1
|
Zou C, Cai R, Li Y, Xue Y, Zhang G, Alitongbieke G, Pan Y, Zhang S. β-chitosan attenuates hepatic macrophage-driven inflammation and reverses aging-related cognitive impairment. iScience 2024; 27:110766. [PMID: 39280626 PMCID: PMC11401205 DOI: 10.1016/j.isci.2024.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/13/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Recently, increasing evidence has shown the association between liver abnormal inflammation and cognition impairment, yet their age-related pathogenesis remains obscure. Here, our study provides a potential mechanistic link between liver macrophage excessive activation and neuroinflammation in aging progression. In aged and LPS-injected C57BL/6J mice, systemic administration of β-chitosan ameliorates hepatic macrophage-driven inflammation and reduces peripheral accumulations of TNF-α and IL-1β. Downregulation of circulatory pro-inflammatory cytokines then decreases vascular VCAM1 expression and neuroinflammation in the hippocampus, leading to cognitive improvement in aged/LPS-stimulated mice. Interestingly, β-chitosan treatment also exhibits the beneficial effects on the behavioral recovery of aged/LPS-stimulated zebrafish and Caenorhabditis elegans. In our cell culture and molecular docking experiments, we found that β-chitosan prefers shielding the MD-2 pocket, thus blocking the activation of TLR4-MD-2 complex to suppress NF-κB signaling pathway activation. Together, our findings highlight the extensive therapeutic potential of β-chitosan in reversing aged-related/LPS-induced cognitive impairment via the liver-brain axis.
Collapse
Affiliation(s)
- Chenming Zou
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Ruihua Cai
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yunbing Li
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yu Xue
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Guoguang Zhang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Gulimiran Alitongbieke
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yutian Pan
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Sanguo Zhang
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| |
Collapse
|
2
|
Le AQ, Dang VP, Nguyen ND, Nguyen CT, Nguyen QH. Antibacterial Activity against Escherichia coli and Cytotoxicity of Maillard Reaction Product of Chitosan and Glucosamine Prepared by Gamma Co-60 Ray Irradiation. Polymers (Basel) 2023; 15:4397. [PMID: 38006121 PMCID: PMC10675730 DOI: 10.3390/polym15224397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
In this study, the gamma ray-induced Maillard reaction method was carried out for chitosan (CTS) and glucosamine (GA) to improve the water solubility and antibacterial activity. The mixture solution of CTS and GA was exposed to gamma rays at a dose of 25 kGy and freeze-dried to obtain a Maillard reaction product (MRP) powder. The physicochemical and biological properties of the CTS-GA MRP powder were investigated. The CTS-GA MRP powder expressed good solubility at a concentration of 0.05 g/mL. In addition, the result of the antibacterial activity test against Escherichia coli revealed that the CTS-GA MRP powder exhibited highly antibacterial activity at pH 7; in particular, bacterial density was reduced by over 4 logs. Furthermore, the cytotoxicity test of the CTS-GA MRP powder on mouse fibroblast cells (L929) showed non-cytotoxicity with high cell viability (>90%) at concentrations of 0.1-1 mg/mL. Owing to the high antibacterial activity and low cytotoxicity, the water-soluble CTS-GA MRP powder can be used as a favorable natural preservative for food and cosmetics.
Collapse
Affiliation(s)
- Anh Quoc Le
- Faculty of Biology-Biotechnology, University of Science, Ho Chi Minh City 700000, Vietnam;
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Research and Development Center for Radiation Technology, Vietnam Atomic Energy Institute, Ho Chi Minh City 700000, Vietnam
| | - Van Phu Dang
- Research and Development Center for Radiation Technology, Vietnam Atomic Energy Institute, Ho Chi Minh City 700000, Vietnam
| | - Ngoc Duy Nguyen
- Research and Development Center for Radiation Technology, Vietnam Atomic Energy Institute, Ho Chi Minh City 700000, Vietnam
| | - Chi Thuan Nguyen
- Research and Development Center for Radiation Technology, Vietnam Atomic Energy Institute, Ho Chi Minh City 700000, Vietnam
| | | |
Collapse
|
3
|
Zang X, Gao F, Zhang Z, Shen L, Pan Y. Synergistic effects of electroactive antibacterial material and electrical stimulation in enhancing skin tissue regeneration: A next-generation dermal wound dressing. Skin Res Technol 2023; 29:e13465. [PMID: 38009021 PMCID: PMC10603310 DOI: 10.1111/srt.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/29/2023] [Indexed: 11/28/2023]
Abstract
OBJECTIVE We aimed to develop an electroactive antibacterial material for the treatment of skin wound diseases. METHOD To this aim, we modified chitosan (CS), a biocompatible polymer, by coupling it with graphene (rGO) and an antimicrobial polypeptide DOPA-PonG1. The material's effect on skin injury healing was studied in combination with external electrical stimulation (EEM). The structure, surface composition, and hydrophilicity of the modified CS materials were evaluated using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and contact angle measurements. We studied NIH3T3 cells cultured with modified materials and subjected to EEM to assess viability, adhesion, and tissue repair-related gene expression. RESULTS SEM data demonstrated that rGO was distributed uniformly on the surface of the CS material, increasing surface roughness, and antimicrobial peptides had minimal impact on surface morphology. FTIR confirmed the uniform distribution of rGO and antibacterial peptides on the material surface. Both rGO and DOPA-PonG1 enhanced the hydrophilicity of CS materials, with rGO also improving tensile strength. The dual modification of CS with rGO and DOPA-PonG1 synergistically increased antibacterial efficacy. Cellular events and gene expression relevant to tissue repair process were enhanced by these modifications. Furthermore, EEM accelerated epidermal regeneration more than the material alone. In a rat skin wound model, DOPA-PonG1@CS/rGO dressing combined with electrical stimulation exhibited accelerated healing of skin defect. CONCLUSION Overall, our results demonstrate that CS materials modified with rGO and DOPA-PonG1 have increased hydrophilicity, antibacterial characteristics, and tissue regeneration capacities. This modified material in conjunction with EEM hold promise for the clinical management for dermal wounds.
