analysis of advanced manufacturing strategies for prevascularized skin, such as a scaffold-based method, cell coating technology, cell sheet engineering, skin-on-a-chip, and three-dimensional (3D) bioprinting. These key challenges, which restrict the prevascularized skin and provide perspectives on future directions will also be highlighted.
Collapse
Affiliation(s)
- Chuang Gao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Chunxiang Lu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Hao Qiao
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Yi Zhang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Huazhen Liu
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhian Jian
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Zilong Guo
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Yuanyuan Liu
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China. .,Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
| |
Collapse
|
23
|
Cui X, Li Y, Han T, Yang S, Liang Y, Wang Z, Wang T, Xu Z. The fermented kelp by Bacillus siamensis has antioxidant, skin-repairing and anti-wrinkle effects. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
24
|
Hao M, Peng X, Sun S, Ding C, Liu W. Chitosan/Sodium Alginate/Velvet Antler Blood Peptides Hydrogel Promoted Wound Healing by Regulating PI3K/AKT/mTOR and SIRT1/NF-κB Pathways. Front Pharmacol 2022; 13:913408. [PMID: 35784748 PMCID: PMC9243309 DOI: 10.3389/fphar.2022.913408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022] Open
Abstract
Skin wound healing is a principal clinical challenge, and it is necessary to develop effective alternative treatments. Excessive inflammatory response is linked to delayed healing. This study was the first to report a multi-functional chitosan/sodium alginate/velvet antler blood peptides (VBPs) hydrogel (CAVBPH) and explore its potential mechanism to promote wound healing. The results showed that CAVBPH possessed desirable characteristics including thermo-sensitivity, antioxidation, antibacterial activity, biosafety, VBPs release behavior, etc., and significantly accelerated skin wound healing in mice. Specifically, the CAVBPH treatment enhanced cell proliferation, angiogenesis, and extracellular matrix (ECM) secretion, and also relieved inflammation at the wound site compared to the PBS-treated group and blank hydrogel scaffold-treated group. Mechanistically, the efficacy of CAVBPH might be related to the activation of the PI3K/AKT/mTOR and SIRT1/NF-κB pathways. Overall, CAVBPH seems to be a promising therapy for skin repair, probably relying on the abundant short-chain peptides in VBPs.
Collapse
Affiliation(s)
- Mingqian Hao
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Xiaojuan Peng
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Shuwen Sun
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
- *Correspondence: Chuanbo Ding, ; Wencong Liu,
| | - Wencong Liu
- School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- *Correspondence: Chuanbo Ding, ; Wencong Liu,
| |
Collapse
|
25
|
Characteristics of Marine Biomaterials and Their Applications in Biomedicine. Mar Drugs 2022; 20:md20060372. [PMID: 35736175 PMCID: PMC9228671 DOI: 10.3390/md20060372] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Oceans have vast potential to develop high-value bioactive substances and biomaterials. In the past decades, many biomaterials have come from marine organisms, but due to the wide variety of organisms living in the oceans, the great diversity of marine-derived materials remains explored. The marine biomaterials that have been found and studied have excellent biological activity, unique chemical structure, good biocompatibility, low toxicity, and suitable degradation, and can be used as attractive tissue material engineering and regenerative medicine applications. In this review, we give an overview of the extraction and processing methods and chemical and biological characteristics of common marine polysaccharides and proteins. This review also briefly explains their important applications in anticancer, antiviral, drug delivery, tissue engineering, and other fields.
Collapse
|
26
|
Iliou K, Kikionis S, Ioannou E, Roussis V. Marine Biopolymers as Bioactive Functional Ingredients of Electrospun Nanofibrous Scaffolds for Biomedical Applications. Mar Drugs 2022; 20:md20050314. [PMID: 35621965 PMCID: PMC9143254 DOI: 10.3390/md20050314] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 02/01/2023] Open
Abstract
Marine biopolymers, abundantly present in seaweeds and marine animals, feature diverse structures and functionalities, and possess a wide range of beneficial biological activities. Characterized by high biocompatibility and biodegradability, as well as unique physicochemical properties, marine biopolymers are attracting a constantly increasing interest for the development of advanced systems for applications in the biomedical field. The development of electrospinning offers an innovative technological platform for the production of nonwoven nanofibrous scaffolds with increased surface area, high encapsulation efficacy, intrinsic interconnectivity, and structural analogy to the natural extracellular matrix. Marine biopolymer-based electrospun nanofibrous scaffolds with multifunctional characteristics and tunable mechanical properties now attract significant attention for biomedical applications, such as tissue engineering, drug delivery, and wound healing. The present review, covering the literature up to the end of 2021, highlights the advancements in the development of marine biopolymer-based electrospun nanofibers for their utilization as cell proliferation scaffolds, bioadhesives, release modifiers, and wound dressings.
