1
|
Pan C, Wei C, Wang X, Jin Y, Tian F. Patulin-degrading enzymes sources, structures, and mechanisms: A review. Int J Biol Macromol 2024; 291:139148. [PMID: 39725106 DOI: 10.1016/j.ijbiomac.2024.139148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Patulin (PAT), a fungal secondary metabolite with multiple toxicities, is an unavoidable contaminant in fruit and vegetable processing, posing potential health risks to consumers and causing significant economic losses to the global food industry. Traditional control strategies, such as physical and chemical methods, face several challenges, including low efficiency, high costs, and unverified safety. In contrast, microbial degradation of patulin is considered a more efficient and environmentally friendly approach, which has become a popular research focus. However, there is still insufficient research on the key degradation enzymes involved in microorganisms. Therefore, this review comprehensively summarizes recent research progress on the biological degradation of patulin, with a focus on microbial species capable of degrading patulin, the degradation enzymes they express, potential degradation mechanisms, and the toxicity of degradation products, while providing prospects for future research. It offers valuable insights for controlling patulin in food and stimulates further investigation. Ultimately, this review aims to promote the development of efficient and eco-friendly methods to mitigate patulin contamination in fruits and vegetables.
Collapse
Affiliation(s)
- Chunqiang Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Chaozhi Wei
- Xianghu Laboratory, Hangzhou 311231, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiao Wang
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fengwei Tian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Rangaraj VM, Mabrook G, Hathi Z, Mettu S, Banat F, Taher H. Lacticaseibacillus rhamnosus encapsulated cross-linked Keratin-Chitosan hydrogel for removal of patulin from apple juice. Food Chem 2024; 454:139619. [PMID: 38811285 DOI: 10.1016/j.foodchem.2024.139619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
In this study, we developed a hydrogel from cross-linked keratin and chitosan (KC) to remove patulin (PAT) from apple juice. We explored the potential of incorporating Lactobacillus rhamnoses into the KC hydrogel (KC-LR) and tested its effectiveness in removing PAT from simulated juice solutions and real apple juice. The KC hydrogel was developed through a dynamic disulfide cross-linking reaction. This cross-linked hydrogel network provided excellent stability for the probiotic cells, achieving 99.9 % immobilization efficiency. In simulated juice with 25 mg/L PAT, the KC and KC-LR hydrogels showed removal efficiencies of 85.2 % and 97.68 %, respectively, using 15 mg mL-1 of the prepared hydrogel at a temperature of 25 °C for 6 h. The KC and KC-LR hydrogels achieved 76.3 % and 83.6 % removal efficiencies in real apple juice systems, respectively. Notably, the encapsulated probiotics did not negatively impact the juice quality and demonstrated reusability for up to five cycles of the PAT removal process.
Collapse
Affiliation(s)
- Vengatesan M Rangaraj
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Ghanim Mabrook
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Zubeen Hathi
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Srinivas Mettu
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Hanifa Taher
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Hasanvand S, Ebrahimi B, Paimard G, Rouhi M, Hashami Z, Zibaei R, Roshandel Z, Mohammadi R. Optimization of Seleno-chitosan-phytic acid nanocomplex for efficient removal of patulin from apple juice. Food Chem 2024; 443:138576. [PMID: 38301556 DOI: 10.1016/j.foodchem.2024.138576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
A novel and effective adsorbent known as Seleno-chitosan-phytic acid nanocomplex (Se-CS-PA) has been developed specifically for efficiently removing patulin (PAT) from a simulated juice solution. The synthesis of Se-CS-PA nanocomplex was confirmed through Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and energy dispersive X-Ray (EDX) analyses. Response surface methodology (RSM) was employed using central composite design (CCD) to examine the impact of four independent variables (PA concentration, amount of nano-complex, duration of interaction between PAT and nano-complex, and initial concentration of PAT) on the removal of PAT. PA concentration of 0.1 % with 2.1 g Se-CS-PA nanocomplex according to RSM polynomial equation and apple juice with 25 μg.L-1 PAT yielded a remarkable adsorption rate of 94.23 % and 87.52 % respectively after 7 h. The process of PAT adsorption was explained using the pseudo-first-order model (R2 = 0.8858) for the kinetic model and the Freundlich isotherm (R2 = 0.9988) for the isotherm model.