Collapse
Affiliation(s)
| | - Fei Gao
- Qingdao UniversityQingdaoShandongChina
| | | | - Lin‐Hua Shen
- Department of Trauma Microsurgery970 Hospital of the PLA Joint Logistic Support ForceYantaiShandongChina
| | | |
Collapse
|
4
|
Yu J, Hu N, Hou L, Hang F, Li K, Xie C. Effect of deacetylation of chitosan on the physicochemical, antioxidant and antibacterial properties activities of chitosan-mannose derivatives. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6394-6405. [PMID: 37205788 DOI: 10.1002/jsfa.12715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND The present study investigates the physical, chemical, and antibacterial properties of water-soluble chitosan derivatives. Preparation of the water-soluble chitosan derivatives was performed by the Maillard reaction (MR) between chitosan [with the degree of deacetylation (DD) being 50%, 70%, and 90%] and mannose. No organic reagent was used in the process. Systematic evaluations of the effects of chitosan DD on the reaction extent, the structure, the composition, as well as the physicochemical properties, antioxidant properties, and bacterial inhibitory properties of the finished chitosan-mannose MR products (Mc-mrps), were carried out. RESULTS Based on the experimental data obtained from Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, Pyrolysis-gas chromatography-mass spectrometry analysis, and 1 H-NMR, the Mc-mrps formed from chitosan with different DDs had different structures and components. An increase in the DD of chitosan led to a significant increase in the degree of reaction, color difference (△E), and solubility (P < 0.05). The zeta potential and particle size of the Mc-mrps were also influenced by the DD of chitosan. Additionally, the antimicrobial action against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative bacteria (Escherichia coli and Salmonella typhimurium), as well as antioxidant activity, were enhanced by the incorporation of mannose. This was also achieved by the increase of the DD of chitosan. CONCLUSION The results of the present study suggest that chitosan was derived with mannose to yield a novel, water-soluble polysaccharide with better antioxidant and antimicrobial activities. The DD of chitosan had a significant effect on the properties of the Mc-mrp, which can serve as a reference point for the subsequent preparation and application of such derivatives. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junzhe Yu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Na Hu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Liran Hou
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Fangxue Hang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- Collaborative Innovation Center of Guangxi Sugarcane Industry, Guangxi University, Nanning, China
- Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- Collaborative Innovation Center of Guangxi Sugarcane Industry, Guangxi University, Nanning, China
- Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning, China
| | - Caifeng Xie
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
- Collaborative Innovation Center of Guangxi Sugarcane Industry, Guangxi University, Nanning, China
- Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning, China
| |
Collapse
|
5
|
Viturat S, Thongngam M, Lumdubwong N, Zhou W, Klinkesorn U. Ultrasound-assisted formation of chitosan-glucose Maillard reaction products to fabricate nanoparticles with enhanced antioxidant activity. ULTRASONICS SONOCHEMISTRY 2023; 97:106466. [PMID: 37290152 DOI: 10.1016/j.ultsonch.2023.106466] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
The influence of ultrasonic processing parameters including reaction temperature (60, 70 and 80 °C), time (0, 15, 30, 45 and 60 min) and amplitude (70, 85 and 100%) on the formation and antioxidant activity of Maillard reaction products (MRPs) in a solution of chitosan and glucose (1.5 wt% at mass ratio of 1:1) was investigated. Selected chitosan-glucose MRPs were further studied to determine the effects of solution pH on the fabrication of antioxidative nanoparticles by ionic crosslinking with sodium tripolyphosphate. Results from FT-IR analysis, zeta-potential determination and color measurement indicated that chitosan-glucose MRPs with improved antioxidant activity were successfully produced using an ultrasound-assisted process. The highest antioxidant activity of MRPs was observed at the reaction temperature, time and amplitude of 80 °C, 60 min and 70%, respectively, with ∼ 34.5 and ∼20.2 μg Trolox mL-1 for DPPH scavenging activity and reducing power, respectively. The pH of both MRPs and tripolyphosphate solutions significantly influenced the fabrication and characteristics of the nanoparticles. Using chitosan-glucose MRPs and tripolyphosphate solution at pH 4.0 generated nanoparticles with enhanced antioxidant activity (∼1.6 and ∼ 1.2 μg Trolox mg-1 for reducing power and DPPH scavenging activity, respectively) with the highest percentage yield (∼59%), intermediate particle size (∼447 nm) and zeta-potential ∼ 19.6 mV. These results present innovative findings for the fabrication of chitosan-based nanoparticles with enhanced antioxidant activity by pre-conjugation with glucose via the Maillard reaction aided by ultrasonic processing.
