1
|
Pangua C, Espuelas S, Simón JA, Álvarez S, Martínez-Ohárriz C, Collantes M, Peñuelas I, Calvo A, Irache JM. Enhancing bevacizumab efficacy in a colorectal tumor mice model using dextran-coated albumin nanoparticles. Drug Deliv Transl Res 2024:10.1007/s13346-024-01734-3. [PMID: 39455507 DOI: 10.1007/s13346-024-01734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Bevacizumab is a monoclonal antibody (mAb) that prevents the growth of new blood vessels and is currently employed in the treatment of colorectal cancer (CRC). However, like other mAb, bevacizumab shows a limited penetration in the tumors, hampering their effectiveness and inducing adverse reactions. The aim of this work was to design and evaluate albumin-based nanoparticles, coated with dextran, as carriers for bevacizumab in order to promote its accumulation in the tumor and, thus, improve its antiangiogenic activity. These nanoparticles (B-NP-DEX50) displayed a mean size of about 250 nm and a payload of about 110 µg/mg. In a CRC mice model, these nanoparticles significantly reduced tumor growth and increased tumor doubling time, tumor necrosis and apoptosis more effectively than free bevacizumab. At the end of study, bevacizumab plasma levels were higher in the free drug group, while tumor levels were higher in the B-NP-DEX50 group (2.5-time higher). In line with this, the biodistribution study revealed that nanoparticles accumulated in the tumor core, potentially improving therapeutic efficacy while reducing systemic exposure. In summary, B-NP-DEX can be an adequate alternative to improve the therapeutic efficiency of biologically active molecules, offering a more specific biodistribution to the site of action.
Collapse
Affiliation(s)
- Cristina Pangua
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, Pamplona, 31008, Spain
| | - Socorro Espuelas
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, Pamplona, 31008, Spain
- Institute for Health Research (IdiSNA), Pamplona, 31008, Spain
| | - Jon Ander Simón
- Program in Solid Tumors, CIMA of the University of Navarra, Pamplona, 31008, Spain
| | - Samuel Álvarez
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, Pamplona, 31008, Spain
| | | | - María Collantes
- Radiopharmacy Unit, Clinica Universidad de Navarra, Pamplona, 31008, Spain
- Institute for Health Research (IdiSNA), Pamplona, 31008, Spain
| | - Iván Peñuelas
- Radiopharmacy Unit, Clinica Universidad de Navarra, Pamplona, 31008, Spain
- Translational Molecular Imaging Unit (UNIMTRA), Department of Nuclear Medicine, Clinica Universidad de Navarra, Pamplona, 31008, Spain
- Institute for Health Research (IdiSNA), Pamplona, 31008, Spain
| | - Alfonso Calvo
- Program in Solid Tumors, CIMA of the University of Navarra, Pamplona, 31008, Spain
- Institute for Health Research (IdiSNA), Pamplona, 31008, Spain
| | - Juan M Irache
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, Pamplona, 31008, Spain.
- Institute for Health Research (IdiSNA), Pamplona, 31008, Spain.
| |
Collapse
|
2
|
Ghahremani M, Danafar H, Afshari P, Fazli MM, Bahrami H. Removal of the nalidixic acid antibiotic from aqueous solutions using bovine serum albumin nanoparticles. Sci Rep 2024; 14:24105. [PMID: 39406798 PMCID: PMC11480412 DOI: 10.1038/s41598-024-74165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The presence of antibiotic pollutants in water and wastewater can cause significant risks to the environment in different aspects. Therefore, antibiotics need to be removed from water. This study investigates the adsorption of nalidixic acid (NA), a common antibiotic, using bovine serum albumin nanoparticles (BSA NPs). These NPs were synthesized via desolvation technique and characterized using SEM, DLS, FT-IR, and UV-Vis spectroscopy. The effects of adsorbent dosage (0.02-0.9 mg), initial NA concentration (30-80 mg L- 1) and contact time (0.5-24 h) on adsorption efficiency were considered. Adsorption isotherms and kinetics were determined experimentally. The Freundlich isotherm best described the adsorption equilibrium, while the pseudo-second-order kinetic model accurately represented the adsorption process. Thermodynamic parameters confirmed the spontaneous and exothermic nature of NA adsorption onto BSA NPs. Under optimal conditions, BSA NPs achieved a removal efficiency of 75% for NA with a maximum adsorption capacity of 240 mg g- 1. These results demonstrate the potential of BSA NPs as an effective adsorbent for removing NA from aqueous solutions.