Collapse
Affiliation(s)
- Sara Hasanvand
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Ebrahimi
- Department of Food Science and Technology, Maragheh University of Medical Science, Maragheh, Iran
| | - Giti Paimard
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical Uni-versity, Wenzhou, Zhejiang 325027, China
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Hashami
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rezvan Zibaei
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Roshandel
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Stoev SD. Natural feed additives and bioactive supplements versus chemical additives as a safe and practical approach to combat foodborne mycotoxicoses. Front Nutr 2024; 11:1335779. [PMID: 38450227 PMCID: PMC10915786 DOI: 10.3389/fnut.2024.1335779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
This review highlights the possible hazard of mycotoxins occurrence in foods and feeds in regards to foodborne diseases. The possible management of the risk of contamination of foods and feeds with mycotoxins by using natural feed additives, protecting against deleterious effects of mycotoxins or inhibiting the growth of fungi and mycotoxin production, is deeply investigated in the available literature and some effective measures for safe utilization of mycotoxin contaminated feed/food are proposed. The biological methods of decontamination, degradation or biotransformation of mycotoxins are deeply analyzed and discussed. Some natural antagonists against target fungi are also reviewed and a comparison is made with conventional fungicides for ensuring a safe prevention of mycotoxin contamination. The most common and useful chemical methods of mycotoxins decontamination of agricultural commodities or raw materials are also investigated, e.g., chemical additives inactivating or destroying and/or adsorbing mycotoxins as well as chemical additives inhibiting the growth of fungi and mycotoxin production. The practical use and safety of various kind of feed/food additives or herbal/biological supplements as possible approach for ameliorating the adverse effects of some dangerous mycotoxins is deeply investigated and some suggestions are given. Various possibilities for decreasing mycotoxins toxicity, e.g., by clarifying the mechanisms of their toxicity and using some target antidotes and vitamins as supplements to the diet, are also studied in the literature and appropriate discussions or suggestions are made in this regard. Some studies on animal diets such as low carbohydrate intake, increased protein content, calorie restriction or the importance of dietary fats are also investigated in the available literature for possible amelioration of the ailments associated with mycotoxins exposure. It could be concluded that natural feed additives and bioactive supplements would be more safe and practical approach to combat foodborne mycotoxicoses as compared to chemical additives.
Collapse
Affiliation(s)
- Stoycho D. Stoev
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
5
|
Zhou X, Lai C, Almatrafi E, Liu S, Yan H, Qian S, Li H, Qin L, Yi H, Fu Y, Li L, Zhang M, Xu F, Zeng Z, Zeng G. Unveiling the roles of dissolved organic matters derived from different biochar in biochar/persulfate system: Mechanism and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161062. [PMID: 36565867 DOI: 10.1016/j.scitotenv.2022.161062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/27/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Biochar has been frequently used as a persulfate (PS) activator due to its attractive properties, but dissolved organic matter (DOM) derived from the non‑carbonized part of biochar has received less attention, not to mention its specific role and impact in biochar/PS systems. In this study, wheat straw, municipal sludge, and swine bone were selected as the representative feed stocks of biochar. Subsequently, these three types of biochar were adopted to explore the roles of DOM in biochar/PS systems. Although the composition and amount of DOM derived from different biochar were discrepant, they exhibited similar effect in biochar/PS systems. To be specific, the pore-clogging effect of DOM on biochar suppressed the adsorption capacity and catalytic performance of the three biochar. Furthermore, the removal of DOM decreased the environmental risk of these biochar/PS systems and enhanced the stability of the involved biochar. With respect to the variation in degradation mechanism, the removal of DOM increased the proportion of electron transfer pathway in unison, but the diminution in the roles of O2•¯ and 1O2 was more remarkable in bone-derived-biochar/PS systems. Additionally, the toxicity test illustrated that the leakage and accumulation of DOM were toxic to Chlorella sp., and the DOM from sludge-derived-biochar presented the highest toxicity. Overall, this study analyzes the roles of DOM derived from different biochar in biochar/PS systems and evaluates their environmental risk, which contributes to a comprehensive understanding of the fate of DOM derived from biochar.
