1
|
Ait Hamdan Y, El-Mansoury B, Elouali S, Rachmoune K, Belbachir A, Oudadesse H, Rhazi M. A review of chitosan polysaccharides: Neuropharmacological implications and tissue regeneration. Int J Biol Macromol 2024; 279:135356. [PMID: 39244136 DOI: 10.1016/j.ijbiomac.2024.135356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
One of the current challenges in targeting neurological disorders is that many therapeutic molecules cannot cross the blood-brain barrier (BBB), which limits the use of natural molecules in nervous tissue regeneration. Thus, the development of new drugs to effectively treat neurological disorders would be a challenge. Natural resources are well known as a source of several therapeutic agents for the treatment of neurologic disorders. Recently, chitosan (CTS) and its derivatives from arthropod exoskeletons, have attracted much attention as a drug delivery system to transport therapeutic substances across the BBB and thanks to other neuroprotective effects including the participation to the CNS regenerations scaffolds to replicate the extracellular matrix and microenvironment of the body. This review will discuss the place of natural resource therapy in targeting neurological disorders. In particular, it will highlight recent understanding and progress in the applications of CTS as drug delivery systems and their therapeutic effects on these disorders through tissue regeneration, as well as the molecular mechanisms by which they exert these effects.
Collapse
Affiliation(s)
- Youssef Ait Hamdan
- Interdisciplinary Laboratory of Research in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco; Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Bilal El-Mansoury
- Laboratory of Anthropogenic, Biotechnology and Health, Team physiopathology Nutritional, Neurosciences and Toxicology, Faculty of Sciences, Chouaib Doukkali University, Av. Des facultés, 24000 El Jadida, Morocco
| | - Samia Elouali
- Interdisciplinary Laboratory of Research in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco; University of Mons (UMONS) - Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), Place du Parc 20, 7000 Mons, Belgium
| | - Khawla Rachmoune
- Interdisciplinary Laboratory of Research in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco; Biotechnology and Biomolecule Engineering Unit, CNESTEN, Rabat, Morocco
| | - Anass Belbachir
- Center for Regenerative Medicine, CHU MOHAMMED VI, Marrakech, Morocco; Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | | | - Mohammed Rhazi
- Interdisciplinary Laboratory of Research in Bio-Resources, Environment and Materials, Higher Normal School, Cadi Ayyad University, 40000 Marrakech, Morocco
| |
Collapse
|
2
|
Keshavarz Shahbaz S, Koushki K, Keshavarz Hedayati S, McCloskey AP, Kesharwani P, Naderi Y, Sahebkar A. Polymer nanotherapeutics: A promising approach toward microglial inhibition in neurodegenerative diseases. Med Res Rev 2024; 44:2793-2824. [PMID: 39031446 DOI: 10.1002/med.22064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/30/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
Nanoparticles (NPs) that target multiple transport mechanisms facilitate targeted delivery of active therapeutic agents to the central nervous system (CNS) and improve therapeutic transport and efficacy across the blood-brain barrier (BBB). CNS nanotherapeutics mostly target neurons and endothelial cells, however, microglial immune cells are the first line of defense against neuronal damage and brain infections. Through triggering release of inflammatory cytokines, chemokines and proteases, microglia can however precipitate neurological damage-a significant factor in neurodegenerative diseases. Thus, microglial inhibitory agents are attracting much attention among those researching and developing novel treatments for neurodegenerative disorders. The most established inhibitors of microglia investigated to date are resveratrol, curcumin, quercetin, and minocycline. Thus, there is great interest in developing novel agents that can bypass or easily cross the BBB. One such approach is the use of modified-nanocarriers as, or for, delivery of, therapeutic agents to the brain and wider CNS. For microglial inhibition, polymeric NPs are the preferred vehicles for choice. Here, we summarize the immunologic and neuroinflammatory role of microglia, established microglia inhibitor agents, challenges of CNS drug delivery, and the nanotherapeutics explored for microglia inhibition to date. We also discuss applications of the currently considered "most useful" polymeric NPs for microglial-inhibitor drug delivery in CNS-related diseases.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Khadije Koushki
- Department of Neurosurgery, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | | | - Alice P McCloskey
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Yazdan Naderi
- Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Kisku A, Nishad A, Agrawal S, Paliwal R, Datusalia AK, Gupta G, Singh SK, Dua K, Sulakhiya K. Recent developments in intranasal drug delivery of nanomedicines for the treatment of neuropsychiatric disorders. Front Med (Lausanne) 2024; 11:1463976. [PMID: 39364023 PMCID: PMC11446881 DOI: 10.3389/fmed.2024.1463976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/29/2024] [Indexed: 10/05/2024] Open
Abstract
Neuropsychiatric disorders are multifaceted syndromes with confounding neurological explanations. It includes anxiety, depression, autism spectrum disorder, attention deficit hyperactivity disorder, schizophrenia, Tourette's syndrome, delirium, dementia, vascular cognitive impairment, and apathy etc. Globally, these disorders occupy 15% of all diseases. As per the WHO, India has one of the largest populations of people with mental illnesses worldwide. The blood-brain barrier (BBB) makes it extremely difficult to distribute medicine to target cells in the brain tissues. However, it is possible through novel advancements in nanotechnology, molecular biology, and neurosciences. One such cutting-edge delivery method, nose-to-brain (N2B) drug delivery using nanoformulation (NF), overcomes traditional drug formulation and delivery limitations. Later offers more controlled drug release, better bioavailability, improved patient acceptance, reduced biological interference, and circumvention of BBB. When medicines are delivered via the intranasal (IN) route, they enter the nasal cavity and go to the brain via connections between the olfactory and trigeminal nerves and the nasal mucosa in N2B. Delivering phytochemical, bioactive and synthetic NF is being investigated with the N2B delivery strategy. The mucociliary clearance, enzyme degradation, and drug translocations by efflux mechanisms are significant issues associated with N2B delivery. This review article discusses the types of neuropsychiatric disorders and their treatment with plant-derived as well as synthetic drug-loaded NFs administered via the IN-delivery system. In conclusion, this review provided a comprehensive and critical overview of the IN applicability of plant-derived NFs for psychiatric disorders.
Collapse
Affiliation(s)
- Anglina Kisku
- Neuro Pharmacology Research Laboratory (NPRL), Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Ambresh Nishad
- Neuro Pharmacology Research Laboratory (NPRL), Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Saurabh Agrawal
- Neuro Pharmacology Research Laboratory (NPRL), Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory (NBRL), Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Ashok Kumar Datusalia
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, NSW, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, NSW, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, NSW, Australia
| | - Kunjbihari Sulakhiya
- Neuro Pharmacology Research Laboratory (NPRL), Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
4
|
Bonaccorso A, Ortis A, Musumeci T, Carbone C, Hussain M, Di Salvatore V, Battiato S, Pappalardo F, Pignatello R. Nose-to-Brain Drug Delivery and Physico-Chemical Properties of Nanosystems: Analysis and Correlation Studies of Data from Scientific Literature. Int J Nanomedicine 2024; 19:5619-5636. [PMID: 38882536 PMCID: PMC11179666 DOI: 10.2147/ijn.s452316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 06/18/2024] Open
Abstract
Background In the last few decades, nose-to-brain delivery has been investigated as an alternative route to deliver molecules to the Central Nervous System (CNS), bypassing the Blood-Brain Barrier. The use of nanotechnological carriers to promote drug transfer via this route has been widely explored. The exact mechanisms of transport remain unclear because different pathways (systemic or axonal) may be involved. Despite the large number of studies in this field, various aspects still need to be addressed. For example, what physicochemical properties should a suitable carrier possess in order to achieve this goal? To determine the correlation between carrier features (eg, particle size and surface charge) and drug targeting efficiency percentage (DTE%) and direct transport percentage (DTP%), correlation studies were performed using machine learning. Methods Detailed analysis of the literature from 2010 to 2021 was performed on Pubmed in order to build "NANOSE" database. Regression analyses have been applied to exploit machine-learning technology. Results A total of 64 research articles were considered for building the NANOSE database (102 formulations). Particle-based formulations were characterized by an average size between 150-200 nm and presented a negative zeta potential (ZP) from -10 to -25 mV. The most general-purpose model for the regression of DTP/DTE values is represented by Decision Tree regression, followed by K-Nearest Neighbors Regressor (KNeighbor regression). Conclusion A literature review revealed that nose-to-brain delivery has been widely investigated in neurodegenerative diseases. Correlation studies between the physicochemical properties of nanosystems (mean size and ZP) and DTE/DTP parameters suggest that ZP may be more significant than particle size for DTP/DTE predictability.