Collapse
|
27
|
Ferreira MOG, Ribeiro AB, Rizzo MS, de Jesus Oliveira AC, Osajima JA, Estevinho LM, Silva-Filho EC. Potential Wound Healing Effect of Gel Based on Chicha Gum, Chitosan, and Mauritia flexuosa Oil. Biomedicines 2022; 10:biomedicines10040899. [PMID: 35453649 PMCID: PMC9025394 DOI: 10.3390/biomedicines10040899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Wounds are considered a clinically critical issue, and effective treatment will decrease complications, prevent chronic wound formation, and allow rapid healing. The development of products based on naturally occurring materials is an efficient approach to wound healing. Natural polysaccharides can mimic the extracellular matrix and promote cell growth, thus making them attractive for wound healing. In this context, the aim of this work was to produce a gel based on chicha gum, chitosan, and Mauritia flexuosa oil (CGCHO) for wound treatment. TG and DTG analyzed the thermal behavior of the materials, and SEM investigated the surface roughness. The percentages of total phenolic compounds, flavonoids, and antioxidants were determined, presenting a value of 81.811 ± 7.257 µmol gallic acid/g Mauritia flexuosa oil, 57.915 ± 0.305 µmol quercetin/g Mauritia flexuosa oil, and 0.379 mg/mL, respectively. The anti-inflammatory was determined, presenting a value of 10.35 ± 1.46% chicha gum, 16.86 ± 1.00% Mauritia flexuosa oil, 10.17 ± 1.05% CGCHO, and 15.53 ± 0.65% chitosan, respectively. The materials were tested against Gram-negative (Klebsiella pneumoniae) and Gram-positive (Staphylococcus aureus) bacteria and a fungus (Candida albicans). The CGCHO formulation showed better antimicrobial activity against Gram-positive bacteria. In addition, an in vivo wound healing study was also performed. After 21 days of treatment, the epidermal re-epithelialization process was observed. CGCHO showed good thermal stability and roughness that can help in cell growth and promote the tissue healing process. In addition to the good results observed for the antimicrobial, antioxidant, anti-inflammatory activities and providing wound healing, they provided the necessary support for the healing process, thus representing a new approach to the wound healing process.
Collapse
Affiliation(s)
- Maria Onaira Gonçalves Ferreira
- Graduate Program in Materials Science, Campus Universitario Ministro Petrônio Portella, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (M.O.G.F.); (M.S.R.); (A.C.d.J.O.); (J.A.O.)
| | - Alessandra Braga Ribeiro
- CBQF–Centre of Biotechnology and Fine Chemistry–Associate Laboratory, Faculty of Biotechnology, Catholic University of Portugal, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Marcia S. Rizzo
- Graduate Program in Materials Science, Campus Universitario Ministro Petrônio Portella, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (M.O.G.F.); (M.S.R.); (A.C.d.J.O.); (J.A.O.)
| | - Antonia Carla de Jesus Oliveira
- Graduate Program in Materials Science, Campus Universitario Ministro Petrônio Portella, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (M.O.G.F.); (M.S.R.); (A.C.d.J.O.); (J.A.O.)
| | - Josy Anteveli Osajima
- Graduate Program in Materials Science, Campus Universitario Ministro Petrônio Portella, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (M.O.G.F.); (M.S.R.); (A.C.d.J.O.); (J.A.O.)
| | - Leticia M. Estevinho
- Mountain Research Center, CIMO, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (L.M.E.); (E.C.S.-F.)
| | - Edson C. Silva-Filho
- Graduate Program in Materials Science, Campus Universitario Ministro Petrônio Portella, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (M.O.G.F.); (M.S.R.); (A.C.d.J.O.); (J.A.O.)
- Correspondence: (L.M.E.); (E.C.S.-F.)
| |
Collapse
|
28
|
Tsegay F, Elsherif M, Butt H. Smart 3D Printed Hydrogel Skin Wound Bandages: A Review. Polymers (Basel) 2022; 14:polym14051012. [PMID: 35267835 PMCID: PMC8912626 DOI: 10.3390/polym14051012] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Wounds are a major health concern affecting the lives of millions of people. Some wounds may pass a threshold diameter to become unrecoverable by themselves. These wounds become chronic and may even lead to mortality. Recently, 3D printing technology, in association with biocompatible hydrogels, has emerged as a promising platform for developing smart wound dressings, overcoming several challenges. 3D printed wound dressings can be loaded with a variety of items, such as antibiotics, antibacterial nanoparticles, and other drugs that can accelerate wound healing rate. 3D printing is computerized, allowing each level of the printed part to be fully controlled in situ to produce the dressings desired. In this review, recent developments in hydrogel-based wound dressings made using 3D printing are covered. The most common biosensors integrated with 3D printed hydrogels for wound dressing applications are comprehensively discussed. Fundamental challenges for 3D printing and future prospects are highlighted. Additionally, some related nanomaterial-based hydrogels are recommended for future consideration.
Collapse
|
29
|
Lee WK, Ho CL. Ecological and evolutionary diversification of sulphated polysaccharides in diverse photosynthetic lineages: A review. Carbohydr Polym 2022; 277:118764. [PMID: 34893214 DOI: 10.1016/j.carbpol.2021.118764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/02/2022]
Abstract
Sulphated polysaccharides (SPs) are carbohydrate macromolecules with sulphate esters that are found among marine algae, seagrasses, mangroves and some terrestrial plants. The sulphate concentration in the ocean (28 mM) since ancient time could have driven the production of SPs in marine algae. SPs have a gelatinous property that can protect marine algae against desiccation and salinity stress. Agar and carrageenan are red algal SPs that are widely used as gelling agents in the food and pharmaceutical industries. The information on the SPs from freshwater and land plants are limited. In this review, we reviewed the taxonomic distribution and composition of SPs in different photosynthetic lineages, and explored the association of SP production in these diversified photosynthetic organisms with evolution history and environmental stresses. We also reviewed the genes/proteins involved in SP biosynthesis. Insights into SP biosynthetic machinery may shed light on the evolution that accompanied adaptation to life on earth.