Collapse
Affiliation(s)
- Supapit Viturat
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
| | - Masubon Thongngam
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
| | - Namfone Lumdubwong
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
| | - Weibiao Zhou
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, 117542, Singapore.
| | - Utai Klinkesorn
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; Research Unit on Innovative Technologies for Production and Delivery of Functional Biomolecules, Kasetsart University Research and Development Institute, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand.
| |
Collapse
|
6
|
Lang A, Lan W, Xie J. Preparation and antimicrobial mechanism of Maillard reaction products derived from ε-polylysine and chitooligosaccharides. Biochem Biophys Res Commun 2023; 650:30-38. [PMID: 36773337 DOI: 10.1016/j.bbrc.2023.01.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Chitooligosaccharides can be combined with amino acids or polypeptide to form Maillard reaction products (MRPs) with the antibacterial characteristics through Maillard reaction. This research aims to clarify the structure, antimicrobial effect and mechanism against Shewanella putrefaciens (S. putrefaciens) of ε-polylysine and chitooligosaccharides Maillard reaction products (LC-MRPs). The results of intrinsic fluorescence (IF) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction, proton nuclear magnetic resonance (1H NMR) spectra and scanning electron microscope (SEM) indicated Maillard reaction occurred between ε-polylysine and chitooligosaccharides. The observation of confocal laser scanning microscopy (CLSM), SEM and growth curves of S. putrefaciens evidenced that LC-MRPs have the strongest antibacterial effects. The leakage of alkaline phosphatase (AKP) and lactate dehydrogenase (LDH) implied that LC-MRPs sabotaged bacterial barrier (cell wall and cell membrane). The changes in content of nucleic acids, reactive oxygen species (ROS) level, lipid peroxidation content (LPO), succinate dehydrogenase (SDH) activity and adenosine triphosphate (ATP) content showed LC-MRPs will affect bacterial genetic gene transcription, material and energy metabolism. Therefore, the LC-MRPs were effective antibacterial agents to inhibit S. putrefaciens, which will help to preserve food with S. putrefaciens as the main spoilage bacteria.
Collapse
Affiliation(s)
- Ai Lang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai, 201306, China.
| |
Collapse
|
7
|
Lang A, Lan W, Gu Y, Wang Z, Xie J. Effects of ε-polylysine and chitooligosaccharide Maillard reaction products on quality of refrigerated sea bass fillets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:152-163. [PMID: 35848059 DOI: 10.1002/jsfa.12125] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The Maillard reaction is a promising and safe method for obtaining chitooligosaccharide conjugates with proteins or peptides as food preservatives. This study aims to investigate the moisture state, physicochemical properties, and shelf-life of sea bass fillets treated with ε-polylysine (ε-PL) and chitooligosaccharides (COS), which are Maillard reaction products (LC-MRPs), during refrigerated storage. RESULTS The results of microbiological analysis and confocal laser scanning microscope (CLSM) revealed that LC-MRPs could retard microbial growth effectively. Compared with control, other treated groups could strongly retard the increase in the thiobarbituric acid (TBA) value, the K-value and the total volatile basic nitrogen (TVB-N) value, and also inhibited the softening of texture and the accumulation of biogenic amines in fish. The results of low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) indicate that LC-MRPs could delay the water migration of fillets and increase water holding capacity (WHC). Through sensory evaluation, the application of LC-MRPs increased the shelf-life of refrigerated sea bass fillets for another 9 days. CONCLUSION Maillard reaction products derived from chitooligosaccharides and ε-polylysine have strong potential for preserving sea bass. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ai Lang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Yongji Gu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhicheng Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
8
|
Modification of Jiuzao glutelin with pullulan through Maillard reaction: stability effect in nano-emulsion, in vitro antioxidant properties, and interaction with curcumin. Food Res Int 2022; 161:111785. [DOI: 10.1016/j.foodres.2022.111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/27/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
|
9
|
Peng Z, Zhang Y, Wang H, Gao G, Yu Z, Chong PH, Ding W, Ke L, Zhou J, Rao P, Wang Q. Effects of arginine-glucose Maillard reaction products on the physicochemical and gel properties of chicken myofibrillar protein. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Han JR, Du YN, Song L, Song YK, Yan JN, Jiang XY, Wu HT, Zhu BW. Structural characteristics and improved in vitro hepatoprotective activities of Maillard reaction products of decapeptide IVTNWDDMEK and ribose. J Food Sci 2021; 86:4001-4016. [PMID: 34318481 DOI: 10.1111/1750-3841.15848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/24/2021] [Accepted: 06/13/2021] [Indexed: 11/30/2022]