Collapse
Affiliation(s)
- Angela Bonaccorso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Catania, 95125, Italy
| | - Alessandro Ortis
- Department of Mathematics and Computer Science, University of Catania, Catania, Italy
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Catania, 95125, Italy
| | - Claudia Carbone
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Catania, 95125, Italy
| | - Mazhar Hussain
- Department of Mathematics and Computer Science, University of Catania, Catania, Italy
| | | | - Sebastiano Battiato
- Department of Mathematics and Computer Science, University of Catania, Catania, Italy
| | - Francesco Pappalardo
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Catania, 95125, Italy
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Catania, 95125, Italy
| |
Collapse
|
5
|
Khan J, Yadav S. Nanotechnology-based Nose-to-brain Delivery in Epilepsy: A NovelApproach to Diagnosis and Treatment. Pharm Nanotechnol 2024; 12:314-328. [PMID: 37818558 DOI: 10.2174/0122117385265554230919070402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 10/12/2023]
Abstract
Epilepsy is a serious neurological disease, and scientists have a significant challenge in developing a noninvasive treatment for the treatment of epilepsy. The goal is to provide novel ideas for improving existing and future anti-epileptic medications. The injection of nano treatment via the nose to the brain is being considered as a possible seizure control method. Various nasal medicine nanoformulations have the potential to cure epilepsy. Investigations with a variety of nose-to-brain dosing methods for epilepsy treatment have yielded promising results. After examining global literature on nanotechnology and studies, the authors propose nasal administration with nanoformulations as a means to successfully treat epilepsy. The goal of this review is to look at the innovative application of nanomedicine for epilepsy treatment via nose-to-brain transfer, with a focus on the use of nanoparticles for load medicines. When nanotechnology is combined with the nose to brain approach, treatment efficacy can be improved through site specific delivery. Furthermore, this technique of administration decreases adverse effects and patient noncompliance encountered with more traditional procedures.
Collapse
Affiliation(s)
- Javed Khan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Yousfan A, Al Rahwanji MJ, Hanano A, Al-Obaidi H. A Comprehensive Study on Nanoparticle Drug Delivery to the Brain: Application of Machine Learning Techniques. Mol Pharm 2024; 21:333-345. [PMID: 38060692 PMCID: PMC10762658 DOI: 10.1021/acs.molpharmaceut.3c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 01/02/2024]
Abstract
The delivery of drugs to specific target tissues and cells in the brain poses a significant challenge in brain therapeutics, primarily due to limited understanding of how nanoparticle (NP) properties influence drug biodistribution and off-target organ accumulation. This study addresses the limitations of previous research by using various predictive models based on collection of large data sets of 403 data points incorporating both numerical and categorical features. Machine learning techniques and comprehensive literature data analysis were used to develop models for predicting NP delivery to the brain. Furthermore, the physicochemical properties of loaded drugs and NPs were analyzed through a systematic analysis of pharmacodynamic parameters such as plasma area under the curve. The analysis employed various linear models, with a particular emphasis on linear mixed-effect models (LMEMs) that demonstrated exceptional accuracy. The model was validated via the preparation and administration of two distinct NP formulations via the intranasal and intravenous routes. Among the various modeling approaches, LMEMs exhibited superior performance in capturing underlying patterns. Factors such as the release rate and molecular weight had a negative impact on brain targeting. The model also suggests a slightly positive impact on brain targeting when the drug is a P-glycoprotein substrate.
Collapse
Affiliation(s)
- Amal Yousfan
- The
School of Pharmacy, University of Reading, Reading RG6 6AD, U.K.
- Department
of Pharmaceutics and Pharmaceutical Technology, Pharmacy College, Al Andalus University for Medical Sciences, Tartus, AL Kadmous 00000, Syria
| | - Mhd Jawad Al Rahwanji
- Department
of Computer Science, Saarland University, Saarbrücken, Saarbrücken 66123, Germany
| | - Abdulsamie Hanano
- Department
of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus 00000, Syria
| | - Hisham Al-Obaidi
- The
School of Pharmacy, University of Reading, Reading RG6 6AD, U.K.
| |
Collapse
|
7
|
Grosso C, Silva A, Delerue-Matos C, Barroso MF. Single and Multitarget Systems for Drug Delivery and Detection: Up-to-Date Strategies for Brain Disorders. Pharmaceuticals (Basel) 2023; 16:1721. [PMID: 38139848 PMCID: PMC10747932 DOI: 10.3390/ph16121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
This review summarizes the recent findings on the development of different types of single and multitarget nanoparticles for disease detection and drug delivery to the brain, focusing on promising active principles encapsulated and nanoparticle surface modification and functionalization. Functionalized nanoparticles have emerged as promising tools for the diagnosis and treatment of brain disorders, offering a novel approach to addressing complex neurological challenges. They can act as drug delivery vehicles, transporting one or multiple therapeutic agents across the blood-brain barrier and precisely releasing them at the site of action. In diagnostics, functionalized nanoparticles can serve as highly sensitive contrast agents for imaging techniques such as magnetic resonance imaging and computed tomography scans. By attaching targeting ligands to the nanoparticles, they can selectively accumulate in the affected areas of the brain, enhancing the accuracy of disease detection. This enables early diagnosis and monitoring of conditions like Alzheimer's or Parkinson's diseases. While the field is still evolving, functionalized nanoparticles represent a promising path for advancing our ability to diagnose and treat brain disorders with greater precision, reduced invasiveness, and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.); (C.D.-M.); (M.F.B.)
| | - Aurora Silva
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.); (C.D.-M.); (M.F.B.)
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, Ourense Campus, Universidad de Vigo, E-32004 Ourense, Spain
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.); (C.D.-M.); (M.F.B.)
| | - Maria Fátima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (A.S.); (C.D.-M.); (M.F.B.)
| |
Collapse
|
8
|
Tyagi R, Waheed A, Kumar N, Mujeeb M, Naved T, Rashid Khan M, Alhosaini K, Alqarni YA, Rahat R, Alam P, Madan S. In-vitro and ex-vivo antidiabetic, and antioxidant activities of Box-Behnken design optimized Solanum xanthocarpum extract loaded niosomes. Saudi Pharm J 2023; 31:101785. [PMID: 37766819 PMCID: PMC10520944 DOI: 10.1016/j.jsps.2023.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
One of the most prevalent lifestyle diseases, diabetes mellitus (DM) is brought on by an endocrine issue. DM is frequently accompanied by hyperglycemia, a disease that typically results in an excess of free radicals that stress tissues. The medical community is currently concentrating on creating therapeutic medications with roots in nature to lessen the damage associated with hyperglycemia. Solanum xanthocarpum has a number of medicinal benefits. The investigation aimed to produce and analyze niosomal formulations containing S. xanthocarpum extract (SXE). Niosomes were made by implementing the solvent evaporation process, which was further optimized using Box-Behnken design. Drug release, DPPH assessments, α-amylase inhibition assay, α-glucosidase inhibition assay, and confocal laser scanning microscopy (CLSM) investigation were all performed on the developed formulation (SXE-Ns-Opt). SXE-Ns-Opt displayed a 253.6 nm vesicle size, a PDI of 0.108, 62.4% entrapment efficiency, and 84.01% drug release in 24 h. The rat's intestinal CLSM image indicated that the rhodamine red B-loaded SXE-Ns-Opts had more intestinal penetration than the control. Additionally, the antioxidant effect of the obtained formulation was demonstrated as 89.46% as compared to SXE (78.10%). Additionally, acarbose, SXE, and SXE-Ns-Opt each inhibited the activity of α-amylase by 95.11%, 85.88%, and 89.87%, and also suppressed the enzyme of α-glucosidase by 88.47%, 81.07%, and 85.78%, respectively. To summarise, the establishment of the SXE-Ns-Opt formulation and its characterization demonstrated the legitimacy of the foundation. A promising candidate for the treatment of diabetes mellitus has been shown as in vitro studies, antioxidant against oxidative stress, CLSM of rat's intestine and a high degree of penetration of formulation.
