1
|
Sampat GH, Hiremath K, Dodakallanavar J, Patil VS, Harish DR, Biradar P, Mahadevamurthy RK, Barvaliya M, Roy S. Unraveling snake venom phospholipase A 2: an overview of its structure, pharmacology, and inhibitors. Pharmacol Rep 2023; 75:1454-1473. [PMID: 37926795 DOI: 10.1007/s43440-023-00543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Snake bite is a neglected disease that affects millions of people worldwide. WHO reported approximately 5 million people are bitten by various species of snakes each year, resulting in nearly 1 million deaths and an additional three times cases of permanent disability. Snakes utilize the venom mainly for immobilization and digestion of their prey. Snake venom is a composition of proteins and enzymes which is responsible for its diverse pharmacological action. Snake venom phospholipase A2 (SvPLA2) is an enzyme that is present in every snake species in different quantities and is known to produce remarkable functional diversity and pharmacological action like inflammation, necrosis, myonecrosis, hemorrhage, etc. Arachidonic acid, a precursor to eicosanoids, such as prostaglandins and leukotrienes, is released when SvPLA2 catalyzes the hydrolysis of the sn-2 positions of membrane glycerophospholipids, which is responsible for its actions. Polyvalent antivenom produced from horses or lambs is the standard treatment for snake envenomation, although it has many drawbacks. Traditional medical practitioners treat snake bites using plants and other remedies as a sustainable alternative. More than 500 plant species from more than 100 families reported having venom-neutralizing abilities. Plant-derived secondary metabolites have the ability to reduce the venom's adverse consequences. Numerous studies have documented the ability of plant chemicals to inhibit the enzymes found in snake venom. Research in recent years has shown that various small molecules, such as varespladib and methyl varespladib, effectively inhibit the PLA2 toxin. In the present article, we have overviewed the knowledge of snake venom phospholipase A2, its classification, and the mechanism involved in the pathophysiology of cytotoxicity, myonecrosis, anticoagulation, and inflammation clinical application and inhibitors of SvPLA2, along with the list of studies carried out to evaluate the potency of small molecules like varespladib and secondary metabolites from the traditional medicine for their anti-PLA2 effect.
Collapse
Affiliation(s)
- Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Jagadeesh Dodakallanavar
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
| | - Prakash Biradar
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India.
| | | | - Manish Barvaliya
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| |
Collapse
|
2
|
Srimathi R, Sabareesh V, Gurunathan J. Naringenin isolated from Citrus reticulata blanco fruit peel inhibits the toxicity of snake venom proteins - An in vitro and in vivo study. Toxicon 2022; 220:106943. [DOI: 10.1016/j.toxicon.2022.106943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022]
|
3
|
Adrião AAX, dos Santos AO, de Lima EJSP, Maciel JB, Paz WHP, da Silva FMA, Pucca MB, Moura-da-Silva AM, Monteiro WM, Sartim MA, Koolen HHF. Plant-Derived Toxin Inhibitors as Potential Candidates to Complement Antivenom Treatment in Snakebite Envenomations. Front Immunol 2022; 13:842576. [PMID: 35615352 PMCID: PMC9126284 DOI: 10.3389/fimmu.2022.842576] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Snakebite envenomations (SBEs) are a neglected medical condition of global importance that mainly affect the tropical and subtropical regions. Clinical manifestations include pain, edema, hemorrhage, tissue necrosis, and neurotoxic signs, and may evolve to functional loss of the affected limb, acute renal and/or respiratory failure, and even death. The standard treatment for snake envenomations is antivenom, which is produced from the hyperimmunization of animals with snake toxins. The inhibition of the effects of SBEs using natural or synthetic compounds has been suggested as a complementary treatment particularly before admission to hospital for antivenom treatment, since these alternative molecules are also able to inhibit toxins. Biodiversity-derived molecules, namely those extracted from medicinal plants, are promising sources of toxin inhibitors that can minimize the deleterious consequences of SBEs. In this review, we systematically synthesize the literature on plant metabolites that can be used as toxin-inhibiting agents, as well as present the potential mechanisms of action of molecules derived from natural sources. These findings aim to further our understanding of the potential of natural products and provide new lead compounds as auxiliary therapies for SBEs.