Abstract
Here, a novel decapeptide IVTNWDDMEK with Maillard reactivity derived from scallop Chlamys farreri mantle was identified. The structural characteristics and in vitro hepatoprotective effects of IVTNWDDMEK conjugated with ribose were further investigated. The changes in decapeptide structures were determined by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), and atomic force microscopy (AFM), and the modification sites induced by Maillard reaction of IVTNWDDMEK and ribose were monitored by high performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS). Maillard reaction products (MRPs) of IVTNWDDMEK-ribose demonstrate hepatoprotective benefits through the suppression of DNA damage and apoptosis induced by oxidative stress in human HepG2 cells in addition to enhancing the antioxidant activities. Moreover, after treatment with decapeptide-ribose MRPs, the activities of cellular antioxidative enzymes, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione reductase (GSH-Rx) were remarkably increased, while the content of malondialdehyde (MDA) was decreased compared with H2 O2 - treated group, thereby enhancing the intracellular antioxidant defenses. These findings demonstrate the potential utilization of decapeptide IVTNWDDMEK-ribose MRPs as food antioxidants to suppress oxidative damage. PRACTICAL APPLICATION: In recent years, several food-derived bioactive peptides and their derivatives are regarded as good dietary antioxidants for reducing oxidative stress and improving liver function. Here, a novel Maillard reactive decapeptide IVTNWDDMEK, identified from scallop mantle hydrolysates by peptidomics in the previous study was synthesized. Then, the correlation between intercellular antioxidant activities and chemical structure changes of IVTNWDDMEK-ribose Maillard reaction conjugates was further studied. The preferable hepatoprotective activities of decapeptide IVTNWDDMEK-ribose MRPs indicated that these MRPs could be potentially utilized as food antioxidants or additives in the production of nutritional foods.
Collapse
Affiliation(s)
- Jia-Run Han
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou Zhejiang, China.,School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China
| | - Yi-Nan Du
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China.,National Engineering Research Center of Seafood, Dalian, P.R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian, P.R. China
| | - Yu-Kun Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China.,National Engineering Research Center of Seafood, Dalian, P.R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian, P.R. China
| | - Jia-Nan Yan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China
| | - Xin-Yu Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China
| | - Hai-Tao Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China.,National Engineering Research Center of Seafood, Dalian, P.R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian, P.R. China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China.,National Engineering Research Center of Seafood, Dalian, P.R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian, P.R. China
| |
Collapse
|
11
|
Water-soluble electrospun strip based on the PVP/PVA/ mint extract modified with chitosan-glucosamine for the improvement of water quality. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Chitosan-Human Bone Composite Granulates for Guided Bone Regeneration. Int J Mol Sci 2021; 22:ijms22052324. [PMID: 33652598 PMCID: PMC7956611 DOI: 10.3390/ijms22052324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
The search for the perfect bone graft material is an important topic in material science and medicine. Despite human bone being the ideal material, due to its composition, morphology, and familiarity with cells, autografts are widely considered demanding and cause additional stress to the patient because of bone harvesting. However, human bone from tissue banks can be used to prepare materials in eligible form for transplantation. Without proteins and fats, the bone becomes a non-immunogenic matrix for human cells to repopulate in the place of implantation. To repair bone losses, the granulate form of the material is easy to apply and forms an interconnected porous structure. A granulate composed of β-tricalcium phosphate, pulverized human bone, and chitosan-a potent biopolymer applied in tissue engineering, regenerative medicine, and biotechnology-has been developed. A commercial encapsulator was used to obtain granulate, using chitosan gelation upon pH increase. The granulate has been proven in vitro to be non-cytotoxic, suitable for MG63 cell growth on its surface, and increasing alkaline phosphatase activity, an important biological marker of bone tissue growth. Moreover, the granulate is suitable for thermal sterilization without losing its form-increasing its convenience for application in surgery for guided bone regeneration in case of minor or non-load bearing voids in bone tissue.