Collapse
Affiliation(s)
| | - Hossein Danafar
- Zanjan Pharmaceutical Nanootechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Parastoo Afshari
- Department of Chemistry, University of Zanjan, Zanjan, 38791-45371, Iran
| | - Mehran Mohammadian Fazli
- Department of Environmental Health Engineering, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Bahrami
- Department of Chemistry, University of Zanjan, Zanjan, 38791-45371, Iran.
| |
Collapse
|
3
|
Mardikasari SA, Katona G, Csóka I. Serum Albumin in Nasal Drug Delivery Systems: Exploring the Role and Application. Pharmaceutics 2024; 16:1322. [PMID: 39458651 PMCID: PMC11510880 DOI: 10.3390/pharmaceutics16101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The application of serum albumin in various types of formulations has emerged as a valuable option in biomedical research, especially in the field of nasal drug delivery systems. A serum albumin-based carrier system has been employed due to several benefits, such as enhancing drug solubility and stability, generating the desired controlled release profile, and developing favorable properties with respect to the challenges in nasal conditions, which, in this case, involves hindering rapid elimination due to nasal mucociliary clearance. Accordingly, considering the important role of serum albumin, in-depth knowledge related to its utilization in preparing nasal drug formulation is highly encouraged. This review aimed to explore the potential application of serum albumin in fabricating nasal drug formulations and its crucial role and functionality regarding the binding interaction with nasal mucin, which significantly determines the successful administration of nasal drug formulations.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary; (S.A.M.); (I.C.)
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary; (S.A.M.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary; (S.A.M.); (I.C.)
| |
Collapse
|
4
|
Ganguly SC, Mahanti B, Ganguly S, Majumdar S. Bovine serum albumin as a nanocarrier for efficient encapsulation of hydrophobic garcinol-A strategy for modifying the in vitro drug release kinetics. Int J Biol Macromol 2024; 278:134651. [PMID: 39134200 DOI: 10.1016/j.ijbiomac.2024.134651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Garcinia indica, known as kokum, has been extensively researched for its therapeutic potential. Among the wide variety of phytoconstituents, garcinol is the most efficacious, holding anti-inflammatory, anti-cancer, and anti-diabetic properties. Hydrophobicity and a certain level of toxicity have constrained the drug's application and necessitated a modified dosage form design. The drug has been well explored in the form of extracts but bears very limited application in dosage forms. These prompted in implementation of protein polymers, due to non-toxicity, biocompatibility, and biodegradability. BSA encapsulates the drug, by the desolvation method. The unavailability of past exploration of garcinol with protein polymer accelerated the novelty of this study, to improve the solubility and bioavailability of the drug, modify the drug release kinetics, and ascertain the effectiveness of the NPs to combat inflammation in-vitro. NPs were characterized and satisfactory outcomes were retrieved in terms of all characterizations. The drug release studies depicted a sustained release of up to 85 % over 16 h, ensuring that garcinol can be modulated to give a desired scale of modified release. In vitro cellular uptake studies suggested a substantial uptake of NPs in cell lines and its effectiveness to mitigate inflammation was affirmed by in-vitro anti-inflammatory studies, using ELISA.
Collapse
Affiliation(s)
- Shayeri Chatterjee Ganguly
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata 700125, West Bengal, India; School of Pharmacy, Techno India, University, Saltlake, Sector V, Kolkata 700091, West Bengal, India
| | - Beduin Mahanti
- School of Pharmacy, Techno India, University, Saltlake, Sector V, Kolkata 700091, West Bengal, India
| | - Soumya Ganguly
- TCG Lifesciences, Pvt. Ltd. Sector V, Kolkata 700091, West Bengal, India
| | - Subhabrota Majumdar
- Calcutta Institute of Pharmaceutical Technology & Allied Health Sciences, Howrah 711316, West Bengal, India.