Collapse
Affiliation(s)
- Wei-Kang Lee
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM-Serdang, Selangor, Malaysia; Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia.
| | - Chai-Ling Ho
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM-Serdang, Selangor, Malaysia.
| |
Collapse
|
30
|
Photosynthetic microorganisms and their bioactive molecules as new product to healing wounds. Appl Microbiol Biotechnol 2022; 106:497-504. [PMID: 34985569 DOI: 10.1007/s00253-021-11745-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
Wounds are a public health problem due to long periods required to repair damaged skin, risk of infection, and amputations. Thus, there is a need to obtain new therapeutic agents with less side effects, more effective oxygen delivery, and increased epithelial cell migration. Photosynthetic microorganisms, such as microalgae and cyanobacteria, may be used as a source of biomolecules for the treatment of different injuries. The aim of this review article focuses on healing potential using phytoconstituents from photosynthetic microorganisms. Cyanophyte Spirulina and Chlorophyte Chlorella are more promising due to steroids, triterpenes, carbohydrates, phenols, and proteins such as lectins and phycocyanin. However, there are few reports about identification and specific function of these molecules on the skin. In other microalgae and cyanobacteria genus, high contents of pigments such as β-carotene, chlorophyll a, allophycocyanin, and hydroxypheophytin were detected, but their effects on phases of wound healing is absent yet. The development of new topical drugs from photosynthetic microorganisms could be a potential alternative to maximize healing. KEY POINTS: • Conventional treatment to skin injuries has limitations. • Proteins, terpenes, and phenols increase collagen deposition and re-epithelialization. • Microalgae and cyanobacteria may be used as a source of biomolecules to wound healing.
Collapse
|
31
|
Chandika P, Kim MS, Khan F, Kim YM, Heo SY, Oh GW, Kim NG, Jung WK. Wound healing properties of triple cross-linked poly (vinyl alcohol)/methacrylate kappa-carrageenan/chitooligosaccharide hydrogel. Carbohydr Polym 2021; 269:118272. [PMID: 34294304 DOI: 10.1016/j.carbpol.2021.118272] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022]
Abstract
To develop an effective and mechanically robust wound dressing, a poly (vinyl alcohol) (PVA)/methacrylate kappa-carrageenan (κ-CaMA) composite hydrogel encapsulated with a chitooligosaccharide (COS) was prepared in a cassette via repeated freeze/thaw cycles, photo-crosslinking, and chemical cross-linking. The chemical, physical, mechanical, in vitro biocompatibility, in vivo wound-healing properties, and antibacterial activity of triple-crosslinked hydrogel were subsequently characterized. The results showed that the PVA/κ-CaMA/COS (Pκ-CaC) hydrogel had a uniformly thick, highly porous three-dimensional architecture with uniformly distributed pores, a high fluid absorption, and retention capacity without disturbing its mechanical stability, and good in vitro biocompatibility. Macroscopic images from the full-thickness skin wound model revealed that the wounds dressed with the proposed Pκ-CaC hydrogel were completely healed by day 14, while the histomorphological results confirmed full re-epithelization and rapid skin-tissue remodeling. This study thus indicates that the composite Pκ-CaC hydrogel has significant potential for use as a wound dressing.
Collapse
Affiliation(s)
- Pathum Chandika
- Department of Biomedical Engineering and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Min-Sung Kim
- Department of Biomedical Engineering and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Seong-Yeong Heo
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Gun-Woo Oh
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Nam Gyun Kim
- Department of Biomedical Engineering and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
32
|
Collagen-Containing Fish Sidestream-Derived Protein Hydrolysates Support Skin Repair via Chemokine Induction. Mar Drugs 2021; 19:md19070396. [PMID: 34356821 PMCID: PMC8303758 DOI: 10.3390/md19070396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
Restoring homeostasis following tissue damage requires a dynamic and tightly orchestrated sequence of molecular and cellular events that ensure repair and healing. It is well established that nutrition directly affects skin homeostasis, while malnutrition causes impaired tissue healing. In this study, we utilized fish sidestream-derived protein hydrolysates including fish collagen as dietary supplements, and investigated their effect on the skin repair process using a murine model of cutaneous wound healing. We explored potential differences in wound closure and histological morphology between diet groups, and analyzed the expression and production of factors that participate in different stages of the repair process. Dietary supplementation with fish sidestream-derived collagen alone (Collagen), or in combination with a protein hydrolysate derived from salmon heads (HSH), resulted in accelerated healing. Chemical analysis of the tested extracts revealed that Collagen had the highest protein content and that HSH contained the great amount of zinc, known to support immune responses. Indeed, tissues from mice fed with collagen-containing supplements exhibited an increase in the expression levels of chemokines, important for the recruitment of immune cells into the damaged wound region. Moreover, expression of a potent angiogenic factor, vascular endothelial growth factor-A (VEGF-A), was elevated followed by enhanced collagen deposition. Our findings suggest that a 5%-supplemented diet with marine collagen-enriched supplements promotes tissue repair in the model of cutaneous wound healing, proposing a novel health-promoting use of fish sidestreams.