Collapse
|
13
|
Ravindran R, Mitra K, Arumugam SK, Doble M. Preparation of Curdlan sulphate - Chitosan nanoparticles as a drug carrier to target Mycobacterium smegmatis infected macrophages. Carbohydr Polym 2021; 258:117686. [PMID: 33593559 DOI: 10.1016/j.carbpol.2021.117686] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
In this study, curdlan sulphate - chitosan nanoparticles were prepared through polyelectrolyte complexing at a mass ratio of 2:1 respectively. The curdlan was produced by fermentation with Agrobacterium sp. ATCC 31750, which was then sulphated to form the polyanionic polymer. A first-line tuberculosis drug, Rifampicin and a phytochemical, DdPinitol, were encapsulated into Curdlan Sulphate (CS) - Chitosan Nanoparticles (C) (CSC NPs) of size 205.41 ± 7.24 nm. The drug release kinetics followed a Weibull model with initial burst release (48 % Rifampicin and 27 % d-Pinitol within 6 h), followed by a sustained release. The prepared CSC: d-PIN + RIF NPs was cytocompatible and entered the M.smegmatis infected macrophages through multiple endocytic pathways including clathrin, caveolae and macropinocytosis. They showed superior bactericidal activity (2.4-2.7 fold) within 4 h when compared to free drug Rifampicin (1.6 fold). The drug encapsulated CSC: RIF suppressed the pro-inflammatory gene (TNF-α by 3.66 ± 0.19 fold) and CSC: d-PIN + RIF increased expression of the anti-inflammatory gene (IL-10 by 13.09 ± 0.47 fold). Expression of TGF- β1 gene also increased when treated with CSC: d-PIN + RIF (13.00 ± 0.19 fold) which provided the immunomodulatory activity of the encapsulated CSC NPs. Thus, curdlan sulphate - chitosan polyelectrolyte complex can be a potential nanocarrier matrix for intracellular delivery of multiple drugs.
Collapse
Affiliation(s)
- Radhika Ravindran
- Bioengineering and Drug Design Lab, Dept. of Biotechnology, Indian Institute of Technology, Madras, India
| | - Kartik Mitra
- Bioengineering and Drug Design Lab, Dept. of Biotechnology, Indian Institute of Technology, Madras, India
| | - Senthil Kumar Arumugam
- Bioengineering and Drug Design Lab, Dept. of Biotechnology, Indian Institute of Technology, Madras, India
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Dept. of Biotechnology, Indian Institute of Technology, Madras, India.
| |
Collapse
|
14
|
Yang H, Zhang Y, Zhou F, Guo J, Tang J, Han Y, Li Z, Fu C. Preparation, Bioactivities and Applications in Food Industry of Chitosan-Based Maillard Products: A Review. Molecules 2020; 26:molecules26010166. [PMID: 33396532 PMCID: PMC7795806 DOI: 10.3390/molecules26010166] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a biopolymer possessing numerous interesting bioactivities and excellent technological properties, has received great attention from scientists in different fields including the food industry, pharmacy, medicine, and environmental fields. A series of recent studies have reported exciting results about improvement of the properties of chitosan using the Maillard reaction. However, there is a lack of a systemic review about the preparation, bioactivities and applications in food industry of chitosan-based Maillard reaction products (CMRPs). The presence of free amino groups in chitosan allows it to acquire some stronger or new functional properties via the Maillard reaction. The present review aims to focus on the current research status of synthesis, optimization and structural identification of CMRPs. The applications of CMRPs in the food industry are also discussed according to their biological and technological properties such as antioxidant, antimicrobial activities and inducing conformational changes of allergens in food. Some promising directions for future research are proposed in this review, aiming to provide theoretical guidance for the further development of chitosan and its derivatives.
Collapse
Affiliation(s)
- Huijuan Yang
- College of Standardization, China Jiliang University, Hangzhou 310018, China;
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China;
- Correspondence: ; Tel.: +86-150-0134-9082
| | - Fang Zhou
- Fujian University Key Laboratory of Biotechnology for Offshore Resources, Quanzhou Normal University, Quanzhou 362000, China; (F.Z.); (J.G.)
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, China; (J.T.); (Y.H.); (Z.L.)
| | - Juanjuan Guo
- Fujian University Key Laboratory of Biotechnology for Offshore Resources, Quanzhou Normal University, Quanzhou 362000, China; (F.Z.); (J.G.)
| | - Jiajie Tang
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, China; (J.T.); (Y.H.); (Z.L.)
| | - Yanqing Han
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, China; (J.T.); (Y.H.); (Z.L.)
| | - Zhanming Li
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, China; (J.T.); (Y.H.); (Z.L.)
| | - Caili Fu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China;
- Fujian University Key Laboratory of Biotechnology for Offshore Resources, Quanzhou Normal University, Quanzhou 362000, China; (F.Z.); (J.G.)