Collapse
Affiliation(s)
- Rama Tyagi
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201301, India
| | - Ayesha Waheed
- Department of Pharmaceutics, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Neeraj Kumar
- Department of Pharmaceutics, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Mohd. Mujeeb
- Department of Pharmacognosy and Phytochemistry, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Tanveer Naved
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201301, India
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Khaled Alhosaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Yasser A. Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Rani Rahat
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Swati Madan
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201301, India
| |
Collapse
|
9
|
Antunes JL, Amado J, Veiga F, Paiva-Santos AC, Pires PC. Nanosystems, Drug Molecule Functionalization and Intranasal Delivery: An Update on the Most Promising Strategies for Increasing the Therapeutic Efficacy of Antidepressant and Anxiolytic Drugs. Pharmaceutics 2023; 15:998. [PMID: 36986859 PMCID: PMC10054777 DOI: 10.3390/pharmaceutics15030998] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Depression and anxiety are high incidence and debilitating psychiatric disorders, usually treated by antidepressant or anxiolytic drug administration, respectively. Nevertheless, treatment is usually given through the oral route, but the low permeability of the blood-brain barrier reduces the amount of drug that will be able to reach it, thus consequently reducing the therapeutic efficacy. Which is why it is imperative to find new solutions to make these treatments more effective, safer, and faster. To overcome this obstacle, three main strategies have been used to improve brain drug targeting: the intranasal route of administration, which allows the drug to be directly transported to the brain by neuronal pathways, bypassing the blood-brain barrier and avoiding the hepatic and gastrointestinal metabolism; the use of nanosystems for drug encapsulation, including polymeric and lipidic nanoparticles, nanometric emulsions, and nanogels; and drug molecule functionalization by ligand attachment, such as peptides and polymers. Pharmacokinetic and pharmacodynamic in vivo studies' results have shown that intranasal administration can be more efficient in brain targeting than other administration routes, and that the use of nanoformulations and drug functionalization can be quite advantageous in increasing brain-drug bioavailability. These strategies could be the key to future improved therapies for depressive and anxiety disorders.
Collapse
Affiliation(s)
- Jéssica L. Antunes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Amado
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
10
|
Mani S, Jindal D, Singh M. Gene Therapy, A Potential Therapeutic Tool for Neurological and Neuropsychiatric Disorders: Applications, Challenges and Future Perspective. Curr Gene Ther 2023; 23:20-40. [PMID: 35345999 DOI: 10.2174/1566523222666220328142427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
Abstract
Neurological and neuropsychiatric disorders are the main risks for the health care system, exhibiting a huge socioeconomic load. The available range of pharmacotherapeutics mostly provides palliative consequences and fails to treat such conditions. The molecular etiology of various neurological and neuropsychiatric disorders is mostly associated with a change in genetic background, which can be inherited/triggered by other environmental factors. To address such conditions, gene therapy is considered a potential approach claiming a permanent cure of the disease primarily by deletion, silencing, or edition of faulty genes and by insertion of healthier genes. In gene therapy, vectors (viral/nonvial) play an important role in delivering the desired gene to a specific region of the brain. Targeted gene therapy has unraveled opportunities for the treatment of many neurological and neuropsychiatric disorders. For improved gene delivery, the current techniques mainly focus on designing a precise viral vector, plasmid transfection, nanotechnology, microRNA, and in vivo clustered regulatory interspaced short palindromic repeats (CRISPR)-based therapy. These latest techniques have great benefits in treating predominant neurological and neurodevelopmental disorders, including Parkinson's disease, Alzheimer's disease, and autism spectrum disorder, as well as rarer diseases. Nevertheless, all these delivery methods have their limitations, including immunogenic reactions, off-target effects, and a deficiency of effective biomarkers to appreciate the effectiveness of therapy. In this review, we present a summary of the current methods in targeted gene delivery, followed by the limitations and future direction of gene therapy for the cure of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shalini Mani
- Department of Biotechnology, Centre for Emerging Diseases, Jaypee Institute of Information Technology, Noida, U.P., India
| | - Divya Jindal
- Department of Biotechnology, Centre for Emerging Diseases, Jaypee Institute of Information Technology, Noida, U.P., India
| | - Manisha Singh
- Department of Biotechnology, Centre for Emerging Diseases, Jaypee Institute of Information Technology, Noida, U.P., India
| |
Collapse
|
11
|
Mathure D, Sutar AD, Ranpise H, Pawar A, Awasthi R. Preparation and Optimization of Liposome Containing Thermosensitive In Situ Nasal Hydrogel System for Brain Delivery of Sumatriptan Succinate. Assay Drug Dev Technol 2023; 21:3-16. [PMID: 36576871 DOI: 10.1089/adt.2022.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Drug absorption is improved by the intranasal route's wide surface area and avoidance of first-pass metabolism. For the treatment of central nervous system diseases such as migraine, intranasal administration delivers the medication to the brain. The study's purpose was to develop an in situ nasal hydrogel that contained liposomes that were loaded with sumatriptan succinate (SS). A thin-film hydration approach was used to create liposomes, and a 32 factorial design was used to optimize them. The optimized liposomes had a spherical shape, a 171.31 nm particle size, a high drug encapsulation efficiency of 83.54%, and an 8-h drug release of 86.11%. To achieve in situ gel formation, SS-loaded liposomes were added to the liquid gelling system of poloxamer-407, poloxamer-188, and sodium alginate. The final product was tested for mucoadhesive strength, viscosity, drug content, gelation temperature, and gelation time. Following intranasal delivery, in vivo pharmacokinetic investigations showed a significant therapeutic concentration of the medication in the brain with a Cmax value of 167 ± 78 ng/mL and an area under the curve value of 502 ± 63 ng/min·mL. For SS-loaded liposomal thermosensitive nasal hydrogel, significantly higher values of the nose-to-brain targeting parameters, that is, drug targeting index (2.61) and nose-to-brain drug direct transport (57.01%), confirmed drug targeting to the brain through the nasal route. Liposomes containing thermosensitive in situ hydrogel demonstrated potential for intranasal administration of SS.
Collapse
Affiliation(s)
- Dyandevi Mathure
- Bharati Vidyappeth's Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Ashish Dilip Sutar
- Department of Pharmaceutics, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, India
| | | | - Atmaram Pawar
- Bharati Vidyappeth's Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, University of Petroleum and Energy Studies (UPES), Dehradun, India
| |
Collapse
|
12
|
Alberto M, Paiva-Santos AC, Veiga F, Pires PC. Lipid and Polymeric Nanoparticles: Successful Strategies for Nose-to-Brain Drug Delivery in the Treatment of Depression and Anxiety Disorders. Pharmaceutics 2022; 14:pharmaceutics14122742. [PMID: 36559236 PMCID: PMC9783528 DOI: 10.3390/pharmaceutics14122742] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Intranasal administration has gained an increasing interest for brain drug delivery since it allows direct transport through neuronal pathways, which can be quite advantageous for central nervous system disorders, such as depression and anxiety. Nanoparticles have been studied as possible alternatives to conventional formulations, with the objective of improving drug bioavailability. The present work aimed to analyze the potential of intranasal nanoparticle administration for the treatment of depression and anxiety, using the analysis of several studies already performed. From the carried-out analysis, it was concluded that the use of nanoparticles allows the drug's protection from enzymatic degradation, and the modulation of its components allows controlled drug release and enhanced drug permeation. Furthermore, the results of in vivo studies further verified these systems' potential, with the drug reaching the brain faster and leading to increased bioavailability and, consequently, therapeutic effect. Hence, in general, the intranasal administration of nanoparticles leads to a faster onset of action, with increased and prolonged brain drug concentrations and, consequently, therapeutic effects, presenting high potential as an alternative to the currently available therapies for the treatment of depression and anxiety.
Collapse
Affiliation(s)
- Margarida Alberto
- Faculty of Pharmacy, University of Coimbra (FFUC), Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, University of Coimbra (FFUC), Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Rede de Química e Tecnologia/Laboratório Associado para a Química Verde (REQUIMTE/LAQV), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: (A.C.P.-S.); (P.C.P.)
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra (FFUC), Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Rede de Química e Tecnologia/Laboratório Associado para a Química Verde (REQUIMTE/LAQV), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Faculty of Pharmacy, University of Coimbra (FFUC), Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Rede de Química e Tecnologia/Laboratório Associado para a Química Verde (REQUIMTE/LAQV), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Health Sciences Research Centre, University of Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: (A.C.P.-S.); (P.C.P.)
| |
Collapse
|
13
|
Hathout RM, El-Marakby EM. Meta-Analysis: A Convenient Tool for the Choice of Nose-to-Brain Nanocarriers. Bioengineering (Basel) 2022; 9:647. [PMID: 36354558 PMCID: PMC9687115 DOI: 10.3390/bioengineering9110647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 08/30/2023] Open
Abstract
OBJECTIVES The intranasal route represents a high promising route of administration aiming for brain delivery. Yet, it represents one of the most difficult and complicated routes. Accordingly, scientists are in a continuous search for novel drug delivery vehicles such as the lipid and polymeric nanoparticles that are apt to enhance the bioavailability of the administered drugs to reach the brain. In this study, a certain number of publications were selected from different databases and literature. Meta-analysis studies using two different algorithms (DerSimonian-Laird and inverse variance) followed aiming to explore the published studies and confirm by evidence the superiority of nanocarriers in enhancing the brain bioavailability of various drugs. Furthermore, the quantitative comparison of lipid versus polymeric nanosystems was performed. METHODS The area under the curve (AUC) as an important pharmacokinetic parameter extracted from in vivo animal studies was designated as the "effect" in the performed meta-analysis after normalization. Forest plots were generated. KEY FINDINGS AND CONCLUSIONS The meta-analysis confirmed the augmentation of the AUC after the comparison with traditional preparations such as solutions and suspensions. Most importantly, lipid nanoparticles were proven to be significantly superior to the polymeric counterparts.