Collapse
|
33
|
Prasathkumar M, Sadhasivam S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing-Know-how. Int J Biol Macromol 2021; 186:656-685. [PMID: 34271047 DOI: 10.1016/j.ijbiomac.2021.07.067] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Biomaterials are being extensively used in regenerative medicine including tissue engineering applications, as these enhance tissue development, repair, and help in the process of angiogenesis. Wound healing is a crucial biological process of regeneration of ruptured tissue after getting injury to the skin and other soft tissue in humans and animals. Besides, the accumulation of microbial biofilms around the wound surface can increase the risk and physically obstruct the wound healing activity, and may even lead to amputation. Hence, in both acute and chronic wounds, prominent biomaterials are required for wound healing along with antimicrobial agents. This review comprehensively addresses the antimicrobial and wound healing effects of chitosan, chitin, cellulose acetate, hyaluronic acid, pullulan, bacterial cellulose, fibrin, alginate, etc. based wound dressing biomaterials fabricated with natural resources such as honey, plant bioactive compounds, and marine-based polymers. Due to their excellent biocompatibility and biodegradability, bioactive compounds derived from honey, plants, and marine resources are commonly used in biomedical and tissue engineering applications. Different types of polymer-based biomaterials including hydrogel, film, scaffold, nanofiber, and sponge dressings fabricated with bioactive agents including honey, curcumin, tannin, quercetin, andrographolide, gelatin, carrageenan, etc., can exhibit significant wound healing process in, diabetic wounds, diabetic ulcers, and burns, and help in cartilage repair along with good biocompatibility and antimicrobial effects. Among the reviewed biomaterials, carbohydrate polymers such as chitosan-based biomaterials are prominent and widely used for wound healing applications followed by hyaluronic acid and alginate-based biomaterials loaded with honey, plant, and marine compounds. This review first provides an overview of the vast natural resources used to formulate different biomaterials for the treatment of antimicrobial, acute, and chronic wound healing processes.
Collapse
Affiliation(s)
- Murugan Prasathkumar
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Subramaniam Sadhasivam
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India; Department of Extension and Career Guidance, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
34
|
Divya Nataraj, Saripalla DD, Kamath A, Aramwit P, Reddy N. Extraction and Characterization of Proteins from Castor Oil Meal for Medical Applications. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21040064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
El-Ashram S, El-Samad LM, Basha AA, El Wakil A. Naturally-derived targeted therapy for wound healing: Beyond classical strategies. Pharmacol Res 2021; 170:105749. [PMID: 34214630 DOI: 10.1016/j.phrs.2021.105749] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
This review summarizes the four processes of wound healing in the human body (hemostasis, inflammatory, proliferation, and remodeling) and the most current research on the most important factors affecting cutaneous wound healing and the underlying cellular and/or molecular pathways. Local factors, including temperature, oxygenation, and infection, and systemic factors, such as age, diabetes, sex hormones, genetic components, autoimmune diseases, psychological stress, smoking and obesity are also addressed. A better understanding of the role of these factors in wound repair could result in the development of therapeutics that promote wound healing and resolve affected wounds. Additionally, natural products obtained from plants and animals are critical targets for the discovery of novel biologically significant pharmacophores, such as medicines and agrochemicals. This review outlines the most recent advances in naturally derived targeted treatment for wound healing. These are plant-derived natural products, insect-derived natural products, marine-derived natural products, nanomaterial-based wound-healing therapeutics (metal- and non-metal-based nanoparticles), and natural product-based nanomedicine to improve the future direction of wound healing. Natural products extracted from plants and animals have advanced significantly, particularly in the treatment of wound healing. As a result, the isolation and extraction of bioactive compounds from a variety of sources can continue to advance our understanding of wound healing. Undescribed bioactive compounds or unexplored formulations that could have a role in today's medicinal arsenal may be contained in the abundance of natural products and natural product derivatives.
Collapse
Affiliation(s)
- Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan 528231, Guangdong Province, China; Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt.
| | - Lamia M El-Samad
- Zoology Department, Faculty of Science, Alexandria University, Egypt.
| | - Amal A Basha
- Zoology Department, Faculty of Science, Damanhour University, Egypt
| | - Abeer El Wakil
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Egypt
| |
Collapse
|
36
|
Chen H, Yin B, Hu B, Zhang B, Liu J, Jing Y, Fan Z, Tian Y, Wei X, Zhang W. Acellular fish skin enhances wound healing by promoting angiogenesis and collagen deposition. Biomed Mater 2021; 16. [PMID: 33730695 DOI: 10.1088/1748-605x/abef7a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/17/2021] [Indexed: 12/20/2022]
Abstract
Acellular matrix is a type of promising biomaterial for wound healing promotion. Although acellular bovine and porcine tissues have proven effective, religious restrictions and risks of disease transmission remain barriers to their clinical use. Acellular fish skin (AFS), given its similarity to human skin structure and without the aforementioned disadvantages, is thus seen as an attractive alternative. This study aims to fabricate AFS from the skin of black carp (Mylopharyngodon piceus), evaluate its physical and mechanical properties and assess its impact on wound healing. The results showed that AFS has a highly porous structure, along with high levels of hydrophilicity, water-absorption property and permeability. Furthermore, physical characterization showed the high tensile strength of AFS in dry and wet states, and high stitch tear resistance, indicating great potential in clinical applications. Cell Counting Kit-8 was used to test the viability of L929 cells when culturing in the extracts of AFS. Compared with the control group, there is no significant difference in optical density value when culturing in the extracts of AFS at days 1, 3 and 7 (*p> 0.05).In vivowound healing evaluation then highlighted its promotion of angiogenesis and collagen synthesis, its function in anti-inflammation and acceleration in wound healing. Therefore, this study suggests that AFS has potential as a promising alternative to mammal-derived or traditional wound dressing.