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, China; (J.T.); (Y.H.); (Z.L.)
| |
Collapse
|
15
|
Cellulose nanocrystals incorporated β-chitosan nanoparticles to enhance the stability and in vitro release of β-galactosidase. Food Res Int 2020; 137:109380. [PMID: 33233082 DOI: 10.1016/j.foodres.2020.109380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/16/2020] [Accepted: 06/02/2020] [Indexed: 11/22/2022]
Abstract
Beta-galactosidase (β-gal), catalyzing the transformation of lactose to glucose and galactose, had been encapsulated in β-chitosan nanoparticles (β-CS NPs) in previous work, but they were prone to aggregation and disscociation, resulting in poor bioavailability of β-gal. Herein, we developed cellulose nanocrystals (CNC, as stabilizers and fillers) stabilized β-gal loaded low molecular weight (LMW) β-CS NPs through ionic gelation technology to enhance enzyme activity and further control in vitro release of β-gal. Results showed that particle size and Zeta potential (ZP) of CNCs stabilized β-gal loaded CS NPs were 143.20 nm and -34.70 mV under the optimal conditions, respectively. Structural analysis were employed to study the incorporation of β-gal and CNC into β-CS NPs. In vitro release study conducted at pH 4.5 and 7.4 showed that both β-gal loaded β-CS NPs and CNC stabilized ones retained the release of β-gal for over 12 h. Moreover, CNC stabilized β-gal loaded β-CS NPs retained higher β-gal activity (81.23%) than that of controls (30%) within 2 h. Therefore, it was indicated that CNC incorporated β-CS NPs could serve as non-toxic and effective carriers of β-gal for the treatment of lactose intolerance.
Collapse
|
16
|
Mondaca-Navarro BA, Torres-Arreola W, Ávila-Villa LA, Villa-Lerma AG, Hernández-Mendoza A, Wall-Medrano A, Ramírez RR. Obtaining glycoconjugates of marine origin via Maillard reaction and their cytotoxic effect: an alternative for the use of animal byproducts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3228-3235. [PMID: 32108339 DOI: 10.1002/jsfa.10359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Protein glycation by Maillard reaction is commonly used to improve the functional and bioactive properties of food proteins. It is also known that this glycation method can be accelerated by heat without the need for chemical reagents that could be harmful to health. In this study, glycoconjugates were obtained from a mixture of connective tissue proteins (CTP) from jumbo squid (Dosidicus gigas) and two different sugars, dextran (DEX; 10 kDa) and glucose (GLU), using protein-to-carbohydrate ratios of 1:2 and 1:3, in solution at 50 °C for 6 h. The glycation products were characterized by means of their physicochemical properties and cytotoxic effect. RESULTS The intensity of the browning measured at A420nm and A294nm in glycoconjugates showed no significant difference (P < 0.05). CTP-DEX (1:2) and CTP-DEX (1:3) were those products with the greatest fluorescence related to the intermediate stage in the Maillard reaction, and also with the highest degree of glycation, which was confirmed using o-phthaldialdehyde assay and Fourier transform infrared analysis. The values of cellular viability for CTP-GLU (1:3), CTP-DEX (1:2, 1:3) as well as CTP (0, 6 h) were around 92-103%. CONCLUSIONS The operational parameters used in the glycation process achieved the formation of glycoconjugates from proteins of D. gigas, showing no cytotoxic effect on the HaCaT cell line. This research proposes an alternative for the modification of proteins and opens the way to future investigations regarding the bioactivity of these macromolecules to have applications for the use of byproducts in food science and technology. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Blanca Areli Mondaca-Navarro
- Laboratorio de Biotecnología y Trazabilidad Molecular de los Alimentos, Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico
| | - Wilfrido Torres-Arreola
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Mexico
| | | | - Alma Guadalupe Villa-Lerma
- Laboratorio de Biotecnología y Trazabilidad Molecular de los Alimentos, Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico
| | - Adrián Hernández-Mendoza
- Laboratorio de Calidad, Autenticidad y Trazabilidad de los Alimentos, Coordinación de Tecnología de Alimentos de Origen Animal (CTAOA), Centro de Investigación en Alimentación y Desarrollo, AC (CIAD), Hermosillo, Mexico
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Mexico
| | - Roberto Rodríguez Ramírez
- Laboratorio de Biotecnología y Trazabilidad Molecular de los Alimentos, Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico
| |
Collapse
|
17
|
Jampafuang Y, Tongta A, Waiprib Y. Impact of Crystalline Structural Differences Between α- and β-Chitosan on Their Nanoparticle Formation Via Ionic Gelation and Superoxide Radical Scavenging Activities. Polymers (Basel) 2019; 11:E2010. [PMID: 31817199 PMCID: PMC6960491 DOI: 10.3390/polym11122010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022] Open