Collapse
Affiliation(s)
- Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo 11566, Egypt
| | | |
Collapse
|
14
|
Ingle PU, Shende SS, Shingote PR, Mishra SS, Sarda V, Wasule DL, Rajput VD, Minkina T, Rai M, Sushkova S, Mandzhieva S, Gade A. Chitosan nanoparticles (ChNPs): A versatile growth promoter in modern agricultural production. Heliyon 2022; 8:e11893. [DOI: 10.1016/j.heliyon.2022.e11893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/20/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
|
15
|
Awad R, Avital A, Sosnik A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharm Sin B 2022; 13:1866-1886. [DOI: 10.1016/j.apsb.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/01/2022] Open
|
16
|
Crowe TP, Hsu WH. Evaluation of Recent Intranasal Drug Delivery Systems to the Central Nervous System. Pharmaceutics 2022; 14:629. [PMID: 35336004 PMCID: PMC8950509 DOI: 10.3390/pharmaceutics14030629] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Neurological diseases continue to increase in prevalence worldwide. Combined with the lack of modifiable risk factors or strongly efficacious therapies, these disorders pose a significant and growing burden on healthcare systems and societies. The development of neuroprotective or curative therapies is limited by a variety of factors, but none more than the highly selective blood-brain barrier. Intranasal administration can bypass this barrier completely and allow direct access to brain tissues, enabling a large number of potential new therapies ranging from bioactive peptides to stem cells. Current research indicates that merely administering simple solutions is inefficient and may limit therapeutic success. While many therapies can be delivered to some degree without carrier molecules or significant modification, a growing body of research has indicated several methods of improving the safety and efficacy of this administration route, such as nasal permeability enhancers, gelling agents, or nanocarrier formulations. This review shall discuss promising delivery systems and their role in expanding the clinical efficacy of this novel administration route. Optimization of intranasal administration will be crucial as novel therapies continue to be studied in clinical trials and approved to meet the growing demand for the treatment of patients with neurological diseases.
Collapse
Affiliation(s)
- Tyler P. Crowe
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Walter H. Hsu
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
17
|
Hock N, Racaniello GF, Aspinall S, Denora N, Khutoryanskiy VV, Bernkop‐Schnürch A. Thiolated Nanoparticles for Biomedical Applications: Mimicking the Workhorses of Our Body. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102451. [PMID: 34773391 PMCID: PMC8728822 DOI: 10.1002/advs.202102451] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/13/2021] [Indexed: 05/03/2023]
Abstract
Advances in nanotechnology have generated a broad range of nanoparticles (NPs) for numerous biomedical applications. Among the various properties of NPs are functionalities being related to thiol substructures. Numerous biological processes that are mediated by cysteine or cystine subunits of proteins representing the workhorses of the bodies can be transferred to NPs. This review focuses on the interface between thiol chemistry and NPs. Pros and cons of different techniques for thiolation of NPs are discussed. Furthermore, the various functionalities gained by thiolation are highlighted. These include overall bio- and mucoadhesive, cellular uptake enhancing, and permeation enhancing properties. Drugs being either covalently attached to thiolated NPs via disulfide bonds or being entrapped in thiolated polymeric NPs that are stabilized via inter- and intrachain crosslinking can be released at the diseased tissue or in target cells under reducing conditions. Moreover, drugs, targeting ligands, biological analytes, and enzymes bearing thiol substructures can be immobilized on noble metal NPs and quantum dots for therapeutic, theranostic, diagnostic, biosensing, and analytical reasons. Within this review a concise summary and analysis of the current knowledge, future directions, and potential clinical use of thiolated NPs are provided.
Collapse
Affiliation(s)
- Nathalie Hock
- Thiomatrix Forschungs und Beratungs GmbHTrientlgasse 65Innsbruck6020Austria
| | | | - Sam Aspinall
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Nunzio Denora
- Department of Pharmacy – Pharmaceutical SciencesUniversity of Bari “Aldo Moro”Bari70125Italy
| | - Vitaliy V. Khutoryanskiy
- Reading School of PharmacyUniversity of ReadingWhiteknights PO Box 224, Room 122 (Chemistry and Pharmacy Building)ReadingRG66DXUK
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology, Institute of PharmacyUniversity of InnsbruckInnrain 80/82Innsbruck6020Austria
| |
Collapse
|
18
|
Intranasal delivery of chitosan decorated nanostructured lipid carriers of Buspirone for brain targeting: Formulation development, optimization and In-Vivo preclinical evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Fabrication of a dual-response intelligent antibacterial nanofiber and its application in beef preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Garg Y, Kapoor DN, Sharma AK, Bhatia A. Drug Delivery Systems and Strategies to Overcome the Barriers of Brain. Curr Pharm Des 2021; 28:619-641. [PMID: 34951356 DOI: 10.2174/1381612828666211222163025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
The transport of drugs to the central nervous system is the most challenging task for conventional drug delivery systems. Reduced permeability of drugs through the blood-brain barrier is a major hurdle in delivering drugs to the brain. Hence, various strategies for improving drug delivery through the blood-brain barrier are currently being explored. Novel drug delivery systems (NDDS) offer several advantages, including high chemical and biological stability, suitability for both hydrophobic and hydrophilic drugs, and can be administered through different routes. Furthermore, the conjugation of suitable ligands with these carriers tend to potentiate targeting to the endothelium of the brain and could facilitate the internalization of drugs through endocytosis. Further, the intranasal route has also shown potential, as a promising alternate route, for the delivery of drugs to the brain. This can deliver the drugs directly to the brain through the olfactory pathway. In recent years, several advancements have been made to target and overcome the barriers of the brain. This article deals with a detailed overview of the diverse strategies and delivery systems to overcome the barriers of the brain for effective delivery of drugs.
Collapse
Affiliation(s)
- Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, Pin. 151001. India
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, Pin. 173229. India
| | - Abhishek Kumar Sharma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, Pin. 173229. India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, Pin. 151001. India
| |
Collapse
|
21
|
Lee D, Minko T. Nanotherapeutics for Nose-to-Brain Drug Delivery: An Approach to Bypass the Blood Brain Barrier. Pharmaceutics 2021; 13:2049. [PMID: 34959331 PMCID: PMC8704573 DOI: 10.3390/pharmaceutics13122049] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 02/01/2023] Open
Abstract
Treatment of neurodegenerative diseases or other central nervous system (CNS) disorders has always been a significant challenge. The nature of the blood-brain barrier (BBB) limits the penetration of therapeutic molecules to the brain after oral or parenteral administration, which, in combination with hepatic metabolism and drug elimination and inactivation during its journey in the systemic circulation, decreases the efficacy of the treatment, requires high drug doses and often induces adverse side effects. Nose-to-brain drug delivery allows the direct transport of therapeutic molecules by bypassing the BBB and increases drug concentration in the brain. The present review describes mechanisms of nose-to-brain drug delivery and discusses recent advances in this area with especial emphasis on nanotechnology-based approaches.
Collapse
Affiliation(s)
- David Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
- Environmental and Occupational Health Science Institute, Rutgers, The State University of New Jersey, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
22
|
Wu M, Guo C, Guo N, Zhang T, Wang Y, Wang Y, Lin X, Wu F, Feng Y. Similarity Evaluation on the Compound TCM Formulation "Huoling Shengji Granule" and Its Placebo by Intelligent Sensory Evaluation Technologies and the Human Sensory Evaluation Method Based on Critical Quality Attributes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6637326. [PMID: 33936240 PMCID: PMC8062196 DOI: 10.1155/2021/6637326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022]
Abstract
To evaluate the similarity of Huoling Shengji granule (HLG) and its placebo at both granules and solution status, the innovative methods that consist of intelligent sensory evaluation technologies and human sensory evaluation methods were developed based on critical quality attributes (CQAs) of granule. The CQAs for traditional Chinese medicine (TCM) placebo granule were mainly divided into three categories: formulation attributes, visual attributes, and attributes of taste and smell. In this investigation, the novel intelligent sensory evaluation technologies including the physical property testing apparatus, computer vision system, color card, and electronic tongue (E-tongue) were employed for characterization of CQAs of HLG and its placebo. Meanwhile, human sensory evaluation by test panels was used to description the HLG and its placebo in terms of appearance, color, taste, and smell. On that basis, the similarity of placebo to CQAs of HLG was assessed by calculating the angle cosine values. The intelligent and human sensory evaluation results showed that the similarity values of HLG and its placebo about the CQAs at granule and solution status were all close to 1, which means that the two preparations have high similarities. In this study, the established similarity evaluation methods based on the CQAs were convenient and reliable, which can be utilized to evaluate the similarity of TCM granule and their placebo at granule and solution status, and demonstrated to be well applied in placebo-controlled trials.
