1
|
Tang X. Probiotic Roles of Clostridium butyricum in Piglets: Considering Aspects of Intestinal Barrier Function. Animals (Basel) 2024; 14:1069. [PMID: 38612308 PMCID: PMC11010893 DOI: 10.3390/ani14071069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
China, as the global leader in pork production and consumption, is faced with challenges in ensuring sustainable and wholesome growth of the pig industry while also guaranteeing meat food safety amidst the ban on antibiotics usage in animal feed. The focus of the pig industry lies in guaranteeing piglet health and enhancing overall production performance through nutrition regulation. Clostridium butyricum (C. butyricum), a new type of probiotic, possesses characteristics such as heat resistance, acid resistance, and bile-salt tolerance, meaning it has potential as a feed additive. Previous studies have demonstrated that C. butyricum has a probiotic effect on piglets and can serve as a substitute for antibiotics. The objective of this study was to review the probiotic role of C. butyricum in the production of piglets, specifically focusing on intestinal barrier function. Through this review, we explored the probiotic effects of C. butyricum on piglets from the perspective of intestinal health. That is, C. butyricum promotes intestinal health by regulating the functions of the mechanical barrier, chemical barrier, immune barrier, and microbial barrier of piglets, thereby improving the growth of piglets. This review can provide a reference for the rational utilization and application of C. butyricum in swine production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertification Control, School of Karst Science, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
2
|
Wang C, Li PF, Hu DG, Wang H. Effect of Clostridium butyricum on intestinal microbiota and resistance to Vibrio alginolyticus of Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108790. [PMID: 37169113 DOI: 10.1016/j.fsi.2023.108790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
In order to evaluate the effect of Clostridium butyricum (C. butyricum) feeding on intestinal microorganisms and protection against infection by Vibrio alginolyticus (V. alginolyticus) in Penaeus vannamei (P. vannamei). We set up two groups, CG30 (fed normal feed) and CB30 (fed feed supplemented with C. butyricum), for the 30d C. butyricum feeding test, and four groups, CG (CG30 group injected with PBS), CB (CB30 group injected with PBS), VACG (CG30 group injected with V. alginolyticus), and VACB (CB30 group injected with V. alginolyticus), for the 24h infection test. The protective effect of C. butyricum against acute V. alginolyticus infection in P. vannamei was explained in terms of survival, histopathology, changes in enzyme activity, transcriptome analysis, and immune-related genes. We found that feeding C. butyricum significantly altered intestinal microbial populations' abundance and significantly reduced Vibrio spp. In the V. alginolyticus stress test, C. butyricum improved the survival rate and alleviated pathological changes in hepatopancreatic tissues, alleviated the reduction of superoxide dismutase (SOD) and phenoloxidase (PO) activity caused by infection, and increased the lysozyme content in P. vannamei. VACB group compared with the VACG group, 1730 up-regulated differentially expressed genes (DEGs) and 2029 down-regulated DEGs were screened. Quantitative real-time PCR (qRT-PCR) showed that dietary supplementation with C. butyricum suppressed the upregulation of alkaline phosphatase (AKP) transcription factors and the downregulation of prophenoloxidase (proPO), alpha-2-macroglobulin (A2M), and anti-lipopolysaccharide factor (ALF) induced by V. alginolyticus infection. In conclusion, feed supplementation with C. butyricum changed P. vannamei's population ratio of intestinal microorganisms. Moreover, C. butyricum has the potential to act as an inhibitor of V. alginolyticus infection and enhance the resistance of P. vannamei to V. alginolyticus infection.
Collapse
Affiliation(s)
- Chen Wang
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, PR China; Department of Horticulture, Agriculture College, Shihezi University, Shihezi, 832003, PR China
| | - Peng-Fei Li
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, PR China; Department of Horticulture, Agriculture College, Shihezi University, Shihezi, 832003, PR China.
| | - Hui Wang
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, PR China.