Abstract
α- and β-Chitosan nanoparticles were obtained from shrimp shell and squid pen chitosan with different set of deacetylation degree (%DD) and molecular weight (MW) combinations. After nanoparticle formation via ionic gelation with sodium tripolyphosphate (TPP), the % crystallinity index (%CI) of the α- and β-chitosan nanoparticles were reduced to approximately 33% and 43% of the initial %CI of the corresponding α- and βchitosan raw samples, respectively. Both forms of chitosan and chitosan nanoparticles scavenged superoxide radicals in a dose-dependent manner. The %CI of α- and β-chitosan and chitosan nanoparticles was significantly negatively correlated with superoxide radical scavenging abilities over the range of concentration (0.5, 1, 2 and 3 mg/mL) studied. High %DD, and low MW β-chitosan exhibited the highest superoxide radical scavenging activity (p < 0.05). α- and β-Chitosan nanoparticles prepared from high %DD and low MW chitosan demonstrated the highest abilities to scavenge superoxide radicals at 2.0-3.0 mg/mL (p < 0.05), whereas α-chitosan nanoparticles, with the lowest %CI, and smallest particle size (p < 0.05), prepared from medium %DD, and medium MW chitosan showed the highest abilities to scavenge superoxide radicals at 0.5-1.0 mg/mL (p < 0.05). It could be concluded that α- and β-chitosan nanoparticles had superior superoxide radical scavenging abilities than raw chitosan samples.
Collapse
Affiliation(s)
- Yattra Jampafuang
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Anan Tongta
- Division of Biotechnology, School of Bioresources and Technology, King Mongkut′s University of Technology Thonburi, Bangkok 10150, Thailand
| | - Yaowapha Waiprib
- Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
18
|
Zheng X, He Y, Zhou H, Xiong C. Effects of Chitosan Oligosaccharide–Nisin Conjugates Formed by Maillard reaction on the preservation of
Collichthys niveatus. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaojie Zheng
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
- Wenzhou Academy of Agricultural Sciences Wenzhou PR China
| | - Yue He
- Wenzhou Academy of Agricultural Sciences Wenzhou PR China
| | - Huan Zhou
- Wenzhou Academy of Agricultural Sciences Wenzhou PR China
| | - Chunhua Xiong
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
| |
Collapse
|
19
|
Characterization and antioxidant activity of short linear glucan–lysine nanoparticles prepared by Maillard reaction. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Yu X, Jing Y, Yan F. Chitooligosaccharide–Lysine Maillard Reaction Products: Preparation and Potential Application on Fresh-Cut Kiwifruit. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02284-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
21
|
Khoder M, Gbormoi HK, Ryan A, Karam A, Alany RG. Potential Use of the Maillard Reaction for Pharmaceutical Applications: Gastric and Intestinal Controlled Release Alginate-Albumin Beads. Pharmaceutics 2019; 11:pharmaceutics11020083. [PMID: 30781442 PMCID: PMC6410193 DOI: 10.3390/pharmaceutics11020083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
In this study, bovine serum albumin (BSA) and alginate (ALG) conjugates were synthesized by the Maillard reaction in order to evaluate their potential to develop controlled release drug delivery systems. The progress of the Maillard reaction was evidenced using ultraviolet (UV) absorbance, determination of BSA remaining free amino groups, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). BSA-ALG conjugates possessed enhanced and tunable viscosity, foamability and foam stability. Foam generated from BSA-ALG conjugate solution was used to prepare floating gastroretentive calcium ALG beads. Unlike traditional ALG beads, BSA-ALG foam beads were able to float and sustain the ciprofloxacin (CIP) release in gastric medium. Interestingly, intestinal beads made of ALG, BSA-ALG physical mixture and BSA-ALG conjugate resulted in different release rates and orders of indomethacin (IND) in simulated intestinal fluids; while beads based on a physical mixture of BSA-ALG resulted in a first order sustained release profile, both systems based on ALG and BSA-ALG conjugate displayed zero order sustained release profiles with IND being released at a slower rate from the conjugate beads.
Collapse
Affiliation(s)
- Mouhamad Khoder
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, London KT1 2EE, UK.
| | - Henry K Gbormoi
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, London KT1 2EE, UK.
- Liberia Medicines & Health Products Regulatory Authority (LMHRA), Monrovia, Liberia.
| | - Ali Ryan
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, London KT1 2EE, UK.
| | - Ayman Karam
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, Centre National de la Recherche Scientifique, ENSIP, TSA 51106 Poitiers, France.
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston Upon Thames, London KT1 2EE, UK.