Collapse
Affiliation(s)
- Mei Wu
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengjie Guo
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Guo
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianyi Zhang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Youjie Wang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Wang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Recent updates in the polysaccharides-based Nano-biocarriers for drugs delivery and its application in diseases treatment: A review. Int J Biol Macromol 2021; 182:115-128. [PMID: 33836188 DOI: 10.1016/j.ijbiomac.2021.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 01/02/2023]
Abstract
With people's increasing awareness of diseases treatment, the researchers began to focus on drug delivery to the exact site of action at the optimal rate. Some researchers have proved that many nanostructures loaded with drugs are significantly better than conventional nanostructures. However, the materials from which the nanostructure determines its performance. To use it as a pharmaceutical ingredient, it must meet strict safety regulatory standards worldwide. Therefore, people's attention has paid to easily available natural substances. As far as we know, bioactive polysaccharides are excellent candidates for realizing these purposes. To be precise, due to the natural availability of polysaccharides, it has been widely used in the research of Nano-biocarriers loaded with drugs. Based on the above analysis, the nanomaterials developed through the laboratory have great potential for upgrading to market products. Therefore, it is of great significance to review the latest progress of polysaccharide-based Nano-biocarriers in drug delivery and their application in diseases treatment. In this work, we focused on the preparation of polysaccharides-based Nano-biocarriers, commonly used polysaccharides for preparing Nano-biocarriers, and drugs loaded on polysaccharides-based Nano-biocarriers to treat diseases. Shortly, polysaccharide-based Nano-biocarriers will be increasingly used in drug delivery and treatment of diseases.
Collapse
|
24
|
Buspirone loaded solid lipid nanoparticles for amplification of nose to brain efficacy: Formulation development, optimization by Box-Behnken design, in-vitro characterization and in-vivo biological evaluation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Zorkina Y, Abramova O, Ushakova V, Morozova A, Zubkov E, Valikhov M, Melnikov P, Majouga A, Chekhonin V. Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. Molecules 2020; 25:E5294. [PMID: 33202839 PMCID: PMC7697162 DOI: 10.3390/molecules25225294] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Neuropsychiatric diseases are one of the main causes of disability, affecting millions of people. Various drugs are used for its treatment, although no effective therapy has been found yet. The blood brain barrier (BBB) significantly complicates drugs delivery to the target cells in the brain tissues. One of the problem-solving methods is the usage of nanocontainer systems. In this review we summarized the data about nanoparticles drug delivery systems and their application for the treatment of neuropsychiatric disorders. Firstly, we described and characterized types of nanocarriers: inorganic nanoparticles, polymeric and lipid nanocarriers, their advantages and disadvantages. We discussed ways to interact with nerve tissue and methods of BBB penetration. We provided a summary of nanotechnology-based pharmacotherapy of schizophrenia, bipolar disorder, depression, anxiety disorder and Alzheimer's disease, where development of nanocontainer drugs derives the most active. We described various experimental drugs for the treatment of Alzheimer's disease that include vector nanocontainers targeted on β-amyloid or tau-protein. Integrally, nanoparticles can substantially improve the drug delivery as its implication can increase BBB permeability, the pharmacodynamics and bioavailability of applied drugs. Thus, nanotechnology is anticipated to overcome the limitations of existing pharmacotherapy of psychiatric disorders and to effectively combine various treatment modalities in that direction.
Collapse
Affiliation(s)
- Yana Zorkina
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Abramova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Valeriya Ushakova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Department of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anna Morozova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Eugene Zubkov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Marat Valikhov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Pavel Melnikov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Alexander Majouga
- D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Vladimir Chekhonin
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
26
|
Tailoring Midazolam-Loaded Chitosan Nanoparticulate Formulation for Enhanced Brain Delivery via Intranasal Route. Polymers (Basel) 2020; 12:polym12112589. [PMID: 33158148 PMCID: PMC7694235 DOI: 10.3390/polym12112589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 01/04/2023] Open
Abstract
In the present study, midazolam (MDZ)-loaded chitosan nanoparticle formulation was investigated for enhanced transport to the brain through the intranasal (IN) route. These days, IN MDZ is very much in demand for treating life-threatening seizure emergencies; therefore, its nanoparticle formulation was formulated in the present work because it could substantially improve its brain targeting via the IN route. MDZ-loaded chitosan nanoparticles (MDZ-CSNPs) were formulated and optimized by the ionic gelation method and then evaluated for particle size, particle size distribution (PDI), drug loading (DL), encapsulation efficiency (EE), and in vitro release as well as in vitro permeation. The concentration of MDZ in the brain after the intranasal administration of MDZ-CSNPs (Cmax 423.41 ± 10.23 ng/mL, tmax 2 h, and area under the curve from 0 to 480 min (AUC0-480) of 1920.87 ng.min/mL) was found to be comparatively higher to that achieved following intravenous (IV) administration of MDZ solution (Cmax 245.44 ± 12.83 ng/mL, tmax 1 h, and AUC0-480 1208.94 ng.min/mL) and IN administration of MDZ solution (Cmax 211.67 ± 12.82, tmax 2 h, and AUC0-480 1036.78 ng.min/mL). The brain–blood ratio of MDZ-CSNPs (IN) were significantly greater at all sampling time points when compared to that of MDZ solution (IV) and MDZ (IN), which indicate that direct nose-to-brain delivery by bypassing the blood–brain barrier demonstrates superiority in brain delivery. The drug-targeting efficiency (DTE%) as well as nose-to-brain direct transport percentage (DTP%) of MDZ-CSNPs (IN) was found to be comparatively higher than that for other formulations, suggesting better brain targeting potential. Thus, the obtained results demonstrated that IN MDZ-CSNP has come up as a promising approach, which exhibits tremendous potential to mark a new landscape for the treatment of status epilepticus.
Collapse
|
27
|
Shringarpure M, Gharat S, Momin M, Omri A. Management of epileptic disorders using nanotechnology-based strategies for nose-to-brain drug delivery. Expert Opin Drug Deliv 2020; 18:169-185. [PMID: 32921169 DOI: 10.1080/17425247.2021.1823965] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Epilepsy, a major neurological disorder affects about 1% of the Indian population. The discovery of noninvasive strategies for epilepsy presents a challenge for the scientists. Different types of nose-to-brain dosage-forms have been studied for epilepsy management. It aims to give new perspectives for developing new and existing anti-epileptic drugs. Combining nanotechnology with nose-to-brain approach can help in promoting the treatment efficacy by site-specific delivery. Also, it will minimize the side-effects and patient noncompliance observed in conventional administration routes. Peptide delivery can be an interesting approach for the management of epilepsy. Drug-loaded intranasal nanoformulations exhibit diverse prospective potentials in the management of epilepsy. Considering that, nanotherapy using nose-to-brain delivery as a prospective technique for the efficient management of epilepsy is reviewed. AREAS COVERED The authors have compiled all recently available data pertaining to the nose-to-brain delivery of therapeutics using nanotechnological strategies. The fundamental mechanism of nose-to-brain delivery, claims for intranasal delivery and medical devices for epilepsy are discussed. EXPERT OPINION Drug-loaded intranasal nanoformulations exhibit different prospective potentials in the management of epilepsy. Considering the foregoing research done in the field of nanotechnology, globally, authors propose nose-to-brain delivery of nanoformulations as a potential technique for the efficient management of epilepsy.