Collapse
Affiliation(s)
- Asenate A. X. Adrião
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Aline O. dos Santos
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Emilly J. S. P. de Lima
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Jéssica B. Maciel
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Weider H. P. Paz
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
| | - Felipe M. A. da Silva
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
- Multidisciplinary Support Center, Federal University of Amazonas, Manaus, Brazil
| | - Manuela B. Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
| | - Ana M. Moura-da-Silva
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Laboratory of Immunopathology, Institute Butantan, São Paulo, Brazil
| | - Wuelton M. Monteiro
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Marco A. Sartim
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- University Nilton Lins, Manaus, Brazil
| | - Hector H. F. Koolen
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
| |
Collapse
|
4
|
Pawłowska A, Stepczyńska M. Natural Biocidal Compounds of Plant Origin as Biodegradable Materials Modifiers. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2022; 30:1683-1708. [PMID: 34720776 PMCID: PMC8541817 DOI: 10.1007/s10924-021-02315-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 05/07/2023]
Abstract
The article presents a literature review of the plant origin natural compounds with biocidal properties. These compounds could be used as modifiers of biodegradable materials. Modification of polymer material is one of the basic steps in its manufacturing process. Biodegradable materials play a key role in the current development of materials engineering. Natural modifiers are non-toxic, environmentally friendly, and renewable. The substances contained in natural modifiers exhibit biocidal properties against bacteria and/or fungi. The article discusses polyphenols, selected phenols, naphthoquinones, triterpenoids, and phytoncides that are natural antibiotics. Due to the increasing demand for biodegradable materials and the protection of the natural environment against the negative effects of toxic substances, it is crucial to replace synthetic modifiers with plant ones. This work mentions industries where materials containing natural modifying additives could find potential applications. Moreover, the probable examples of the final products are presented. Additionally, the article points out the current world's pandemic state and the use of materials with biocidal properties considering the epidemiological conditions.
Collapse
Affiliation(s)
- Alona Pawłowska
- Department of Materials Engineering, Kazimierz Wielki University, J.K. Chodkiewicza 30 street, 85-064 Bydgoszcz, Poland
| | - Magdalena Stepczyńska
- Department of Materials Engineering, Kazimierz Wielki University, J.K. Chodkiewicza 30 street, 85-064 Bydgoszcz, Poland
| |
Collapse
|
5
|
Yusuf AJ, Aleku GA, Bello UR, Liman DU. Prospects and Challenges of Developing Plant-Derived Snake Antivenin Natural Products: A Focus on West Africa. ChemMedChem 2021; 16:3635-3648. [PMID: 34585514 DOI: 10.1002/cmdc.202100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/23/2021] [Indexed: 11/06/2022]
Abstract
Snakebite envenomation (SBE) is an important public health issue that is now receiving renewed attention following its reclassification as a Neglected Tropical Disease (NTD). Most incidences occur in rural areas of resource-limited countries, as such, timely and appropriate medical care for SBE is often inaccessible. The administration of anti-snake venom serum (ASV) is the only effective definitive treatment of SBE, but treatment failure to available ASVs is not uncommon. Emerging evidence highlights the potential of small-molecule compounds as inhibitors against toxins of snake venom. This presents an encouraging prospect to develop an alternative therapeutic option for the treatment SBE, that may be amenable for use at the point of care in resource-constraint settings. In view of the pivotal role of natural products in modern drug discovery programmes, there is considerable interest in ethno-pharmacological mining of medicinal plants and plant-derived medicinal compounds toward developing novel snake venom-neutralising therapeutics. In this review, we compile a collection of medicinal plants used in the treatment of SBE in West Africa and highlight their promise as potential botanical drugs or as sources of novel small-molecule compounds for the treatment of SBE. The challenges that must be surmounted to bring this to fruition including the need for (sub) regional collaboration have been discussed.
Collapse
Affiliation(s)
- Amina J Yusuf
- Department of Pharmaceutical & Medicinal Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Godwin A Aleku
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Usman Rabiu Bello
- Biotechnology unit, Department of Life Sciences, Mewar University, Gangrar, Chittorgarh, Rajasthan, India
| | - Dahiru Umar Liman
- Department of Pharmaceutical & Medicinal Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
6
|
Diagnostic and Therapeutic Value of Aptamers in Envenomation Cases. Int J Mol Sci 2020; 21:ijms21103565. [PMID: 32443562 PMCID: PMC7278915 DOI: 10.3390/ijms21103565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
It is now more than a century since Albert Calmette from the Institut Pasteur changed the world of envenomation by demonstrating that antibodies raised against animal venoms have the ability to treat human victims of previously fatal bites or stings. Moreover, the research initiated at that time effectively launched the discipline of toxicology, first leading to the search for toxic venom components, followed by the demonstration of venoms that also contained compounds of therapeutic value. Interest from pharmaceutical companies to treat envenomation is, however, declining, mainly for economic reasons, and hence, the World Health Organization has reclassified this public health issue to be a highest priority concern. While the production, storage, and safety of antivenom sera suffer from major inconveniences, alternative chemical and technological approaches to the problem of envenomation need to be considered that bypass the use of antibodies for toxin neutralization. Herein, we review an emerging strategy that relies on the use of aptamers and discuss how close—or otherwise—we are to finding a viable alternative to the use of antibodies for the therapy of human envenomation.