| |
Collapse
|
5
|
Fei Y, Li X, Lv Z, Liu Z, Xie Y, Chen J, Li W, Liu X, Guo H, Liu H, Zhang Z, Wang X, Fan J, Hu C, Jin X, Jiang R, Xu N, Xia J, Li Y, Shi D. Promoting chondrogenesis by targeted delivery to the degenerating cartilage in early treatment of osteoarthritis. Bioact Mater 2024; 40:624-633. [PMID: 39247402 PMCID: PMC11377143 DOI: 10.1016/j.bioactmat.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Osteoarthritis (OA) is a highly incident total joint degenerative disease with cartilage degeneration as the primary pathogenesis. The cartilage matrix is mainly composed of collagen, a matrix protein with a hallmark triple-helix structure, which unfolds with collagen degradation on the cartilage surface. A collagen hybridizing peptide (CHP) is a synthetic peptide that binds the denatured collagen triple helix, conferring a potential disease-targeting possibility for early-stage OA. Here, we constructed an albumin nanoparticle (An) conjugated with CHP, loaded with a chondrogenesis-promoting small molecule drug, kartogenin (KGN). The CHP-KGN-An particle exhibited sustained release of KGN in vitro and prolonged in vivo retention selectively within the degenerated cartilage in the knee joints of model mice with early-stage OA. Compared to treatment with KGN alone, CHP-KGN-An robustly attenuated cartilage degradation, synovitis, osteophyte formation, and subchondral bone sclerosis in OA model mice and exhibited a more prominent effect on physical activity improvement and pain alleviation. Our study showcases that targeting the degenerated cartilage by collagen hybridization can remarkably promote the efficacy of small molecule drugs and may provide a novel delivery strategy for early-stage OA therapeutics.
Collapse
Affiliation(s)
- Yuxiang Fei
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Xiaojing Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, PR China
| | - Zhongyang Lv
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China
| | - Zizheng Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Ya Xie
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Jiaqi Chen
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Weitong Li
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Xiyu Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Hu Guo
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Huan Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Zhaofeng Zhang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Xunhao Wang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Jingjing Fan
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Chunqing Hu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Xiaoyu Jin
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Ruiyang Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Nuo Xu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR China
| | - Yang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, PR China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| |
Collapse
|
6
|
Prakash A, Marwah M, Mehta D, Chaudhuri TK, Ojha H, Agrawala PK. Biophysical studies of the binding of histone deacetylase inhibitor (Trichostatin-A) with bovine serum albumin. J Biomol Struct Dyn 2024; 42:7897-7905. [PMID: 37578048 DOI: 10.1080/07391102.2023.2246071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023]
Abstract
Trichostatin A (TSA), a potential radiomitigator in pre-clinical models, inhibits the class I and II mammalian histone deacetylase (HDAC) enzyme family preferentially. In the current study, the ADME assessment of TSA was explored in terms of its binding affinity for serum protein via spectroscopic and molecular docking techniques. Fluorescence spectroscopy was used to examine changes in the protein microenvironment, and affinity was quantified in terms of binding constant and stoichiometry. Post binding conformational changes were observed using circular dichroism (CD) and UV-Visible spectroscopy. Specific binding was visualized using molecular docking to support experimental studies. UV-vis spectra demonstrated a blue shift in the interaction of TSA to BSA. The calculated binding constants ranged from 3.10 to 0.78 x 10 5(M-1) and quenching constants from 2.75 to 2.15 x 104 (l mol-1), indicating TSA has a strong binding affinity for BSA. Based on the FRET theory, the distance between BSA (donor) and TSA (acceptor) was calculated to be 2.83 nm. The Stern-Volmer plot revealed (Ksv) static quenching. Thermodynamic parameters were calculated, and a negative ΔG value showed that the interaction is spontaneous. The CD spectra analysis further revealed a change in the protein's secondary structure, indicating TSA-BSA interaction. The molecular docking studies also indicated strong binding affinity of TSA with BSA. The results indicate that good bio-availability of TSA is possible because of the spontaneous and strong binding affinity with BSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anu Prakash
- Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India
| | - Mansi Marwah
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Devanshu Mehta
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Himanshu Ojha
- Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India
| | - Paban K Agrawala
- Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India
| |
Collapse
|
7
|
Hasan HJ, Ghareeb MM. Optimizing Desolvation Conditions for Glutathione-Cross-Linked Bovine Serum Albumin Nanoparticles: Implication for Intravenous Drug Delivery. Cureus 2024; 16:e69514. [PMID: 39416524 PMCID: PMC11481410 DOI: 10.7759/cureus.69514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Protein-based nanocarriers, particularly albumin nanoparticles (NPs), offer numerous advantages when compared to other nanomaterials. These carriers are characterized by biocompatibility, biodegradability, reduced immunogenicity, and decreased cytotoxicity. Moreover, proteins possess an inherent ability to target tumor cells directly or indirectly. AIM This study aims to investigate the impact of various organic solvents on the characteristics of synthesized bovine serum albumin NPs (BSA NPs). METHOD BSA NPs were produced using methanol, acetone, ethanol, dimethylsulfoxide (DMSO), and acetonitrile through the desolvation technique to achieve particles of acceptable size. Dynamic light scattering (DLS), blood compatibility assays, polyacrylamide gel electrophoresis (PAGE), and size exclusion chromatography (SEC) were employed to elucidate the properties of the generated NPs. The cytotoxicity of BSA NPs prepared under different conditions was assessed using Michigan Cancer Foundation - Mammary Adenocarcinoma - Breast Cancer 231 cells (MDA-MB-231 cells). RESULTS The particle size of the synthesized NPs varied based on the organic solvent utilized, with the smallest size of 114.2 nm observed with methanol. Blood compatibility results indicated no abnormal interactions between BSA NPs and blood components. PAGE analysis revealed a strong band near 72 kDa for untreated BSA and BSA treated with all organic solvents. In SEC, the retention time of native albumin was 6.65 min, while the average retention times of the prepared BSA NPs ranged from 5.14 to 5.21 min, showing similarity to the native protein. Except for NPs produced with methanol and acetonitrile, cytotoxicity testing on MDA-MB-231 cells demonstrated no significant harmful effects at various concentrations (0-500 μg/mL). CONCLUSION The choice of desolvating agent significantly influences the size of BSA NPs. Various factors, such as solvent characteristics like hydrogen bonds, polarity, dielectric constant, and functional groups, can affect the particle size and structure of BSA NPs. The compatibility of cross-linked BSA NPs with blood components suggests their potential for intravenous drug delivery applications.
Collapse
Affiliation(s)
- Hamid J Hasan
- Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Oncology Teaching Hospital - Medical City, Baghdad, IRQ
| | - Mowafaq M Ghareeb
- Department of Pharmaceutics, College of Pharmacy, University of Baghdad, Baghdad, IRQ
| |
Collapse
|
8
|
Radomska K, Lebelt L, Wolszczak M. Aggregation of Albumins under Reductive Radical Stress. Int J Mol Sci 2024; 25:9009. [PMID: 39201695 PMCID: PMC11354859 DOI: 10.3390/ijms25169009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
The reactions of radicals with human serum albumin (HSA) under reductive stress conditions were studied using pulse radiolysis and photochemical methods. It was proved that irradiation of HSA solutions under reductive stress conditions results in the formation of stable protein aggregates. HSA aggregates induced by ionizing radiation are characterized by unique emission, different from the UV emission of non-irradiated solutions. The comparison of transient absorption spectra and the reactivity of hydrated electrons (eaq-) with amino acids or HSA suggests that electron attachment to disulfide bonds is responsible for the transient spectrum recorded in the case of albumin solutions. The reactions of eaq- and CO2•- with HSA lead to the formation of the same products. Recombination of sulfur-centered radicals plays a crucial role in the generation of HSA nanoparticles, which are stabilized by intermolecular disulfide bonds. The process of creating disulfide bridges under the influence of ionizing radiation is a promising method for the synthesis of biocompatible protein nanostructures for medical applications. Our Raman spectroscopy studies indicate strong modification of disulfide bonds and confirm the aggregation of albumins as well. Low-temperature measurements indicate the possibility of electron tunneling through the HSA protein structure to specific CyS-SCy bridges. The current study showed that the efficiency of HSA aggregation depends on two main factors: dose rate (number of pulses per unit time in the case of pulse radiolysis) and the temperature of the irradiated solution.