Collapse
Affiliation(s)
- Mihika Shringarpure
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India.,SVKM's Shri C B Patel Research Center for Chemistry and Biological Sciences, Mumbai, Maharashtra, India
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
28
|
Zameer S, Ali J, Vohora D, Najmi AK, Akhtar M. Development, optimisation and evaluation of chitosan nanoparticles of alendronate against Alzheimer's disease in intracerebroventricular streptozotocin model for brain delivery. J Drug Target 2020; 29:199-216. [PMID: 32876502 DOI: 10.1080/1061186x.2020.1817041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The current study aimed to develop alendronate (ALN)-loaded chitosan nanoparticles (CS-ALN-NPs) for brain delivery via intranasal route. These CS-ALN-NPs reduced the peripheral side effects and released ALN directly to brain. These NPs were formulated through ionic gelation technique by mixing sodium tripolyphosphate (1.5 mg/ml) in ALN-CS (1.75 mg/ml) solution. CS-ALN-NPs attained 135.75 ± 5.80 nm, 0.21 ± 0.013, 23.8 ± 3.69 mV, 72.46 ± 0.879% and 30.92 ± 0.375% mean particle size, PDI, zeta potential, entrapment efficiency and loading capacity, respectively. Furthermore, the TEM and SEM analysis of CS-ALN-NPs, respectively, revealed the particle size in 200 nm range and spherical shape. The in vitro and ex vivo release profile revealed a sustained drug release through CS-ALN-NPs as compared to pure drug solution. Also these NPs acquired a high concentration in mice brain and better pharmacokinetic profile than ALN solution (intranasal) CS-ALN-NPs were then evaluated against intracerebroventricular-streptozotocin (ICV-STZ) induced Alzheimer's disease (AD)-like pathologies in mice. The intranasal CS-ALN-NP altered the ICV-STZ induced neurobehavioral, neurochemical and histopathological changes in mice. These effects were significant to those of ALN solution (intranasal). The neuroprotective potential of CS-ALN-NPs observed in ICV-STZ mice model of AD may be a promising brain-targeted delivery system for AD treatment along with further extensive exploration at both pre-clinical and clinical edge. HIGHLIGHTS CS-ALN-NPs were developed and optimised to overcome the poor pharmacokinetic profile and associated side effects of ALN CS-ALN-NPs showed particle size within 200 nm range as well as controlled and sustained release in in vitro release study These optimised NPs of ALN attained higher brain:blood ratio and better pharmacokinetic profile (Cmax, tmax, AUC) CS-ALN-NPs markedly altered ICV STZ induced impairment in cognitive functions of mice and changes in APP processing, neuroinflammatory cytokines and other biochemical parameters in mice hippocampus.
Collapse
Affiliation(s)
- Saima Zameer
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
29
|
Ojeda-Hernández DD, Canales-Aguirre AA, Matias-Guiu J, Gomez-Pinedo U, Mateos-Díaz JC. Potential of Chitosan and Its Derivatives for Biomedical Applications in the Central Nervous System. Front Bioeng Biotechnol 2020; 8:389. [PMID: 32432095 PMCID: PMC7214799 DOI: 10.3389/fbioe.2020.00389] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
It is well known that the central nervous system (CNS) has a limited regenerative capacity and that many therapeutic molecules cannot cross the blood brain barrier (BBB). The use of biomaterials has emerged as an alternative to overcome these limitations. For many years, biomedical applications of chitosan have been studied due to its remarkable biological properties, biocompatibility, and high versatility. Moreover, the interest in this biomaterial for CNS biomedical implementation has increased because of its ability to cross the BBB, mucoadhesiveness, and hydrogel formation capacity. Several chitosan-based biomaterials have been applied with promising results as drug, cell and gene delivery vehicles. Moreover, their capacity to form porous scaffolds and to bear cells and biomolecules has offered a way to achieve neural regeneration. Therefore, this review aims to bring together recent works that highlight the potential of chitosan and its derivatives as adequate biomaterials for applications directed toward the CNS. First, an overview of chitosan and its derivatives is provided with an emphasis on the properties that favor different applications. Second, a compilation of works that employ chitosan-based biomaterials for drug delivery, gene therapy, tissue engineering, and regenerative medicine in the CNS is presented. Finally, the most interesting trends and future perspectives of chitosan and its derivatives applications in the CNS are shown.
Collapse
Affiliation(s)
- Doddy Denise Ojeda-Hernández
- Biotecnología Industrial, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | - Alejandro A Canales-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Jorge Matias-Guiu
- Servicio de Neurología, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Ulises Gomez-Pinedo
- Servicio de Neurología, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Juan C Mateos-Díaz
- Biotecnología Industrial, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| |
Collapse
|
30
|
|
31
|
Pacheco C, Sousa F, Sarmento B. Chitosan-based nanomedicine for brain delivery: Where are we heading? REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Sarma A, Das MK. Nose to brain delivery of antiretroviral drugs in the treatment of neuroAIDS. MOLECULAR BIOMEDICINE 2020; 1:15. [PMID: 34765998 PMCID: PMC7725542 DOI: 10.1186/s43556-020-00019-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
NeuroAIDS (Neuro Acquired Immunodeficiency Syndrome) or HIV (Human Immunodeficiency Virus) associated neuronal abnormality is continuing to be a significant health issue among AIDS patients even under the treatment of combined antiretroviral therapy (cART). Injury and damage to neurons of the brain are the prime causes of neuroAIDS, which happens due to the ingress of HIV by direct permeation across the blood-brain barrier (BBB) or else via peripherally infected macrophage into the central nervous system (CNS). The BBB performs as a stringent barricade for the delivery of therapeutics drugs. The intranasal route of drug administration exhibits as a non-invasive technique to bypass the BBB for the delivery of antiretroviral drugs and other active pharmaceutical ingredients inside the brain and CNS. This method is fruitful for the drugs that are unable to invade the BBB to show its action in the CNS and thus erase the demand of systemic delivery and thereby shrink systemic side effects. Drug delivery from the nose to the brain/CNS takes very less time through both olfactory and trigeminal nerves. Intranasal delivery does not require the involvement of any receptor as it occurs by an extracellular route. Nose to brain delivery also involves nasal associated lymphatic tissues (NALT) and deep cervical lymph nodes. However, very little research has been done to explore the utility of nose to brain delivery of antiretroviral drugs in the treatment of neuroAIDS. This review focuses on the potential of nasal route for the effective delivery of antiretroviral nanoformulations directly from nose to the brain.
Collapse
Affiliation(s)
- Anupam Sarma
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India.,Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026 India
| | - Malay K Das
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
33
|
Cayero-Otero MD, Gomes MJ, Martins C, Álvarez-Fuentes J, Fernández-Arévalo M, Sarmento B, Martín-Banderas L. In vivo biodistribution of venlafaxine-PLGA nanoparticles for brain delivery: plain vs. functionalized nanoparticles. Expert Opin Drug Deliv 2019; 16:1413-1427. [PMID: 31694417 DOI: 10.1080/17425247.2019.1690452] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Actually, no drugs provide therapeutic benefit to approximately one-third of depressed patients. Depression is predicted to become the first global disease by 2030. So, new therapeutic interventions are imperative.Research design and methods: Venlafaxine-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) were surface functionalized with two ligands against transferrin receptor to enhance access to brain. An in vitro blood-brain barrier model using hCMEC/D3 cell line was developed to evaluate permeability. In vivo biodistribution studies were performed using C57/bl6 mice. Particles were administered intranasal and main organs were analyzed.Results: Particles were obtained as a lyophilized powder easily to re-suspend. Internalization and permeability studies showed the following cell association sequence: TfRp-NPs>Tf-NPs>plain NPs. Permeability studies also showed that encapsulated VLF was not affected by P-gP pump efflux increasing its concentration in the basolateral side after 24 h. In vivo studies showed that 25% of plain NPs reach the brain after 30 min of one intranasal administration while less than 5% of functionalized NPs get the target.Conclusions: Plain NPs showed the highest ability to reach the brain vs. functionalized NPs after 30 min by intranasal administration. We suggest plain NPs probably travel via direct nose-to-brian route whereas functionalized NPs reach the brain by receptor-mediated endocytosis.
Collapse
Affiliation(s)
- M D Cayero-Otero
- Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Sevilla, Sevilla, Spain
| | - Maria João Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - J Álvarez-Fuentes
- Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Sevilla, Sevilla, Spain
| | - M Fernández-Arévalo
- Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Sevilla, Sevilla, Spain
| | - B Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal
| | - L Martín-Banderas
- Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
34
|
Targeted Transport as a Promising Method of Drug Delivery to the Central Nervous System (Review). Pharm Chem J 2019. [DOI: 10.1007/s11094-019-02088-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Rehman S, Nabi B, Zafar A, Baboota S, Ali J. Intranasal delivery of mucoadhesive nanocarriers: a viable option for Parkinson's disease treatment? Expert Opin Drug Deliv 2019; 16:1355-1366. [PMID: 31663382 DOI: 10.1080/17425247.2019.1684895] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Intranasal drug delivery is a largely unexplored, promising approach for the treatment of various neurological disorders. However, due to the challenging constraints available in the pathway of nose-to-brain delivery, finding an effective treatment for Parkinsonism is still an impending mission for research workers. This warrants development of novel treatment alternatives for Parkinson's disease (PD). Intranasal delivery of mucoadhesive nanocarriers is one such novel approach which might help in curbing the glitches associated with the currently available therapy.Areas covered: This review summarizes the evidences supporting nose-to-brain delivery of polymer-based mucoadhesive nanocarriers for the treatment of PD. A concise insight into the lipid-based mucoadhesive nanocarriers has also been presented. The recent researches have been compiled pertaining to the use of mucoadhesive nanocarrriers for improving the treatment outcomes of PD via intranasal drug delivery.Expert opinion: Although the use of nanocarrier-based strategies for site-specific delivery via intranasal route has proven effective, the magnitude of improvement remains moderate resulting in limited translation from industry to the market. Comprehensive understanding of the mucoadhesive polymer, its characteristics and mechanisms involved for an effective nose-to-brain uptake of the drug is a promising avenue to develop novel formulations for effective management of Parkinson disease.