Collapse
Affiliation(s)
- Hongchi Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Bohao Yin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Baokun Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Jingwen Liu
- Wuxi 9th People's Hospital Affiliated to Soochow University, 999 Liangxi Road, Wuxi 214100, People's Republic of China
| | - Yingzhe Jing
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Zhiyuan Fan
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Yuchen Tian
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Xiaojuan Wei
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| | - Wei Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, People's Republic of China
| |
Collapse
|
37
|
Chandika P, Oh GW, Heo SY, Kim SC, Kim TH, Kim MS, Jung WK. Electrospun porous bilayer nano-fibrous fish collagen/PCL bio-composite scaffolds with covalently cross-linked chitooligosaccharides for full-thickness wound-healing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111871. [PMID: 33579504 DOI: 10.1016/j.msec.2021.111871] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
The development of tissue-engineered biodegradable artificial tissue substitutes with extracellular matrix-mimicking properties that govern the interaction between the material and biological environment is of great interest in wound-healing applications. In the present study, novel bilayer nanofibrous scaffolds composed of fish collagen (FC) and poly(ε-caprolactone) (PCL) were fabricated using electrospinning, with the covalent attachment of chitooligosaccharides (COS) via carbodiimide chemistry. The architecture and fiber diameter of the non-cross-linked nanofibrous scaffolds remained consistent irrespective of the polymer ratio under different electrospinning conditions, but the fiber diameter changed after cross-linking in association with the FC content. Fourier-transform infrared spectroscopy analysis indicated that the blend of biomaterials was homogenous, with an increase in COS levels with increasing FC content in the nanofibrous scaffolds. Based on cytocompatibility analysis (i.e., the cellular response to the nanofibrous scaffolds and their interaction), the nanofibrous scaffolds with high FC content were functionally active in response to normal human dermal fibroblast‑neonatal (NHDF-neo) and HaCaT keratinocyte cells, leading to the generation of a very effective tissue-engineered implant for full-thickness wound-healing applications. In addition to these empirical results, an assessment of the hydrophilicity, swelling, and mechanical integrity of the proposed COS-containing FC-rich FC/PCL (FCP) nanofibrous scaffolds confirmed that they have significant potential for use as tissue-engineered skin implants for rapid skin regeneration.
Collapse
Affiliation(s)
- Pathum Chandika
- Department of Biomedical Engineering, and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Gun-Woo Oh
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Seong-Yeong Heo
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Se-Chang Kim
- Department of Biomedical Engineering, and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Tae-Hee Kim
- Department of Biomedical Engineering, and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Min-Sung Kim
- Department of Biomedical Engineering, and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
38
|
Šimat V, Elabed N, Kulawik P, Ceylan Z, Jamroz E, Yazgan H, Čagalj M, Regenstein JM, Özogul F. Recent Advances in Marine-Based Nutraceuticals and Their Health Benefits. Mar Drugs 2020; 18:E627. [PMID: 33317025 PMCID: PMC7764318 DOI: 10.3390/md18120627] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
The oceans have been the Earth's most valuable source of food. They have now also become a valuable and versatile source of bioactive compounds. The significance of marine organisms as a natural source of new substances that may contribute to the food sector and the overall health of humans are expanding. This review is an update on the recent studies of functional seafood compounds (chitin and chitosan, pigments from algae, fish lipids and omega-3 fatty acids, essential amino acids and bioactive proteins/peptides, polysaccharides, phenolic compounds, and minerals) focusing on their potential use as nutraceuticals and health benefits.