| |
Collapse
|
3
|
Shao H, Min F, Huang M, Wang Z, Bai T, Lin M, Li X, Chen H. Novel perspective on the regulation of food allergy by probiotic: The potential of its structural components. Crit Rev Food Sci Nutr 2022; 64:172-186. [PMID: 35912422 DOI: 10.1080/10408398.2022.2105304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food allergy (FA) is a global public health issue with growing prevalence. Increasing evidence supports the strong correlation between intestinal microbiota dysbiosis and food allergies. Probiotic intervention as a microbiota-based therapy could alleviate FA effectively. In addition to improving the intestinal microbiota disturbance and affecting microbial metabolites to regulate immune system, immune responses induced by the recognition of pattern recognition receptors to probiotic components may also be one of the mechanisms of probiotics protecting against FA. In this review, it is highlighted in detail about the regulatory effects on the immune system and anti-allergic potential of probiotic components including the flagellin, pili, peptidoglycan, lipoteichoic acid, exopolysaccharides, surface (S)-layer proteins and DNA. Probiotic components could enhance the function of intestinal epithelial barrier as well as regulate the balance of cytokines and T helper (Th) 1/Th2/regulatory T cell (Treg) responses. These evidences suggest that probiotic components could be used as nutritional or therapeutic agents for maintaining immune homeostasis to prevent FA, which will contribute to providing new insights into the resolution of FA and better guidance for the development of probiotic products.
Collapse
Affiliation(s)
- Huming Shao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Fangfang Min
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Meijia Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Tianliang Bai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Min Lin
- Department of Dermatology, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, Jiangxi, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Lu Q, Guo Y, Yang G, Cui L, Wu Z, Zeng X, Pan D, Cai Z. Structure and Anti-Inflammation Potential of Lipoteichoic Acids Isolated from Lactobacillus Strains. Foods 2022; 11:foods11111610. [PMID: 35681360 PMCID: PMC9180668 DOI: 10.3390/foods11111610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 12/31/2022] Open
Abstract
Lactobacillus are normal inhabitants of the gastrointestinal tract and confer a variety of health effects. Lipoteichoic acid (LTA), an amphiphilic substance located in the cell membrane, is a key molecule in probiotic–host crosstalk. Through the characterization of structural characteristics of LTA molecules derived from Lactobacillus plantarum A3, Lactobacillus reuteri DMSZ 8533, and Lactobacillus acidophilus CICC 6074, there exists some heterogeneity in LTA molecules, which perhaps contributes to the distinguishable adhesion properties of Lactobacillus strains based on fluorescence microscopy observations. In LPS-induced RAW 264.7 cells, LTAs derived from three Lactobacillus strains obviously alleviated inflammatory responses as evidenced by the altered inflammatory cytokine levels of TNF-α, IL-6, and IL-10. Western blotting demonstrated that L. reuteri LTA blocked LPS-triggered expression of the MAPK and NF-κB pathways. The findings further validated that LTA is an important effector molecule and deserves further consideration as an alternative therapeutic for ulcerative colitis treatment.
Collapse
Affiliation(s)
- Qianqian Lu
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Q.L.); (Y.G.); (G.Y.); (L.C.); (Z.W.); (X.Z.); (D.P.)
| | - Yingqi Guo
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Q.L.); (Y.G.); (G.Y.); (L.C.); (Z.W.); (X.Z.); (D.P.)
| | - Guo Yang
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Q.L.); (Y.G.); (G.Y.); (L.C.); (Z.W.); (X.Z.); (D.P.)
| | - Lei Cui
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Q.L.); (Y.G.); (G.Y.); (L.C.); (Z.W.); (X.Z.); (D.P.)