Collapse
Affiliation(s)
- Saleha Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Kingdom of Saudi Arabia (KSA)
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
36
|
Piazzini V, Landucci E, D'Ambrosio M, Tiozzo Fasiolo L, Cinci L, Colombo G, Pellegrini-Giampietro DE, Bilia AR, Luceri C, Bergonzi MC. Chitosan coated human serum albumin nanoparticles: A promising strategy for nose-to-brain drug delivery. Int J Biol Macromol 2019; 129:267-280. [PMID: 30726749 DOI: 10.1016/j.ijbiomac.2019.02.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 12/29/2022]
Abstract
The aim of the present study was the development of human serum albumin nanoparticles (HSA NPs) as nose-to-brain carrier. To strengthen, the efficacy of nanoparticles as drug delivery system, the influence of chitosan (CS) coating on the performance of HSA NPs was investigated for nasal application. HSA NPs were prepared by desolvation technique. CS coating was obtained adding the CS solution to HSA NPs. The mean particle sizes was 241 ± 18 nm and 261 ± 8 nm and the ζ-potential was -47 ± 3 mV and + 45 ± 1 mV for HSA NPs and CS-HSA NPs, respectively. The optimized formulations showed excellent stability upon storage both as suspension and as freeze-dried product after 3 months. The mucoadhesion properties were assessed by turbidimetric and indirect method. NPs were loaded with sulforhodamine B sodium salt as model drug and the effect of CS coating was investigated performing release studies, permeation and uptake experiments using Caco-2 and hCMEC/D3 cells as model of the nasal epithelium and blood-brain barrier, respectively. Furthermore, ex vivo diffusion experiments have been carried out using rabbit nasal mucosa. Finally, the ability of the formulations to reversibly open tight and gap junctions was explored by western blotting and RT-PCR analyzing in both Caco-2 and hCMEC/D3 cells.
Collapse
Affiliation(s)
- Vieri Piazzini
- Department of Chemistry, via U. Schiff 6, 50519, Sesto Fiorentino, Florence, Italy
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, Viale Pieraccini 6, 50139 Florence, Italy
| | - Mario D'Ambrosio
- Department of NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, Viale Pieraccini 6, 50139 Florence, Italy
| | - Laura Tiozzo Fasiolo
- Department of Food and Drug, via delle Scienze 27/A, 43124 Parma, Italy; Department of Life Sciences and Biotechnology, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Lorenzo Cinci
- Department of NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, Viale Pieraccini 6, 50139 Florence, Italy
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | | | - Anna Rita Bilia
- Department of Chemistry, via U. Schiff 6, 50519, Sesto Fiorentino, Florence, Italy
| | - Cristina Luceri
- Department of NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, Viale Pieraccini 6, 50139 Florence, Italy
| | | |
Collapse
|
37
|
Gänger S, Schindowski K. Tailoring Formulations for Intranasal Nose-to-Brain Delivery: A Review on Architecture, Physico-Chemical Characteristics and Mucociliary Clearance of the Nasal Olfactory Mucosa. Pharmaceutics 2018; 10:pharmaceutics10030116. [PMID: 30081536 PMCID: PMC6161189 DOI: 10.3390/pharmaceutics10030116] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 12/17/2022] Open
Abstract
The blood-brain barrier and the blood-cerebrospinal fluid barrier are major obstacles in central nervous system (CNS) drug delivery, since they block most molecules from entering the brain. Alternative drug delivery routes like intraparenchymal or intrathecal are invasive methods with a remaining risk of infections. In contrast, nose-to-brain delivery is a minimally invasive drug administration pathway, which bypasses the blood-brain barrier as the drug is directed from the nasal cavity to the brain. In particular, the skull base located at the roof of the nasal cavity is in close vicinity to the CNS. This area is covered with olfactory mucosa. To design and tailor suitable formulations for nose-to-brain drug delivery, the architecture, structure and physico-chemical characteristics of the mucosa are important criteria. Hence, here we review the state-of-the-art knowledge about the characteristics of the nasal and, in particular, the olfactory mucosa needed for a rational design of intranasal formulations and dosage forms. Also, the information is suitable for the development of systemic or local intranasal drug delivery as well as for intranasal vaccinations.
Collapse
Affiliation(s)
- Stella Gänger
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany.
- Faculty of Medicine, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany.
| |
Collapse
|
38
|
Feng Y, He H, Li F, Lu Y, Qi J, Wu W. An update on the role of nanovehicles in nose-to-brain drug delivery. Drug Discov Today 2018; 23:1079-1088. [PMID: 29330120 DOI: 10.1016/j.drudis.2018.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/16/2017] [Accepted: 01/04/2018] [Indexed: 12/28/2022]
Abstract
A quantitative analysis has cast doubt over the limited advantages provided by particles for nose-to-brain (NTB) drug delivery. Thus, it is imperative to identify the role of nanovehicles in NTB drug delivery. If nanocarriers are used merely as an option to improve various properties of the drugs or the formulations, it is difficult for them to outperform conventional formulations, such as solutions or gels. However, nanovehicles bring about special features, such as maintenance of the solubilized state of drugs, sustained or delayed release, and enhanced penetration because of surface modifications, all of which lead to enhanced NTB delivery efficiency.
Collapse
Affiliation(s)
- Yunhai Feng
- Department of Otorhinolaryngology Head & Neck Surgery, Dahua Hospital, Shanghai, China
| | - Haisheng He
- Key Laboratory of Smart Drug Delivery of MOE and PLA, School of Pharmacy, Fudan University, Shanghai, China
| | - Fengqian Li
- Department of Otorhinolaryngology Head & Neck Surgery, Dahua Hospital, Shanghai, China
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE and PLA, School of Pharmacy, Fudan University, Shanghai, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE and PLA, School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE and PLA, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Pires PC, Santos AO. Nanosystems in nose-to-brain drug delivery: A review of non-clinical brain targeting studies. J Control Release 2017; 270:89-100. [PMID: 29199063 DOI: 10.1016/j.jconrel.2017.11.047] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022]
Abstract
The treatment of neurodegenerative and psychiatric disorders remains a challenge in medical research. Several strategies have been developed over the years, either to overcome the blood-brain barrier or to achieve a safer or faster brain delivery, one of them being intranasal (IN) administration. The possibility of direct nose-to-brain transport offers enhanced targeting and reduced systemic side effects. Nevertheless, labile, low soluble, low permeant and/or less potent drugs might need a formulation other than the common solutions or suspensions. For that, the formulation of nanosystems is considered to be a promising approach, since it can protect drugs from chemical and/or metabolic degradation, enhance their solubility, or offer transport through biological membranes. However, the understanding of the factors promoting efficient brain targeting when using nanosystems through the nasal route is currently patchy and incomplete. The main purpose of the present review was to evaluate the association between brain delivery efficacy (in terms of brain targeting, brain bioavailability and time to reach the brain) and nanosystem type. For that, we performed a systematic bibliographic search and analysis. Furthermore, study designs, nanosystem properties, and reporting quality were also analyzed and discussed. It was found a high heterogeneity in how pre-clinical brain targeting studies have been conducted, analyzed and reported in scientific literature, which surely originates a significant degree of bias and data dispersion. This review attempts to provide some systematization recommendations, which may be useful for researchers entering the field, and assist in increasing the uniformity of future reports. The analysis of literature data confirmed that there is evidence of the advantage of the IN route (when compared to the intravenous route) and in using carrier nanosystems (when compared to IN solutions) for brain delivery of a large set of drugs. Among the most represented nanosystem classes, microemulsions had some of the lowest pharmacokinetic ratios values, while polymeric micelles had some of the best. Nevertheless, brain targeting efficacy comparisons between nanosystem groups had little statistical significance, and the superiority of the polymeric micelles group disappeared when nanosystems were compared to the respective IN drug solutions. In fact, some drugs reached the brain so efficiently, even as drug solutions, that further benefit from formulating them into nanosystems became less evident.