Collapse
Affiliation(s)
- Vida Šimat
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Nariman Elabed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Avenue de la République, BP 77-1054 Amilcar, Tunisia;
| | - Piotr Kulawik
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Zafer Ceylan
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Van Yüzüncü Yıl University, 65080 Van, Turkey;
| | - Ewelina Jamroz
- Institute of Chemistry, Faculty of Food Technology, University of Agriculture in Cracow, ul. Balicka 122, 30-149 Krakow, Poland;
| | - Hatice Yazgan
- Faculty of Veterinary Medicine, Cukurova University, 01330 Adana, Turkey;
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia;
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
| |
Collapse
|
39
|
Zhang M, Zhao X. Alginate hydrogel dressings for advanced wound management. Int J Biol Macromol 2020; 162:1414-1428. [PMID: 32777428 DOI: 10.1016/j.ijbiomac.2020.07.311] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 01/07/2023]
Abstract
Wound healing is a complicated and continuous process affected by several factors, and it needs an appropriate surrounding to achieve accelerated healing. At present, various wound dressings are used for wound management, such as fiber, sponge, hydrogel, foam, hydrocolloid and so on. Hydrogels can provide mechanical support and moist environment for wounds, and are widely used in biomedical field. Alginate is a natural linear polysaccharide derived from brown algae or bacteria, consisting of repeating units of β-1,4-linked D-mannuronic acid (M) and L-guluronic acid (G) in different ratios. It is widely used in biomedical and engineering fields due to its good biocompatibility and liquid absorption capacity. Alginate-based hydrogels have been used in wound dressing, tissue engineering, and drug delivery applications for decades. In this review, we summarize the recent approaches in the chemical and physical preparation and the application of alginate hydrogels in wound dressings.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
40
|
Athinarayanan J, Periasamy VS, Alshatwi AA. Simultaneous fabrication of carbon nanodots and hydroxyapatite nanoparticles from fish scale for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111313. [PMID: 32919673 DOI: 10.1016/j.msec.2020.111313] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
Fish industries and markets produce large quantities of fish scales, skins, shells, and bone wastes post processing that contaminate the environment and cause health risks in humans. In this context, we have developed a novel and simple integrated process to valorize the Lethrinus lentjan fish scales by fabricate carbon nanodots (CDs) and hydroxyapatite nanoparticles (HA NPs) simultaneously. The fish scale treatment was carried out by hydrothermal method at 280 °C that produced CDs and HA NPs simultaneously. Under hydrothermal treatment, organic and inorganic substances of fish scale is transformed to CDs and HA NPs respectively. As TEM images confirmed that fish scale derived CDs were spherically shaped and ~3 to 15 nm in size. The CDs exhibited excitation-dependent emission in photoluminescence. The HA NPs were ~8 to 12 nm in diameter and ~50 to 100 nm in length with rod shape. Also, HA NPs possess spherical shape nanostructures with 15-50 nm in diameter. Furthermore, we assessed the cytotoxic behavior of synthesized nanostructures using the MTT assay and acridine orange/ethidium bromide (AO/EB) staining. These results showed that synthesized CDs and HA NPs did not cause significant changes in cell viability and morphology, indicating biocompatibility. Additionally, the synthesized CDs and HA NPs were exploited as fluorescent probes for cellular imaging and osteogenic differentiation of stem cells respectively. Overall, the study results indicate that low-cost fish waste was valorized by producing CDs and HA NPs concurrently. The synthesized nanostructures can be applicable for bio-imaging and bone tissue engineering applications.
Collapse
Affiliation(s)
- Jegan Athinarayanan
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Vaiyapuri Subbarayan Periasamy
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Ali A Alshatwi
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
41
|
Oh GW, Nam SY, Heo SJ, Kang DH, Jung WK. Characterization of ionic cross-linked composite foams with different blend ratios of alginate/pectin on the synergistic effects for wound dressing application. Int J Biol Macromol 2020; 156:1565-1573. [DOI: 10.1016/j.ijbiomac.2019.11.206] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/19/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
|
42
|
Wu K, Zhao D, Cui H. Preparation and evaluation of heparinized sponge based on collagen and chitosan for wound healing. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520939983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The wound dressing can temporarily replace the skin and play a protective role in the process of wound healing, preventing wound infection and inflammation, and providing a favorable environment for wound healing. In this study, a mixture of collagen and chitosan was lyophilized to be the host material of the sponge. This sponge was soaked into 1-ethyl-(dimethylaminopropyl) carbodiimide/N-hydroxy sulfosuccinimide cross-linking solution containing heparin and experienced secondary lyophilization to prepare the heparinized sponge (CT-CL/Hp). The surface morphology and structural characterization of the sponge was characterized by scanning electron microscope and Fourier transform infrared spectrometer, respectively. Relatively favorable water absorption capability were observed by measuring the physical properties. Satisfactory antibacterial properties against various bacteria and microbial isolation performance were observed by the antibacterial effect analysis in vitro. The sustained-release property of heparin from the sponges was measured using Alcian Blue assay. Experiments in vitro and in vivo showed that the sponges had satisfactory biocompatibility and lower sensitization. Moreover, the effect of sponge on early stages of wound healing was evaluated by guinea pigs wound healing models. Analysis of wound healing rates and histological examination showed satisfactory results. CT-CL/Hp enhanced expression of growth factors, particularly VEGF and EGF at day 7. These results demonstrated that CT-CL/Hp–treated sponges benefit to wound skin healing and regeneration.
Collapse
Affiliation(s)
- Kun Wu
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dan Zhao
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
- Pharmacology Department, New Drug Evaluation Center, Shandong Academy of Pharmaceutical Sciences, Jinan, China
| | - Huifei Cui
- Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
43
|
Feng J, Zhang L, Xia X, Hu W, Zhou P. Effect of geographic variation on the proteome of sea cucumber (Stichopus japonicus). Food Res Int 2020; 136:109498. [PMID: 32846579 DOI: 10.1016/j.foodres.2020.109498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/09/2020] [Accepted: 06/24/2020] [Indexed: 12/26/2022]
Abstract
Sea cucumber is a sensitive organism that is easily challenged by environmental change. The aim of this study was to characterize the proteome of sea cucumbers from 5 main Chinese origins, including Xiamen (XM), Dalian (DL), Weihai (WH), Yantai (YT) and Qingdao (QD). In this work, a tandem mass tag (TMT) labeling proteomic approach was applied to identify and quantify the proteome of sea cucumber. A total of 5051 proteins were identified in the body wall; among those proteins, 1594 proteins (31.6%) were identified as enzyme proteins, and 33 proteins belonged to collagen. In addition, the 10 most highly abundant proteins were further discussed. Among all quantified proteins, 2266 were significantly differentially expressed proteins (SDEPs) across the 5 origins. These SDEPs were related to pigmentation (5 proteins), antioxidant activity (13 proteins), and immune system processes (29 proteins). Based on SDEPs, DL differed the most from QD and XM, as well as WH and YT, as shown in principal component analysis (PCA) and hierarchical clustering. In conclusion, one-fourth of the significantly different proteins found in the sea cucumber body wall among the 5 main Chinese locations indicated the sensitivity of sea cucumber to variations in temperature, environment, and feeding.