Collapse
|
7
|
Henao Castañeda I, Pereañez JA, Preciado LM, Jios J. Sulfur Compounds as Inhibitors of Enzymatic Activity of a Snake Venom Phospholipase A 2: Benzyl 4-nitrobenzenecarbodithioate as a Case of Study. Molecules 2020; 25:E1373. [PMID: 32197309 PMCID: PMC7144397 DOI: 10.3390/molecules25061373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 11/16/2022] Open
Abstract
Snakebite is a neglected disease with a high impact in tropical and subtropical countries. Therapy based on antivenom has limited efficacy in local tissue damage caused by venoms. Phospholipases A2 (PLA2) are enzymes that abundantly occur in snake venoms and induce several systemic and local effects. Furthermore, sulfur compounds such as thioesters have an inhibitory capacity against a snake venom PLA2. Hence, the objective of this work was to obtain a carbodithioate from a thioester with known activity against PLA2 and test its ability to inhibit the same enzyme. Benzyl 4-nitrobenzenecarbodithioate (I) was synthesized, purified, and characterized using as precursor 4-nitrothiobenzoic acid S-benzyl ester (II). Compound I showed inhibition of the enzymatic activity a PLA2 isolated from the venom of the Colombian rattlesnake Crotalus durissus cumanensis with an IC50 of 55.58 μM. This result is comparable with the reported inhibition obtained for II. Computational calculations were performed to support the study, and molecular docking results suggested that compounds I and II interact with the active site residues of the enzyme, impeding the normal catalysis cycle and attachment of the substrate to the active site of the PLA2.
Collapse
Affiliation(s)
- Isabel Henao Castañeda
- Grupo de Investigación en Productos Naturales Marinos, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52–21, 050010 Medellín, Colombia
| | - Jaime Andrés Pereañez
- Programa de Ofidismo/Escorpionismo, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52–21, 050010 Medellín, Colombia.; (J.A.P.); (L.M.P.)
| | - Lina María Preciado
- Programa de Ofidismo/Escorpionismo, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52–21, 050010 Medellín, Colombia.; (J.A.P.); (L.M.P.)
| | - Jorge Jios
- Laboratorio UPL (Unidad PLAPIMU-LASEISIC), Campus Tecnológico Gonnet (CIC-BA), Cno. Centenario e/505 y 508, 1897 Gonnet, Argentina;
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 esq. 115, 1900 La Plata, Argentina
| |
Collapse
|
8
|
Gómez-Betancur I, Gogineni V, Salazar-Ospina A, León F. Perspective on the Therapeutics of Anti-Snake Venom. Molecules 2019; 24:E3276. [PMID: 31505752 PMCID: PMC6767026 DOI: 10.3390/molecules24183276] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/22/2023] Open
Abstract
Snakebite envenomation is a life-threatening disease that was recently re-included as a neglected tropical disease (NTD), affecting millions of people in tropical and subtropical areas of the world. Improvement in the therapeutic approaches to envenomation is required to palliate the morbidity and mortality effects of this NTD. The specific therapeutic treatment for this NTD uses snake antivenom immunoglobulins. Unfortunately, access to these vital drugs is limited, principally due to their cost. Different ethnic groups in the affected regions have achieved notable success in treatment for centuries using natural sources, especially plants, to mitigate the effects of snake envenomation. The ethnopharmacological approach is essential to identify the potential metabolites or derivatives needed to treat this important NTD. Here, the authors describe specific therapeutic snakebite envenomation treatments and conduct a review on different strategies to identify the potential agents that can mitigate the effects of the venoms. The study also covers an increased number of literature reports on the ability of natural sources, particularly plants, to treat snakebites, along with their mechanisms, drawbacks and future perspectives.