Collapse
Affiliation(s)
- Xuerong Zhou
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Cui Lai
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shiyu Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Huchuan Yan
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Shixian Qian
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hanxi Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Huan Yi
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yukui Fu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ling Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Guangming Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, PR China; College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
6
|
Liu X, Wang L, Wang S, Cai R, Yue T, Yuan Y, Gao Z, Wang Z. Detoxification of patulin in apple juice by enzymes and evaluation of its degradation products. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Bayraç C, Yılmaz B, Bayrakcı M. Adsorption behavior of carboxy- and amine-terminated magnetic beads for patulin: Batch experiments in aqueous solution and apple juice. Food Res Int 2022; 162:112077. [DOI: 10.1016/j.foodres.2022.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/13/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022]
|
8
|
Li N, Cui R, Zhang F, Meng X, Liu B. Current situation and future challenges of patulin reduction-a review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Safajoo S, Sadeghi E, Noroozi R, Mohammadi R, Moradi L, Razmjoo F, Paimard G. Synthesis of a new thiourea-polygalacturonic acid nanocomplex adsorbent for removing patulin from apple juice simulator and apple juice. J Verbrauch Lebensm 2022. [DOI: 10.1007/s00003-022-01370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Raesi S, Mohammadi R, Khammar Z, Paimard G, Abdalbeygi S, Sarlak Z, Rouhi M. Photocatalytic detoxification of aflatoxin B1 in an aqueous solution and soymilk using nano metal oxides under UV light: Kinetic and isotherm models. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Paimard G, Mohammadi R, Bahrami R, Khosravi‐Darani K, Sarlak Z, Rouhi M. Detoxification of patulin from juice simulator and apple juice via cross-linked Se-chitosan/L-cysteine nanoparticles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Zheng X, Wei W, Zhou W, Li H, Rao S, Gao L, Yang Z. Prevention and detoxification of patulin in apple and its products: A review. Food Res Int 2020; 140:110034. [PMID: 33648261 DOI: 10.1016/j.foodres.2020.110034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 01/09/2023]
Abstract
Patulin-producing fungi pose an unavoidable problem for apple and its product quality, thereby threatening human and/or animal health. Studies on controlling the patulin-producing fungal growth and patulin contamination in apple and its products by physical methods, chemical fungicides, and biological methods have been performed for decades, but patulin contamination has not been addressed. Here, the important of studying regulation mechanism of patulin production in apple at the protein expression and metabolism levels is proposed, which will facilitate the development of controlling patulin production by using physical, chemical, and biological methods. Furthermore, the advantages or disadvantages and effects or mechanisms of using physical, chemical, biological methods to control the decay caused by Penicillium expansum and to remove patulin in food was discussed. The development of physical methods to remove patulin depends on the development of special equipment. Chemical methods are economical and efficient, if we have ensured that there are no unknown reactions or toxic by-products by using these chemicals. The biological method not only effectively controls the decay caused by Penicillium espansum, but also removes the toxins that already exist in the food. Degradation of patulin by microorganisms or biodegradation enzymes is an efficient and promising method to remove patulin in food if the microorganisms used and the degradation products are completely non-toxic.
Collapse
Affiliation(s)
- Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wanning Wei
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wenyuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Huaxiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lu Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
13
|
Aerogel doped by sulfur-functionalized graphene oxide with convenient separability for efficient patulin removal from apple juice. Food Chem 2020; 338:127785. [PMID: 32798825 DOI: 10.1016/j.foodchem.2020.127785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
Patulin (PAT) contaminant causes severe food safety issue throughout apple industry. Although adsorption is the feasible approach to remove PAT, the limited adsorption capacity and separation difficulty of most adsorbent is the major drawback that remains to be overcome. Here GO-SH doped aerogel was prepared and used for removal PAT from apple juice. The intrinsic porous of the aerogel and abundant active sites including -COOH, -NH2 and -SH offered the PAT adsorption capacity of 24.75 μg/mg that superior to most reported adsorbents. Furthermore, it could reduce 89 ± 1.23% PAT in real apple juice without juice quality deterioration and cytotoxicity. Importantly, the aerogel with good mechanical strength and structure stability could endure the complex juice solution so that there was no any residue after convenient separation of the aerogel, which proved that the proposed aerogel was a promising adsorbent to be applied to apple juice industry for PAT removal.