| | - Zhen Wu
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Q.L.); (Y.G.); (G.Y.); (L.C.); (Z.W.); (X.Z.); (D.P.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Xiaoqun Zeng
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Q.L.); (Y.G.); (G.Y.); (L.C.); (Z.W.); (X.Z.); (D.P.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Q.L.); (Y.G.); (G.Y.); (L.C.); (Z.W.); (X.Z.); (D.P.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Zhendong Cai
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China; (Q.L.); (Y.G.); (G.Y.); (L.C.); (Z.W.); (X.Z.); (D.P.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Correspondence:
| |
Collapse
|
5
|
Levilactobacillus brevis KU15151 Inhibits Staphylococcus aureus Lipoteichoic Acid-Induced Inflammation in RAW 264.7 Macrophages. Probiotics Antimicrob Proteins 2022; 14:767-777. [PMID: 35554865 DOI: 10.1007/s12602-022-09949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Inflammation is a host defense response to harmful agents, such as pathogenic invasion, and is necessary for health. Excessive inflammation may result in the development of inflammatory disorders. Levilactobacillus brevis KU15151 has been reported to exhibit probiotic characteristics and antioxidant activities, but the effect of this strain on inflammatory responses has not been determined. The present study aimed to investigate the anti-inflammatory potential of L. brevis KU15151 in Staphylococcus aureus lipoteichoic acid (aLTA)-induced RAW264.7 macrophages. Treatment with L. brevis KU15151 reduced the production of nitric oxide and prostaglandin E2 by suppressing the expression of inducible nitric oxide synthase and cyclooxygenase-2. Additionally, the production of proinflammatory cytokines including tumor necrosis factor-α, interleukin (IL)-6, and IL-1β, decreased after treatment with L. brevis KU15151 in aLTA-stimulated RAW 264.7 cells. Furthermore, this strain alleviated the activation of nuclear factor-κB and mitogen-activated protein kinase signaling pathways. Moreover, the generation of reactive oxygen species was downregulated by treatment with L. brevis KU15151. These results demonstrate that L. brevis KU15151 possesses an inhibitory effect against aLTA-mediated inflammation and may be employed as a functional probiotic for preventing inflammatory disorders.
Collapse
|
6
|
Stoeva MK, Garcia-So J, Justice N, Myers J, Tyagi S, Nemchek M, McMurdie PJ, Kolterman O, Eid J. Butyrate-producing human gut symbiont, Clostridium butyricum, and its role in health and disease. Gut Microbes 2022; 13:1-28. [PMID: 33874858 PMCID: PMC8078720 DOI: 10.1080/19490976.2021.1907272] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Clostridium butyricum is a butyrate-producing human gut symbiont that has been safely used as a probiotic for decades. C. butyricum strains have been investigated for potential protective or ameliorative effects in a wide range of human diseases, including gut-acquired infection, intestinal injury, irritable bowel syndrome, inflammatory bowel disease, neurodegenerative disease, metabolic disease, and colorectal cancer. In this review we summarize the studies on C. butyricum supplementation with special attention to proposed mechanisms for the associated health benefits and the supporting experimental evidence. These mechanisms center on molecular signals (especially butyrate) as well as immunological signals in the digestive system that cascade well beyond the gut to the liver, adipose tissue, brain, and more. The safety of probiotic C. butyricum strains appears well-established. We identify areas where additional human randomized controlled trials would provide valuable further data related to the strains' utility as an intervention.
Collapse
Affiliation(s)
- Magdalena K. Stoeva
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Jeewon Garcia-So
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Nicholas Justice
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Julia Myers
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Surabhi Tyagi
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Madeleine Nemchek
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Paul J. McMurdie
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - Orville Kolterman
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA
| | - John Eid
- R&D and Clinical departments, Pendulum Therapeutics, Inc, San Francisco, CA, USA,CONTACT John Eid Pendulum Therapeutics, Inc, San Francisco, California, USA
| |
Collapse
|
7
|
Zhu X, Liu H, Wang Z, Tian R, Li S. Dimethyl phthalate damages Staphylococcus aureus by changing the cell structure, inducing oxidative stress and inhibiting energy metabolism. J Environ Sci (China) 2021; 107:171-183. [PMID: 34412780 DOI: 10.1016/j.jes.2021.01.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 06/13/2023]
Abstract
Dimethyl phthalate (DMP), used as a plasticizer in industrial products, exists widely in air, water and soil. Staphylococcus aureus is a typical model organism representing Gram-positive bacteria. The molecular mechanisms of DMP toxicology in S. aureus were researched by proteomic and transcriptomic analyses. The results showed that the cell wall, membrane and cell surface characteristics were damaged and the growth was inhibited in S. aureus by DMP. Oxidative stress was induced by DMP in S. aureus. The activities of succinic dehydrogenase (SDH) and ATPase were changed by DMP, which could impact energy metabolism. Based on proteomic and transcriptomic analyses, the oxidative phosphorylation pathway was enhanced and the glycolysis/gluconeogenesis and pentose phosphate pathways were inhibited in S. aureus exposed to DMP. The results of real-time reverse transcription quantitative PCR (RT-qPCR) further confirmed the results of the proteomic and transcriptomic analyses. Lactic acid, pyruvic acid and glucose were reduced by DMP in S. aureus, which suggested that DMP could inhibit energy metabolism. The results indicated that DMP damaged the cell wall and membrane, induced oxidative stress, and inhibited energy metabolism and activation in S. aureus.