Collapse
Affiliation(s)
- Patrícia C Pires
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Adriana O Santos
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
40
|
Fernández K, Roeckel M, Canales E, Dumont J. Modeling of the Nanoparticles Absorption Under a Gastrointestinal Simulated Ambient Condition. AAPS PharmSciTech 2017; 18:2691-2701. [PMID: 28283930 DOI: 10.1208/s12249-017-0751-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/22/2017] [Indexed: 12/27/2022] Open
Abstract
Proanthocyanidins (PAs) have several bioactivities, but they are unstable in the digestive tract and possess low bioavailability. Nanoencapsulation stabilizes these compounds for oral administration. The intestinal absorption of grape seed and skin extracts, and the poly-lactic acid (PLA) nanoparticles loaded with such extracts was modeled, taking into consideration physicochemical process parameters, evaluating the PAs concentration profile in the human small intestine. Density (ρ), solubility, viscosity (μ), diffusion coefficient (D), and the global mass transfer coefficient (K) for both substrates were estimated, simulating their passing from the intestine into the blood at 37°C. For the seed and skin extracts encapsulated in PLA the physicochemical parameters were: D = 1.81 × 10^-5 and D = 5.72 × 10^-5 cm2/s; K = 3.4 × 10^-3 and K = 2.47 × 10^-4 cm/s, respectively. Lower resistance was offered by the seed extract than by skin extracts (nanoencapsulated), which was explained by differences in structural composition, and average molecular weight of the two kinds of extracts, which should be more favorable to the mass transfer in comparison to the raw extracts. The concentration profile of grape extracts in the small intestine was modeled through a pure convection model, and the encapsulated extract on PLA nanoparticles using a mixed regime model, which described the process of dissolution and absorption of the grape extracts from the intestine to the blood stream. The absorbed fraction predicted by the model was 42.7 and 24.2% for seed and skin extracts, respectively. Those values increased to 100% for both extracts after the simulation with the nanoencapsulated extracts. Consequently, extract encapsulation should produce a significant increase in intestinal absorption.
Collapse
|
41
|
Xu Y, Asghar S, Yang L, Li H, Wang Z, Ping Q, Xiao Y. Lactoferrin-coated polysaccharide nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG for treating brain glioma. Carbohydr Polym 2017; 157:419-428. [DOI: 10.1016/j.carbpol.2016.09.085] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/17/2016] [Accepted: 09/27/2016] [Indexed: 12/23/2022]
|
42
|
Muñoz V, Kappes T, Roeckel M, Vera JC, Fernández K. Modification of chitosan to deliver grapes proanthocyanidins: Physicochemical and biological evaluation. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Shah KU, Shah SU, Dilawar N, Khan GM, Gibaud S. Thiomers and their potential applications in drug delivery. Expert Opin Drug Deliv 2016; 14:601-610. [PMID: 27548003 DOI: 10.1080/17425247.2016.1227787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Thiomers are the product of the immobilization of sulfhydryl-bearing ligands onto the polymer backbone of a conventional polymer, which results in a significant improvement in mucoadhesion; in situ gelation and efflux inhibition compare with unchanged polymers. Because of thiol groups, thiomers have more reactivity and enhanced protection against oxidation. Since the late 1990s, extensive work has been conducted on these promising polymeric excipients in the pharmaceutical field. Areas covered: This review covers thiomers, their classification and their different properties. Various techniques for the synthesis, purification and characterization of thiomers are described in detail. This review also encompasses their various properties such as mucoadhesion, permeation enhancement, in situ gelation and efflux inhibition, as well as different formulations based on thiomers. In addition to the use of thiomers as multifunctional excipients, this review also encompasses their use as drugs. Expert opinion: The synthesis is realized by linkage of sulfhydryl-bearing ligands but reported methods give low yields. Higher degrees of modification are not necessary and would probably lead to extreme changes in properties. Nevertheless, an accurate characterization of the final product is important. The scale-up procedure for industrial manufacturing has been adapted to produce GMP materials; Lacrimera® eye drops have already entered the European market.
Collapse
Affiliation(s)
- Kifayat Ullah Shah
- a Department of Pharmacy , Quaid-e-Azam University , Islamabad , Pakistan
| | - Shefaat Ullah Shah
- b Department of Pharmaceutics, Faculty of Pharmacy , Gomal University , D.I.Khan , Pakistan.,c EA3452/CITHEFOR, Faculté de Pharmacie , Université de Lorraine , Nancy , France
| | - Naz Dilawar
- a Department of Pharmacy , Quaid-e-Azam University , Islamabad , Pakistan
| | - Gul Majid Khan
- a Department of Pharmacy , Quaid-e-Azam University , Islamabad , Pakistan
| | - Stéphane Gibaud
- c EA3452/CITHEFOR, Faculté de Pharmacie , Université de Lorraine , Nancy , France
| |
Collapse
|
44
|
Bugnicourt L, Ladavière C. Interests of chitosan nanoparticles ionically cross-linked with tripolyphosphate for biomedical applications. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.06.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
"Application of Box-Behnken design for optimization and development of quetiapine fumarate loaded chitosan nanoparticles for brain delivery via intranasal route* ". Int J Biol Macromol 2016; 89:206-18. [PMID: 27130654 DOI: 10.1016/j.ijbiomac.2016.04.076] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 01/01/2023]
Abstract
The objective of the present investigation was to optimize and develop quetiapine fumarate (QF) loaded chitosan nanoparticles (QF-NP) by ionic gelation method using Box-Behnken design. Three independent variables viz., X1-Concentration of chitosan, X2-Concentration of sodium tripolyphosphate and X3-Volume of sodium tripolyphosphate were taken to investigate their effect on dependent variables (Y1-Size, Y2-PDI and Y3-%EE). Optimized formula of QF-NP was selected from the design space which was further evaluated for physicochemical, morphological, solid state characterization, nasal diffusion and in-vivo distribution for brain targeting following non-invasive intranasal administration. The average particle size, PDI, %EE and nasal diffusion were found to be 131.08±7.45nm, 0.252±0.064, 89.93±3.85% and 65.24±5.26% respectively. Neither toxicity nor structural damage on nasal mucosa was observed upon histopathological examination. Significantly higher brain/blood ratio and 2 folds higher nasal bioavailability in brain with QF-NP in comparison to drug solution following intranasal administration revealed preferential nose to brain transport bypassing blood-brain barrier and prolonged retention of QF at site of action suggesting superiority of chitosan as permeability enhancer. Overall, the above finding shows promising results in the area of developing non-invasive intranasal route as an alternative to oral route for brain delivery.
Collapse
|
46
|
Kulkarni AD, Vanjari YH, Sancheti KH, Patel HM, Belgamwar VS, Surana SJ, Pardeshi CV. New nasal nanocomplex self-assembled from charged biomacromolecules: N,N,N-Trimethyl chitosan and dextran sulfate. Int J Biol Macromol 2016; 88:476-90. [PMID: 27017981 DOI: 10.1016/j.ijbiomac.2016.03.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 01/17/2023]
Abstract
Although chitosan (CHT, a linear cationic polysaccharide) is biodegradable, biocompatible, non-toxic, and mucoadhesive in nature, the low solubility of CHT in aqueous and alkaline media limits its applicability in pharmaceutical and biomedical field. This necessitate the introduction of new chemically-modified derivatives of CHT those can surmount the solubility barrier. Herein, N,N,N-trimethyl chitosan (TMC), a quaternized hydrophilic derivative of CHT, was synthesized by two-step reductive methylation of CHT and characterized for (1)H NMR and zeta potential measurements. Polyelectrolyte complexes (PECs) based on TMC and dextran sulfate (DS) were prepared via ionic interactions between charged functional groups of former polysaccharides at different pH conditions (pH 5, 8, 10, and 12) and characterized for physicochemical (particle size and zeta potential) and solid- state characterizations (HR-TEM, SEM, FTIR, TGA and XRD). At alkaline pH conditions, the participant polymer chains (TMC and DS) are sufficiently close to form more stable PECs. The release efficiency was assessed after loading a model drug into optimized PEC formulation. Data indicated that the PECs fabricated at alkaline pH presents a reliable formulation for pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Abhijeet D Kulkarni
- Industrial Pharmacy Laboratory, Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Yogesh H Vanjari
- Industrial Pharmacy Laboratory, Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Karan H Sancheti
- Industrial Pharmacy Laboratory, Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Harun M Patel
- Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Veena S Belgamwar
- Department of Pharmaceutical Sciences, R.T.M. Nagpur University, Nagpur, Maharashtra, India
| | - Sanjay J Surana
- Industrial Pharmacy Laboratory, Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Chandrakantsing V Pardeshi
- Industrial Pharmacy Laboratory, Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India.
| |
Collapse
|