Collapse
|
14
|
Ngolong Ngea GL, Yang Q, Castoria R, Zhang X, Routledge MN, Zhang H. Recent trends in detecting, controlling, and detoxifying of patulin mycotoxin using biotechnology methods. Compr Rev Food Sci Food Saf 2020; 19:2447-2472. [PMID: 33336983 DOI: 10.1111/1541-4337.12599] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023]
Abstract
Patulin (PAT) is a mycotoxin that can contaminate many foods and especially fruits and fruit-based products. Therefore, accurate and effective testing is necessary to enable producers to comply with regulations and promote food safety. Traditional approaches involving the use of chemical compounds or physical treatments in food have provided practical methods that have been used to date. However, growing concerns about environmental and health problems associated with these approaches call for new alternatives. In contrast, recent advances in biotechnology have revolutionized the understanding of living organisms and brought more effective biological tools. This review, therefore, focuses on the study of biotechnology approaches for the detection, control, and mitigation of PAT in food. Future aspects of biotechnology development to overcome the food safety problem posed by PAT were also examined. We find that biotechnology advances offer novel, more effective, and environmental friendly approaches for the control and elimination of PAT in food compared to traditional methods. Biosensors represent the future of PAT detection and use biological tools such as aptamer, enzyme, and antibody. PAT prevention strategies include microbial biocontrol, the use of antifungal biomolecules, and the use of microorganisms in combination with antifungal molecules. PAT detoxification aims at the breakdown and removal of PAT in food by using enzymes, microorganisms, and various adsorbent biopolymers. Finally, biotechnology advances will be dependent on the understanding of fundamental biology of living organisms regarding PAT synthesis and resistance mechanisms.
Collapse
Affiliation(s)
- Guillaume Legrand Ngolong Ngea
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Institute of Fisheries Sciences, University of Douala, Douala, Cameroon
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Raffaello Castoria
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - Xiaoyun Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Michael N Routledge
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
Qiu Y, Zhang Y, Wei J, Gu Y, Yue T, Yuan Y. Thiol-functionalized inactivated yeast embedded in agar aerogel for highly efficient adsorption of patulin in apple juice. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121802. [PMID: 31822350 DOI: 10.1016/j.jhazmat.2019.121802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/13/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
The issue of patulin (PAT) contamination in apple juice has attracted widespread concern. Recently, inactivated yeast based biosorbents have shown great advantages in the removal of toxic contaminants. However, the traditional yeast adsorbents have disadvantages of a limited adsorption capacity in juice and separation difficulty. In the present work, five chemical thiol-functionalization methods were used to increase the PAT adsorption efficiency of yeast cells in apple juice. Thereinto, glutaraldehyde cross-linking increased the thiol (-SH) content of yeast cells to 1.26 mmol g-1 and improved the PAT adsorption capacity of inactivated yeast in apple juice by 150 times. The covalent bonding of -SH and PAT played an important role in the improvement of adsorption capacity. The as-prepared thiol-modification yeast (Y-SH(Gl)) was then embedded in the agar aerogel to obtain Y-SH(Gl)@Agar free of separation. PAT adsorption of Y-SH(Gl)@Agar was consistent with the Freundlich model and the pseudo-second-order kinetic model. Moreover, Y-SH(Gl)@Agar was competent for PAT removal in apple juice and manifested negligible effects on juice quality. Cytotoxicity investigation indicated its good biocompatibility and ignorable food safety risk, thereby demonstrating that Y-SH(Gl)@Agar may be a promising adsorbent material for the control of PAT contaminant in juice.
Collapse
Affiliation(s)
- Yue Qiu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, 712100, China
| | - Yuxiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, 712100, China
| | - Jianping Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, 712100, China
| | - Yangeng Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; National Engineering Research Center of Agriculture Integration Test (Yangling), Yangling, 712100, China.