Collapse
Affiliation(s)
- Xiaohui Zhu
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China; Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Hong Liu
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China; Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Zhigang Wang
- School of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China; Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China.
| | - Renmao Tian
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60501, USA
| | - Shenglin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
8
|
Ma M, Zhao Z, Liang Q, Shen H, Zhao Z, Chen Z, He R, Feng S, Cao D, Gan G, Ye H, Qiu W, Deng J, Ming F, Jia J, Sun C, Li J, Zhang L. Overexpression of pEGF improved the gut protective function of Clostridium butyricum partly through STAT3 signal pathway. Appl Microbiol Biotechnol 2021; 105:5973-5991. [PMID: 34396488 DOI: 10.1007/s00253-021-11472-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022]
Abstract
Clostridium butyricum (C. butyricum) is a probiotic that could promote animal growth and protect gut health. So far, current studies mainly keep up with the basic biological functions of C. butyricum, missing the effective strategy to further improve its protective efficiency. A recent report about C. butyricum alleviating intestinal injury through epidermal growth factor receptor (EGFR) inspired us to bridge this gap by porcine epidermal growth factor (EGF) overexpression. Lacking a secretory overexpression system, we constructed the recombinant strains overexpressing pEGF in C. butyricum for the first time and obtained 4 recombinant strains for highly efficient secretion of pEGF (BC/pPD1, BC/pSPP, BC/pGHF, and BC/pDBD). Compared to the wild-type strain, we confirmed that the expression level ranges of the intestinal development-related genes (Claudin-1, GLUT-2, SUC, GLP2R, and EGFR) and anti-inflammation-related gene (IL-10) in IPECs were upregulated under recombinant strain stimulation, and the growth of Staphylococcus aureus and Salmonella typhimurium was significantly inhibited as well. Furthermore, a particular inhibitor (stattic) was used to block STAT3 tyrosine phosphorylation, resulting in the downregulation on antibacterial effect of recombinant strains. This study demonstrated that the secretory overexpression of pEGF in C. butyricum could upregulate the expression level of EGFR, consequently improving the intestinal protective functions of C. butyricum partly following STAT3 signal activation in IPECs and making it a positive loop. These findings on the overexpression strains pointed out a new direction for further development and utilization of C. butyricum. KEY POINTS: • By 12 signal peptide screening in silico, 4 pEGF overexpression strains of C. butyricum/pMTL82151-pEGF for highly efficient secretion of pEGF were generated for the first time. • The secretory overexpression of pEGF promoted the intestinal development, antimicrobial action, and anti-inflammatory function of C. butyricum. • The overexpressed pEGF upregulated the expression level of EGFR and further magnified the gut protective function of recombinant strains which in turn partly depended on STAT3 signal pathway in IPECs.
Collapse
Affiliation(s)
- Miaopeng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Zitong Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Qianyi Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Haokun Shen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Zengjue Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Zhiyang Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Rongxiao He
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Saixiang Feng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Ding Cao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Guanhua Gan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Hejia Ye
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Weihong Qiu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Jinbo Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Feiping Ming
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Junhao Jia
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Chongjun Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Jiayi Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Linghua Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
9
|
Li H, Liu X, Shang Z, Qiao J. Clostridium butyricum Helps to Alleviate Inflammation in Weaned Piglets Challenged With Enterotoxigenic Escherichia coli K88. Front Vet Sci 2021; 8:683863. [PMID: 34277756 PMCID: PMC8282889 DOI: 10.3389/fvets.2021.683863] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/11/2021] [Indexed: 12/05/2022] Open
Abstract
Background: Whether the probiotic Clostridium butyricum (CB) alleviates enterotoxigenic Escherichia coli (ETEC) K88-induced inflammation by regulating the activation of the toll-like receptor (TLR) signaling pathway is not clear, thus, we carried out this study. A total of 72 piglets (average body weight 7.09 ± 0.2 kg) were randomly divided into three groups of 24 piglets per group. Pigs were either fed a daily diet (NC, negative control), a diet tested every day by 1 × 109 CFU/mL ETEC K88 (PC, positive control), or a basal diet supplemented with 5 × 105 CFU/g CB and challenged with ETEC K88 (PC + CB group). Results: Our results showed that CB pretreatment attenuated the effect of ETEC K88 by decreasing C-reactive protein (CRP), which resulted in tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) production. Histological examination revealed that CB pretreatment alleviated intestinal villi injury caused by ETEC K88 challenge. Furthermore, CB pretreatment promoted mRNA expression of the negative regulators of TLR signaling, including myeloid differentiation factor (MyD88), toll-interacting protein (Tollip), and B cell CLL/lymphoma 3 (Bcl-3), in the intestines of ETEC K88-challenged piglets. ETEC K88-induced activation of nuclear factor kappa B (NF-κB) and nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha (IκBα) was attenuated by CB pretreatment. Conclusion: These findings indicate that CB helps to maintain and strengthen the shape of intestinal villi and limits detrimental inflammatory responses, partly by inhibiting toll-like receptor 2 (TLR-2), toll-like receptor 4 (TLR-4), and toll-like receptor 5 (TLR-5) expression and inhibiting NF-κB p65, and promoting IκBα activation and synergism among its negative regulators.