Collapse
Affiliation(s)
- Isabel Gómez-Betancur
- Ophidism-Scorpionism Program, Faculty of Pharmaceutical and Food Sciences, University of Antioquia UdeA, Medellín 1226, Colombia.
| | - Vedanjali Gogineni
- Analytical Department, Cambrex Pharmaceuticals, Charles City, IA 50616, USA.
| | - Andrea Salazar-Ospina
- Research group in Pharmacy Regency Technology, Faculty of Pharmaceutical and Food Sciences University of Antioquia UdeA, Medellín 1226, Colombia.
| | - Francisco León
- College of Pharmacy, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
9
|
Synthetic Inhibitors of Snake Venom Enzymes: Thioesters Derived from 2-Sulfenyl Ethylacetate. Pharmaceuticals (Basel) 2019; 12:ph12020080. [PMID: 31126073 PMCID: PMC6630910 DOI: 10.3390/ph12020080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 11/17/2022] Open
Abstract
Snakebite envenomings are a global public health issue. The therapy based on the administration of animal-derived antivenoms has limited efficacy against the venom-induced local tissue damage, which often leads to permanent disability. Therefore, there is a need to find inhibitors against toxins responsible for local damage. This work aimed to synthesize thioesters derived from 2-sulfenyl ethylacetate and to evaluate the inhibitory effects on two snake venom toxins. Ethyl 2-((4-chlorobenzoyl)thio)acetate (I), Ethyl 2-((3-nitrobenzoyl)thio)acetate (II) and Ethyl 2-((4-nitrobenzoyl)thio)acetate (III) were synthesized and spectroscopically characterized. Computational calculations were performed to support the study. The inhibitory capacity of compounds (I–III) was evaluated on a phospholipase A2 (Cdcum6) isolated from the venom of the Colombian rattlesnake Crotalus durissus cumanensis and the P-I type metalloproteinase Batx-I isolated from Bothrops atrox. I–III inhibited PLA2 with IC50 values of 193.2, 305.4 and 132.7 µM, respectively. Otherwise, compounds II and III inhibited the proteolytic activity of Batx-I with IC50 of 2774 and 1879 µM. Molecular docking studies show that inhibition of PLA2 may be due to interactions of the studied compounds with amino acids in the catalytic site and the cofactor Ca2+. Probably, a blockage of the hydrophobic channel and some amino acids of the interfacial binding surface of PLA2 may occur.
Collapse
|
10
|
Gevú KV, Carvalho MGDE, Silva IGDA, Lima HRP, Castro RN, Cunha MDA. Phenolic compounds from the rhizome of Renealmia nicolaioides Loes.: a new diarylheptanoid. AN ACAD BRAS CIENC 2019; 91:e20180312. [PMID: 30994764 DOI: 10.1590/0001-3765201920180312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/13/2018] [Indexed: 11/21/2022] Open
Abstract
This study aims to identify phenolic compounds in dichloromethane and methanolic extracts of the rhizome of Renealmia nicolaioides collected in the North Region of Brazil. Two known diarylheptanoids, 1,7-bis(4-hydroxyphenyl)-(1E)-1-hepten-3-one (1), and 5R-1,7-bis(4-hydroxyphenyl)-1E-hepten-5-ol (2), and a new one (1R,2S,5S)-2-hydroxy-1,7(p-hydroxyphenyl)-centrolobine (3), as well as one flavonoid, 3-metoxi-quercetin (4) were isolated by chromatographic procedure and identified by spectroscopic techniques (1H and13C NMR, HRMS and CD). The acetyl derivative of 2 was used to confirm its structure. All four compounds are reported for the first time for this genus, and this is the first occurrence of compound 1 as a natural metabolite. The results reported here are unprecedented for the genus Renealmia.