Collapse
Affiliation(s)
- Jianhui Feng
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Lina Zhang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Xubin Xia
- Shandong Homey Aquatic Development CO., Rongcheng, Shandong Province 264000, China
| | - Wei Hu
- Shandong Homey Aquatic Development CO., Rongcheng, Shandong Province 264000, China
| | - Peng Zhou
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
44
|
Functional Microbial Pigments Isolated from Chryseobacterium and Deinococcus species for Bio-paint Application. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0372-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Subhan F, Hussain Z, Tauseef I, Shehzad A, Wahid F. A review on recent advances and applications of fish collagen. Crit Rev Food Sci Nutr 2020; 61:1027-1037. [PMID: 32345036 DOI: 10.1080/10408398.2020.1751585] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
During the processing of the fishery resources, the significant portion is either discarded or used to produce low-value fish meal and oil. However, the discarded portion is the rich source of valuable proteins such as collagen, vitamins, minerals, and other bioactive compounds. Collagen is a vital protein in the living body as a component of a fibrous structural protein in the extracellular matrix, connective tissue and building block of bones, tendons, skin, hair, nails, cartilage and joints. In recent years, the use of fish collagen as an increasingly valuable biomaterial has drawn considerable attention from biomedical researchers, owing to its enhanced physicochemical properties, stability and mechanical strength, biocompatibility and biodegradability. This review focuses on summarizing the growing role of fish collagen for biomedical applications. Similarly, the recent advances in various biomedical applications of fish collagen, including wound healing, tissue engineering and regeneration, drug delivery, cell culture and other therapeutic applications, are discussed in detail. These applications signify the commercial importance of fish collagen for the fishing industry, food processors and biomedical sector.
Collapse
Affiliation(s)
- Fazli Subhan
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Zohaib Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Pakistan.,School of Materials Science and Engineering, Gwangju Institute of Science and Technology, (GIST), Gwangju, Republic of Korea
| | - Isfahan Tauseef
- Department of Microbiology, Hazara University, Mansehra, KPK, Pakistan
| | - Adeeb Shehzad
- Department of Biomedical Engineering, School of Mechanical & Manufacturing Engineering, National University of Science and Technology, Islamabad, Pakistan
| | - Fazli Wahid
- Department of Biomedical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology Haripur, Pakistan
| |
Collapse
|
46
|
Sofrona E, Tziveleka LA, Harizani M, Koroli P, Sfiniadakis I, Roussis V, Rallis M, Ioannou E. In Vivo Evaluation of the Wound Healing Activity of Extracts and Bioactive Constituents of the Marine Isopod Ceratothoa oestroides. Mar Drugs 2020; 18:E219. [PMID: 32325719 PMCID: PMC7230750 DOI: 10.3390/md18040219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
Wound healing is a fundamental response to tissue injury and a number of natural products has been found to accelerate the healing process. Herein, we report the preparation of a series of different polarity (organic and aqueous) extracts of the marine isopod Ceratothoa oestroides and the in vivo evaluation of their wound healing activity after topical administration of ointments incorporating the various extracts on wounds inflicted on SKH-hr1 hairless mice. The most active extract was fractionated for enrichment in the bioactive constituents and the fractions were further evaluated for their wound healing activity, while their chemical profiles were analyzed. Wound healing was evaluated by clinical assessment, photo-documentation, histopathological analysis and measurement of biophysical skin parameters, such as transepidermal water loss (TEWL), hydration, elasticity, and skin thickness. The highest levels of activity were exerted by treatment of the wounds with a fraction rich in eicosapentaenoic acid (EPA), as well as myristic and palmitoleic acids. Topical application of the bioactive fraction on the wounds of mice resulted in complete wound closure with a skin of almost normal architecture without any inflammatory elements.
Collapse
Affiliation(s)
- Evgenia Sofrona
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.S.); (L.-A.T.); (M.H.); (V.R.)
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.S.); (L.-A.T.); (M.H.); (V.R.)
| | - Maria Harizani
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.S.); (L.-A.T.); (M.H.); (V.R.)
| | - Panagiota Koroli
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | | | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.S.); (L.-A.T.); (M.H.); (V.R.)
| | - Michail Rallis
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece; (E.S.); (L.-A.T.); (M.H.); (V.R.)