Collapse
Affiliation(s)
- Haihua Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Xuejiao Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Zhiyuan Shang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Jiayun Qiao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
10
|
Soe YM, Bedoui S, Stinear TP, Hachani A. Intracellular Staphylococcus aureus and host cell death pathways. Cell Microbiol 2021; 23:e13317. [PMID: 33550697 DOI: 10.1111/cmi.13317] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus is a major opportunistic human pathogen that is globally prevalent. Although S. aureus and humans may have co-evolved to the point of commensalism, the bacterium is equipped with virulence factors causing devastating infections. The adoption of an intracellular lifestyle by S. aureus is an important facet of its pathogenesis. Occupying a privileged intracellular compartment permits evasion from the bactericidal actions of host immunity and antibiotics. However, this localization exposes S. aureus to cell-intrinsic processes comprising autophagy, metabolic challenges and clearance mechanisms orchestrated by host programmed cell death pathways (PCDs), including apoptosis, pyroptosis and necroptosis. Mounting evidence suggests that S. aureus deploys pathoadaptive mechanisms that modulate the expression of its virulence factors to prevent elimination through PCD pathways. In this review, we critically analyse the current literature on the interplay between S. aureus virulence factors with the key, intertwined nodes of PCD. We discuss how S. aureus adaptation to the human host plays an essential role in the evasion of PCD, and we consider future directions to study S. aureus-PCD interactions.
Collapse
Affiliation(s)
- Ye Mon Soe
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Chénard T, Prévost K, Dubé J, Massé E. Immune System Modulations by Products of the Gut Microbiota. Vaccines (Basel) 2020; 8:vaccines8030461. [PMID: 32825559 PMCID: PMC7565937 DOI: 10.3390/vaccines8030461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota, which consists of all bacteria, viruses, fungus, and protozoa living in the intestine, and the immune system have co-evolved in a symbiotic relationship since the origin of the immune system. The bacterial community forming the microbiota plays an important role in the regulation of multiple aspects of the immune system. This regulation depends, among other things, on the production of a variety of metabolites by the microbiota. These metabolites range from small molecules to large macro-molecules. All types of immune cells from the host interact with these metabolites resulting in the activation of different pathways, which result in either positive or negative responses. The understanding of these pathways and their modulations will help establish the microbiota as a therapeutic target in the prevention and treatment of a variety of immune-related diseases.