Collapse
Affiliation(s)
- Kathlyn V Gevú
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Parque Califórnia, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Mário G DE Carvalho
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, BR 465, Km 07, s/n, 23897-000 Seropédica, RJ, Brazil
| | - Ilna G DA Silva
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, BR 465, Km 07, s/n, 23897-000 Seropédica, RJ, Brazil
| | - Helena R P Lima
- Instituto de Ciências Biológicas e da Saúde, Departamento de Botânica, Universidade Federal Rural do Rio de Janeiro, BR 465, Km 07, s/n, 23897-000 Seropédica, RJ, Brazil
| | - Rosane N Castro
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, BR 465, Km 07, s/n, 23897-000 Seropédica, RJ, Brazil
| | - Maura DA Cunha
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Parque Califórnia, 28013-602 Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
11
|
Bojić M, Antolić A, Tomičić M, Debeljak Ž, Maleš Ž. Propolis ethanolic extracts reduce adenosine diphosphate induced platelet aggregation determined on whole blood. Nutr J 2018; 17:52. [PMID: 29759064 PMCID: PMC5952650 DOI: 10.1186/s12937-018-0361-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/08/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Propolis is a well-known bee product containing more than 2000 identified compounds. It has many beneficial effects on human health that include antibacterial, antiviral, anticancer and hepatoprotective justifying its use as a dietary supplement. Platelet aggregation plays crucial role in thrombus formation that can cause stroke or heart attacks. As cardiovascular diseases, including those caused by thrombus formation, are related to 50% of deaths of Western population, the objective of this study was to determine antiaggregatory activity of propolis on platelet aggregation on the whole blood samples. METHODS Twenty one propolis samples from Southeast Europe were characterized by spectrophotometric methods to determine content of the total flavonoids and phenolic acids. High performance liquid chromatography coupled with diode array detection was used to identify and quantify individual polyphenols. Platelet aggregation was tested by impedance aggregometry on the whole blood samples of ten healthy volunteers. RESULTS The mean content of total polyphenols was 136.14 mg/g and ranged from 59.23 to 277.39 mg/g. Content of total flavonoids ranged between 6.83 and 55.44 mg/g with the mean value of 19.28 mg/g. Percentage of total phenolic acids was in the range 8.79 to 45.67% (mean 26.63%). Minimal antiaggregatory concentration, representing the lowest concentration of propolis extract sample that can cause statistically significant reduction of aggregation, ranged from 5 μM to 10.4 mM. Samples of propolis with lower content of luteolin and higher content of pinocembrin-7-methyleter showed better antiplatelet activity i.e. lower values of minimal antiaggregatory concentration. CONCLUSIONS This is the first study that shows antiaggregatory potential of propolis ethanolic extracts on the whole blood samples in the low micromolar concentrations suggesting that propolis supplementation may influence platelet aggregation and consequently thrombus formation. Further in vivo studies are needed to confirm the beneficial effects in prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Mirza Bojić
- Faculty of Pharmacy and Biochemistry, Department of Medicinal Chemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Andrea Antolić
- Faculty of Science, PDS Biology, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Maja Tomičić
- Department of Platelet and Leukocyte Immunology, Croatian Institute of Transfusion Medicine, Petrova 6, 10000 Zagreb, Croatia
| | - Željko Debeljak
- Institute of Clinical Laboratory Diagnostics, Osijek University Hospital Center, Josipa Huttlera 4, 31000 Osijek, Croatia
- Faculty of Medicine, University J. J. Strossmayer of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Željan Maleš
- Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Botany, University of Zagreb, Schrottova 39, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Interactions of Desmethoxyyangonin, a Secondary Metabolite from Renealmia alpinia, with Human Monoamine Oxidase-A and Oxidase-B. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4018724. [PMID: 29138643 PMCID: PMC5613693 DOI: 10.1155/2017/4018724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/24/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022]
Abstract
Renealmia alpinia (Zingiberaceae), a medicinal plant of tropical rainforests, is used to treat snakebites and other injuries and also as a febrifuge, analgesic, antiemetic, antiulcer, and anticonvulsant. The dichloromethane extract of R. alpinia leaves showed potent inhibition of human monoamine oxidases- (MAOs-) A and B. Phytochemical studies yielded six known compounds, including pinostrobin 1, 4′-methyl ether sakuranetin 2, sakuranetin 3, pinostrobin chalcone 4, yashabushidiol A 5, and desmethoxyyangonin 6. Compound 6 displayed about 30-fold higher affinity for MAO-B than MAO-A, with Ki values of 31 and 922 nM, respectively. Kinetic analysis of inhibition and equilibrium-dialysis dissociation assay of the enzyme-inhibitor complex showed reversible binding of desmethoxyyangonin 6 with MAO-A and MAO-B. The binding interactions of compound 6 in the active site of the MAO-A and MAO-B isoenzymes, investigated through molecular modeling algorithms, confirmed preferential binding of desmethoxyyangonin 6 with MAO-B compared to MAO-A. Selective reversible inhibitors of MAO-B, like desmethoxyyangonin 6, may have important therapeutic significance for the treatment of neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease.
Collapse
|