| |
Collapse
|
47
|
Tziveleka LA, Sapalidis A, Kikionis S, Aggelidou E, Demiri E, Kritis A, Ioannou E, Roussis V. Hybrid Sponge-Like Scaffolds Based on Ulvan and Gelatin: Design, Characterization and Evaluation of Their Potential Use in Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1763. [PMID: 32283814 PMCID: PMC7178717 DOI: 10.3390/ma13071763] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023]
Abstract
Ulvan, a bioactive natural sulfated polysaccharide, and gelatin, a collagen-derived biopolymer, have attracted interest for the preparation of biomaterials for different biomedical applications, due to their demonstrated compatibility for cell attachment and proliferation. Both ulvan and gelatin have exhibited osteoinductive potential, either alone or in combination with other materials. In the current work, a series of novel hybrid scaffolds based on crosslinked ulvan and gelatin was designed, prepared and characterized. Their mechanical performance, thermal stability, porosity, water-uptake and in vitro degradation ability were assessed, while their morphology was analyzed through scanning electron microscopy. The prepared hybrid ulvan/gelatin scaffolds were characterized by a highly porous and interconnected structure. Human adipose-derived mesenchymal stem cells (hADMSCs) were seeded in selected ulvan/gelatin hybrid scaffolds and their adhesion, survival, proliferation, and osteogenic differentiation efficiency was evaluated. Overall, it was found that the prepared hybrid sponge-like scaffolds could efficiently support mesenchymal stem cells' adhesion and proliferation, suggesting that such scaffolds could have potential uses in bone tissue engineering.
Collapse
Affiliation(s)
- Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Andreas Sapalidis
- Institute of Nanosciences and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15310 Attiki, Greece;
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Eleni Aggelidou
- cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Efterpi Demiri
- Department of Plastic Surgery, School of Medicine, Faculty of Health Sciences, Papageorgiou Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Aristeidis Kritis
- cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| |
Collapse
|
48
|
Poulose N, Sajayan A, Ravindran A, Sreechithra TV, Vardhan V, Selvin J, Kiran GS. Photoprotective effect of nanomelanin-seaweed concentrate in formulated cosmetic cream: With improved antioxidant and wound healing properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111816. [DOI: 10.1016/j.jphotobiol.2020.111816] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/02/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
|
49
|
Cao J, Wang P, Liu Y, Zhu C, Fan D. Double crosslinked HLC-CCS hydrogel tissue engineering scaffold for skin wound healing. Int J Biol Macromol 2020; 155:625-635. [PMID: 32240736 DOI: 10.1016/j.ijbiomac.2020.03.236] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 01/10/2023]
Abstract
Skin defects caused by various reasons are currently common clinical problems. At present, hydrogels have been proposed as tissue-engineered skin scaffolds to regenerate the tissues of the defect. We used human-like collagen (HLC), which was isolated and purified after high-density fermentation of recombinant E. coli BL21 The gel uses HLC and carboxymethylated chitosan (CCS) as raw materials and combines enzyme-chemical double cross-linking technology to form a three-dimensional porous network structure that mimics the human extracellular matrix, providing attachment points and nutrients for cell growth and proliferation. For comparison, we used a common hydrogel raw material, gelatin, to prepare a hydrogel in the same way. The experimental results show that the HLC-CCS skin scaffold hydrogel has good mechanical properties, high porosity and good histocompatibility. And full-thickness skin defect repair experiments show that this hydrogel has a good ability to promote skin tissue regeneration at the wound. In summary, this HLC-based double-crosslinked hydrogel can be used as a project strategy for skin defect repair.
Collapse
Affiliation(s)
- Jing Cao
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Pan Wang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech & Biomed Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
50
|
Yoo J, Kim J, Lee JH, Kim H, Jang SJ, Seo HH, Oh ST, Hyeon SJ, Ryu H, Kim J, Moh SH. Acceleration of somatic cell reprogramming into the induced pluripotent stem cell using a mycosporine-like amino acid, Porphyra 334. Sci Rep 2020; 10:3684. [PMID: 32111890 PMCID: PMC7048830 DOI: 10.1038/s41598-020-60680-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/13/2020] [Indexed: 11/16/2022] Open
Abstract
Porphyra 334 (P334), a mycosporine-like amino acid (MAA), is a secondary metabolite found in diverse marine and terrestrial organisms and has several beneficial effects on fibroblast proliferation, wound healing, and antioxidant activity. Here, we report that P334 accelerates the cell reprogramming process of mouse tail-tip fibroblasts (TTFs) and human dermal papilla (HDP) cells into induced pluripotent stem cells (iPSCs). We found that P334 significantly improved the cell reprogramming efficiency by activating the tri-methylation of histone 3 lysine 4 (H3K4me3), which controls mesenchymal to epithelial transition (MET) during the reprogramming process. Thus, we found that P334 directly regulates epigenetic changes, providing an efficient approach for natural compound-based cell reprogramming.
Collapse
Affiliation(s)
- Junsang Yoo
- Anti-aging Research Institute, BIO-FD&C Co., Ltd, Inchon, 21990, Korea
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Junyeop Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 100-715, Korea
| | - Jeong Hun Lee
- Anti-aging Research Institute, BIO-FD&C Co., Ltd, Inchon, 21990, Korea
| | - Hyein Kim
- Anti-aging Research Institute, BIO-FD&C Co., Ltd, Inchon, 21990, Korea
| | - Sung Joo Jang
- Anti-aging Research Institute, BIO-FD&C Co., Ltd, Inchon, 21990, Korea
| | - Hyo Hyun Seo
- Anti-aging Research Institute, BIO-FD&C Co., Ltd, Inchon, 21990, Korea
| | - Seung Taek Oh
- Anti-aging Research Institute, BIO-FD&C Co., Ltd, Inchon, 21990, Korea
| | - Seung Jae Hyeon
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Hoon Ryu
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Jongpil Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 100-715, Korea
| | - Sang Hyun Moh
- Anti-aging Research Institute, BIO-FD&C Co., Ltd, Inchon, 21990, Korea.
| |
Collapse
|