Collapse
|
12
|
The effect of dietary supplementation with Clostridium butyricum on the growth performance, immunity, intestinal microbiota and disease resistance of tilapia (Oreochromis niloticus). PLoS One 2019; 14:e0223428. [PMID: 31815958 PMCID: PMC6901227 DOI: 10.1371/journal.pone.0223428] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
This study was conducted to assess the effects of dietary Clostridium butyricum on the growth, immunity, intestinal microbiota and disease resistance of tilapia (Oreochromis niloticus). Three hundreds of tilapia (56.21 ± 0.81 g) were divided into 5 groups and fed a diet supplemented with C. butyricum at 0, 1 x 104, 1 x 105, 1 x 106 or 1 x 107 CFU g-1 diet (denoted as CG, CB1, CB2, CB3 and CB4, respectively) for 56 days. Then 45 fish from each group were intraperitoneally injected with Streptococcus agalactiae, and the mortality was recorded for 14 days. The results showed that dietary C. butyricum significantly improved the specific growth rate (SGR) and feed intake in the CB2 group and decreased the cumulative mortality post-challenge with S. agalactiae in the CB2, CB3 and CB4 groups. The serum total antioxidant capacity and intestinal interleukin receptor-associated kinase-4 gene expression were significantly increased, and serum malondialdehyde content and diamine oxidase activity were significantly decreased in the CB1, CB2, CB3 and CB4 groups. Serum complement 3 and complement 4 concentrations and intestinal gene expression of tumour necrosis factor α, interleukin 8, and myeloid differentiation factor 88 were significantly higher in the CB2, CB3 and CB4 groups. Intestinal toll-like receptor 2 gene expression was significantly upregulated in the CB3 and CB4 groups. Dietary C. butyricum increased the diversity of the intestinal microbiota and the relative abundance of beneficial bacteria (such as Bacillus), and decreased the relative abundance of opportunistic pathogenic bacteria (such as Aeromonas) in the CB2 group. These results revealed that dietary C. butyricum at a suitable dose enhanced growth performance, elevated humoral and intestinal immunity, regulated the intestinal microbial components, and improved disease resistance in tilapia. The optimal dose was 1 x 105 CFU g-1 diet.
Collapse
|
13
|
Li HH, Li YP, Zhu Q, Qiao JY, Wang WJ. Dietary supplementation with Clostridium butyricum helps to improve the intestinal barrier function of weaned piglets challenged with enterotoxigenic Escherichia coli K88. J Appl Microbiol 2018; 125:964-975. [PMID: 29851202 DOI: 10.1111/jam.13936] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 04/11/2018] [Accepted: 05/27/2018] [Indexed: 11/28/2022]
Abstract
AIMS The objective of this study was twofold: (i) to examine the effect of Clostridium butyricum on intestinal barrier function and (ii) to elucidate the mechanisms involved in enhanced intestinal barrier function. METHODS AND RESULTS Forty-eight weaned piglets were assigned randomly to either a basal diet or a C. butyricum-supplemented diet. On day 15, all pigs were orally challenged with enterotoxigenic Escherichia coli (ETEC) K88 or saline. Clostridium butyricum decreased serum diamine oxidase activity and d-lactic acid concentration, as well as increased intestinal tight junction proteins (ZO-1, claudin-3 and occludin) expression in ETEC K88-infected pigs. Moreover, C. butyricum decreased IL-1β and IL-18 levels in serum and gut, whereas it increased IL-10 levels. Furthermore, C. butyricum downregulated NLRP3 and caspase-1 expression in ETEC K88-challenged pig gut, but did not affect apoptosis-associated speck-like protein expression. CONCLUSIONS Clostridium butyricum enhanced intestinal barrier function and inhibited apoptosis-associated speck-like protein-independent NLRP3 inflammasome signalling pathway in weaned piglets after ETEC K88 challenge. SIGNIFICANCE AND IMPACT OF THE STUDY The novelty of this study lies in the beneficial effects of C. butyricum on intestinal health, likely by improving intestinal barrier function and alleviating inflammatory reactions.
Collapse
Affiliation(s)
- H-H Li
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin, China
| | - Y-P Li
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin, China
| | - Q Zhu
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin, China
| | - J-Y Qiao
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin, China
| | - W-J Wang
- Tianjin Animal Husbandry and Veterinary Research Institute, Tianjin, China
| |
Collapse
|
14
|
Abstract
The innate immune system serves as a first line of defense against microbial pathogens. The host innate immune response can be triggered by recognition of conserved non-self-microbial signature molecules by specific host receptor proteins called Toll-like receptors. For bacteria, many of these molecular triggers reside on or are embedded in the bacterial membrane, the interface exposed to the host environment. Lipids are the most abundant component of membranes, and bacteria possess a unique set of lipids that can initiate or modify the host innate immune response. Bacterial lipoproteins, peptidoglycan, and outer membrane molecules lipoteichoic acid and lipopolysaccharide are key modulators of the host immune system. This review article will highlight some of the research emerging at the crossroads of bacterial membranes and innate immunity.
Collapse
Affiliation(s)
- Courtney E Chandler
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, 650 W. Baltimore Street, 8th Floor South, Baltimore, MD, 21201, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, 650 W. Baltimore Street, 8th Floor South, Baltimore, MD, 21201, USA
| |
Collapse
|