| |
Collapse
|
16
|
Dragan ES, Dinu MV. Advances in porous chitosan-based composite hydrogels: Synthesis and applications. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104372] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Sun J, Guo W, Ji J, Li Z, Yuan X, Pi F, Zhang Y, Sun X. Removal of patulin in apple juice based on novel magnetic molecularly imprinted adsorbent Fe3O4@SiO2@CS-GO@MIP. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108854] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Xiao Y, Liu B, Wang Z, Han C, Meng X, Zhang F. Effective degradation of the mycotoxin patulin in pear juice by porcine pancreatic lipase. Food Chem Toxicol 2019; 133:110769. [DOI: 10.1016/j.fct.2019.110769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023]
|
19
|
Adsorption properties of magnetic carbon nanotubes for patulin removal from aqueous solution systems. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.02.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Liu M, Wang J, Wang X, Zhu W, Yao X, Su L, Sun J, Yue T, Wang J. Highly efficient and cost-effective removal of patulin from apple juice by surface engineering of diatomite with sulfur-functionalized graphene oxide. Food Chem 2019; 300:125111. [PMID: 31325752 DOI: 10.1016/j.foodchem.2019.125111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022]
Abstract
Patulin (PAT) contamination of apple juice leads to a serious food safety issue. Developing an excellent adsorbent to efficiently remove PAT is more desirable. Herein, a cost-effective and efficient adsorbent (GO-SH/diatomite) with abundant active sites was successfully fabricated via surface engineering of diatomite with sulfur-functionalized graphene oxide (GO-SH) nanosheets, which exhibited excellent selective adsorption capacity toward PAT. The adsorption behavior, adsorption mechanism, stability and cytotoxicity were investigated by systematic studies. The adsorption results showed that its maximum adsorption capacity was 10.68 μg/mg. Moreover, attributed to the specific interaction between PAT and thiol group, more than 90% of PAT was removed from apple juice without any juice quality deterioration. Importantly, the risk of food safety issue of apple juice caused by residual GO-SH/diatomite was negligible due to the properties of easy removal and excellent biocompatibility, which guaranteed its potential application in apple juice industry for PAT removal.
Collapse
Affiliation(s)
- Manshun Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenxin Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaolin Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lihong Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
21
|
Huang X, Cao X, Wang W, Zhong H, Cao ZF. Investigation of removal of Ag(I) from aqueous solution by a novel chelating resin containing acyl and thiourea groups. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2018.1470011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaoping Huang
- College of Chemistry and Chemical Engineering, Central South University, Yuelu District, Changsha, Hunan, China
| | - Xiaoyu Cao
- College of Chemistry and Chemical Engineering, Central South University, Yuelu District, Changsha, Hunan, China
| | - Weihong Wang
- College of Chemistry and Chemical Engineering, Central South University, Yuelu District, Changsha, Hunan, China
| | - Hong Zhong
- College of Chemistry and Chemical Engineering, Central South University, Yuelu District, Changsha, Hunan, China
| | - Zhan-Fang Cao
- College of Chemistry and Chemical Engineering, Central South University, Yuelu District, Changsha, Hunan, China
| |
Collapse
|
22
|
Erdoğan A, Ghimire D, Gürses M, Çetin B, BARAN A. Meyve Sularında Patulin Kirlenmesi ve Kontrol Önlemleri. ACTA ACUST UNITED AC 2018. [DOI: 10.31590/ejosat.434750] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Diao E, Hou H, Hu W, Dong H, Li X. Removing and detoxifying methods of patulin: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Liu M, Wang J, Yang Q, Hu N, Zhang W, Zhu W, Wang R, Suo Y, Wang J. Patulin removal from apple juice using a novel cysteine-functionalized metal-organic framework adsorbent. Food Chem 2018; 270:1-9. [PMID: 30174021 DOI: 10.1016/j.foodchem.2018.07.072] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
Abstract
Patulin (PAT) is one of the most common toxic contaminants of apple juice, which causes severe food safety issues throughout the apple industry. In order to remove PAT efficiently, a metal-organic framework-based adsorbent (UiO-66(NH2)@Au-Cys) was successfully synthesized and used for PAT removal from juice-pH simulation solution and real apple juice. Batch adsorption experiments were systematically performed to study the adsorption behavior for PAT. The results showed that adsorption process could be well described by the Pseudo-second order model and Freundlich isotherm model. The maximum adsorption capacity (4.38 µg/mg) was 10 times higher than the microbe-based biosorbents. Thermodynamic investigation demonstrated that adsorption process was spontaneous and endothermic. Furthermore, no marked cytotoxicity on NIH 3T3 cell lines was observed when the concentration of the adsorbent was lower than 10 μg/mL. Therefore, UiO-66(NH2)@Au-Cys is a potential adsorbent for PAT removal from apple juice with little quality changes.