- School of Pharmacy, The University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
22
|
Zhang L, Lu Y, Ye YH, Yang SH, Tu ZC, Chen J, Wang H, Wang HH, Yuan T. Insights into the Mechanism of Quercetin against BSA-Fructose Glycation by Spectroscopy and High-Resolution Mass Spectrometry: Effect on Physicochemical Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:236-246. [PMID: 30567433 DOI: 10.1021/acs.jafc.8b06075] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Quercetin has been reported to suppress protein glycation or the formation of advanced glycation end-products (AGEs), but the inhibition mechanism related to protein structure and glycation sites and the influence on physicochemical properties remain unclear. The aim of the current research was to investigate the mechanism of quercetin against glycation with BSA-fructose as model by spectroscopic and spectrometric techniques. Changes in physicochemical properties were evaluated by antioxidant activity and emulsifying properties. The results indicated that quercetin dose-dependently inhibited the glycation of BSA by attenuating the alteration of conformational structure and microenvironment induced by glycation. It could also suppress the cross-linking or aggregation of glycated BSA, which reflected in the decreased molecular weight determined by SDS-PAGE and MALDI-TOF. Nanoliquid chromatography coupled to Q-Exactive tandem mass spectrometry analysis revealed the mapping of 20, 23, 19, and 19 glycation sites in glycated BSA with 0, 0.5, 1.5, and 3.0 mM quercetin, respectively. Quercetin changed the glycation sites of BSA, but it could not reduce the number greatly. In addition, quercetin reduced the antioxidant ability and increased the emulsifying properties of BSA, while negligible efficiency was observed on the antioxidant activity and emulsifying activity index of glycated BSA.
Collapse
Affiliation(s)
- Lu Zhang
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Yu Lu
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Yun-Hua Ye
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Si-Hang Yang
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , China
| | - Juan Chen
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Hui Wang
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , China
| | - Hong-Hong Wang
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
| | - Tao Yuan
- National R&D Center for Freshwater Fish Processing, and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , China
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, and State Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Urumqi 830011 , China
| |
Collapse
|
23
|
Preparation, characterization and in vitro release of β-galactosidase loaded polyelectrolyte nanoparticles. Int J Biol Macromol 2018; 115:1-9. [PMID: 29649531 DOI: 10.1016/j.ijbiomac.2018.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 01/07/2023]
Abstract
Improving encapsulation efficacy (EE) and bioavailability of β-galactosidase (β-gal) is always a challenge due to its fragility. In this work, β-gal loaded β-chitosan (CS) nanoparticles (NPs) were successfully prepared based on ionic gelation technique and electrostatic attraction for improving its EE and in vitro releasing capacity. The particle size of β-gal loaded low and high molecular weight (LMW and HMW) β-CS NPs reached 584.37 and 652.46nm, with Zeta-potential (ZP) of 26.37 and 16.46mV under the optimal conditions, respectively. In vitro release study conducted at pH4.5 and 7.4 showed that β-gal loaded LMW and HMW β-CS NPs with EE of 68.32 and 58.64% sustained the release of the β-gal over 12h. The β-gal incorporated into β-CS NPs was confirmed with the results of physicochemical and structural properties of β-gal loaded β-CS NPs, and prepared NPs had hardly any cytotoxicity in the range of 0.1-1.0mg/mL. The results indicated that β-gal loaded β-CS NPs could serve as non-toxic delivery carriers for the treatment of lactose intolerance.
Collapse
|
24
|
Yan F, Yu X, Jing Y. Optimized preparation, characterization, and antioxidant activity of chitooligosaccharide-glycine Maillard reaction products. Journal of Food Science and Technology 2017; 55:712-720. [PMID: 29391636 DOI: 10.1007/s13197-017-2982-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 11/29/2022]
Abstract
In this study, chitooligosaccharide (COS) and glycine (Gly) were selected to prepare Maillard reaction products, which were designated COS-Gly-MRPs. Changes in the FTIR and fluorescence spectra confirmed the formation of the COS-Gly-MRPs. Using ferric reducing antioxidant power (FRAP) as a response, the optimal reaction conditions, i.e., a time of 107 min, temperature of 121 °C, pH of 6.0, and nCOS:nGly = 2.5:1, were obtained by one-variable-at-a-time method and by response surface methodology. The resulting COS-Gly-MRPs exhibited much stronger antioxidant activity than their substrates. The FRAP of COS-Gly-MRPs was 32.14 mmol Fe2+/L, and the radical scavenging activity of COS-Gly-MRPs reached 78.6, 89.0, 92.3, and 86.0% for ABTS, superoxide, DPPH, and hydroxyl radicals, respectively. After 7 days of storage, COS-Gly-MRPs-treated fruit juices showed higher antioxidant capacity than those treated with a mixture of COS and Gly.
Collapse
Affiliation(s)
- Fang Yan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130 China
| | - Xueqing Yu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130 China
| | - Yingjun Jing
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130 China
| |
Collapse
|