Collapse
Affiliation(s)
- Manshun Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qingfeng Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Na Hu
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenxin Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yourui Suo
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
25
|
Huang X, Cao X, Wang W, Zhong H, Cao Z. Preparation of a novel resin with acyl and thiourea groups and its properties for Cu(II) removal from aqueous solution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 204:264-271. [PMID: 28888704 DOI: 10.1016/j.jenvman.2017.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
In this paper, a new resin (PIDTR) containing acyl and thiourea chelating groups was synthesized and its adsorption performances and mechanism to Cu(II) were investigated by adsorption tests, BET, SEM, FTIR and XPS analyses. Equilibrium data were fitted well with Langmuir model with the maximum adsorption capacity of 1.1608 mmol g-1 for Cu(II) at pH 5.0. The regeneration and reusability test showed that the adsorption capacities decreased from 0.917 mmol g-1 to 0.88 mmol g-1 after five cycles of adsorption and desorption. The thermodynamics showed that the adsorption process was spontaneous and endothermic. The adsorption dynamic demonstrated that two stages in the adsorption process: liquid film diffusion and chemical adsorption. The studies of SEM indicated that Cu(II) ions were adsorbed on the surface of PIDTR. FTIR and XPS analysis further proved that Cu(II) ions were chemisorbed on the surface of PIDTR by formation of CuN, CuO and CuS bonds with the breakage of NH, C=O and S=C bonds in PIDTR.
Collapse
Affiliation(s)
- Xiaoping Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Xiaoyu Cao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Weihong Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| | - Hong Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhanfang Cao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
26
|
Huang X, Cao X, Wang W, Zhong H, Cao Z. Studies on the adsorption behaviors of Pb(II) onto an acyl-thiourea resin. J DISPER SCI TECHNOL 2017. [DOI: 10.1080/01932691.2017.1398663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoping Huang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Xiaoyu Cao
- School of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Weihong Wang
- School of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Hong Zhong
- School of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Zhanfang Cao
- School of Chemistry and Chemical Engineering, Central South University, Changsha, China
| |
Collapse
|
27
|
Guo C, Guo M, Zhang S, Qin D, Yang Y, Li M. Assessment of patulin adsorption efficacy from aqueous solution by water‐insoluble corn flour. J Food Saf 2017. [DOI: 10.1111/jfs.12397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Caixia Guo
- College of Life ScienceShanxi UniversityTaiyuan China
| | - Meng Guo
- College of Life ScienceShanxi UniversityTaiyuan China
| | | | - Dandan Qin
- College of Life ScienceShanxi UniversityTaiyuan China
| | - Yingjuan Yang
- College of Life ScienceShanxi UniversityTaiyuan China
| | - Meiping Li
- College of Life ScienceShanxi UniversityTaiyuan China
| |
Collapse
|
28
|
Effective detoxification of patulin from aqueous solutions by immobilized porcine pancreatic lipase. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Tan K, Hameed B. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.01.024] [Citation(s) in RCA: 384] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Rapid Detection of Enterobacter Sakazakii in milk Powder using amino modified chitosan immunomagnetic beads. Int J Biol Macromol 2016; 93:615-622. [PMID: 27616695 DOI: 10.1016/j.ijbiomac.2016.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022]
Abstract
Chitosan immunomagnetic beads (CIBs) were first prepared through converting hydroxyl groups of natural polymer material-chitosan into amino groups using epichlorohydrin and ethylenediamine as modification agent and then coupling with polyclonal antibodies of Enterobacter sakazakii using glutaraldehyde as cross-linking agent. The beads before coupling with antibodies were characterized by magnetic property measurement, FTIR, SEM and XRD technologies. In the assay a natural polysaccharide-chitosan, which has good biological and chemical properties such as non-toxicity, biocompatibility and high chemical reactivity was first used for synthesis of immunomagnetic beads. The detection method first established in this paper that combined the beads with chromogenic medium together to rapid detect E. sakazakii in milk powder could greatly improve the detection specificity and working efficiency. The beads exhibited a maximum capturing capacity of 1×106cfu/g with the detection sensitivity of 4cfu/g. The results demonstrate that the assay is a straightforward, specific and sensitive alternative for rapid detection of E.sakazakii in food matrix. The total analysis time was as little as about 25h, which greatly shorten the detection time. The method can provides new ideas not only to preparation technique of immunomagnetic beads but to imunne detection technique in food safety.
Collapse
|
31
|
Azzam EM, Eshaq G, Rabie A, Bakr A, Abd-Elaal AA, El Metwally A, Tawfik SM. Preparation and characterization of chitosan-clay nanocomposites for the removal of Cu(II) from aqueous solution. Int J Biol Macromol 2016; 89:507-17. [DOI: 10.1016/j.ijbiomac.2016.05.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/27/2016] [Accepted: 05/01/2016] [Indexed: 11/26/2022]
|