Collapse
Affiliation(s)
- Karolina Radomska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, 93-590 Lodz, Poland;
- Centre of Papermaking and Printing, Lodz University of Technology, Wolczanska 221, 93-005 Lodz, Poland
| | - Liwia Lebelt
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Marian Wolszczak
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, 93-590 Lodz, Poland;
| |
Collapse
|
9
|
Liang A, Lv T, Pan B, Zhu Z, Haotian R, Xie Y, Sun L, Zhang J, Luo A. Dynamic simulation and experimental studies of molecularly imprinted label-free sensor for determination of milk quality marker. Food Chem 2024; 449:139238. [PMID: 38583401 DOI: 10.1016/j.foodchem.2024.139238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Bovine serum albumin (BSA) has emerged as a biomarker for mammary gland health and cow quality, being recognized as a significant allergenic protein. In this study, a novel flexible molecular imprinted electrochemical sensor by surface electropolymerization using pyrrole (Py) as functional monomer, which can be better applied to the detection of milk quality marker BSA. Based on computational results, with regard to all polypyrrole (PPy) conformations and amino-acid positions within the protein, the BSA molecule remained firmly embedded into PPy polymers with no biological changes. The molecular imprinted electrochemical sensor displayed a broad linear detection range from 1.0 × 10-4 to 50 ng·mL-1 (R2 = 0.995) with a low detection limit (LOD) of 4.5 × 10-2 pg·mL-1. Additionally, the sensor was highly selective, reproducible, stable and recoverable, suggesting that it might be utilized for the evaluation of milk quality.
Collapse
Affiliation(s)
- Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Tianjian Lv
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bingchen Pan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ziyu Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ruilin Haotian
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yao Xie
- Beijing Dawn Aerospace Bio-Tech Co. Ltd, Beijing 100043, China
| | - Liquan Sun
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jiangjiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
10
|
Nafeh AAESAEK, Mohamed IMAEA, Foda MF. Ultrasonication-Assisted Green Synthesis and Physicochemical and Cytotoxic Activity Characterization of Protein-Based Nanoparticles from Moringa oleifera Seeds. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1254. [PMID: 39120359 PMCID: PMC11313732 DOI: 10.3390/nano14151254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Moringa oleifera (M. oleifera) is globally recognized for its medicinal properties and offers high-quality, protein-rich seeds. This study aimed to explore the potential of M. oleifera seeds as a significant source of protein-based nanoparticles (PBNPs) using the ultrasonication technique after desolvation and to evaluate their cytotoxicity in the human leukemia cell line (THP-1) for the first time. The properties of the PBNPs were confirmed by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). The extracted protein from moringa seed cake flour had a significant protein content of 54.20%, and the resulting PBNPs had an average size of 134.3 ± 0.47 nm with a robust zeta potential of -43.15 mV. Notably, our study revealed that PBNPs exhibited cytotoxic potential at high concentrations, especially against the THP-1 human leukemia cell line, which is widely used to study immunomodulatory properties. The inhibitory effect of PBNPs was quantitatively evidenced by a cytotoxicity assay, which showed that a concentration of 206.5 μg mL-1 (log conc. 2.315) was required to inhibit 50% of biological activity. In conclusion, our findings highlight the potential of M. oleifera seeds as a valuable resource in the innovative field of eco-friendly PBNPs by combining traditional medicinal applications with contemporary advancements in protein nanotechnology. However, further studies are required to ensure their biocompatibility.
Collapse
Affiliation(s)
| | | | - Mohamed Frahat Foda
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Liu Y, Li Y, Shen W, Li M, Wang W, Jin X. Trend of albumin nanoparticles in oncology: a bibliometric analysis of research progress and prospects. Front Pharmacol 2024; 15:1409163. [PMID: 39070787 PMCID: PMC11272567 DOI: 10.3389/fphar.2024.1409163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Background Delivery systems based on albumin nanoparticles (NPs) have recently garnered substantial interest in anti-tumor drug development. However, systematic bibliometric analyses in this field remain lacking. This study aimed to analyze the current research status, hotspots, and frontiers in the application of albumin NPs in the field of oncology from a bibliometric perspective. Methods Using the Web of Science Core Collection (WOSCC) as the data source, retrieved articles were analyzed using software, such as VOSviewer 1.6.18 and CiteSpace 6.1.6, and the relevant visualization maps were plotted. Results From 1 January 2000, to 15 April 2024, 2,262 institutions from 67 countries/regions published 1,624 articles related to the application of albumin NPs in the field of oncology. The USA was a leader in this field and held a formidable academic reputation. The most productive institution was the Chinese Academy of Sciences. The most productive author was Youn YS, whereas Kratz F was the most frequently co-cited author. The most productive journal was the International Journal of Nanomedicine, whereas the Journal of Controlled Release was the most co-cited journal. Future research hotspots and frontiers included "rapid and convenient synthesis methods predominated by self-assembly," "surface modification," "construction of multifunctional NPs for theranostics," "research on natural active ingredients mainly based on phenolic compounds," "combination therapy," and "clinical applications." Conclusion Based on our bibliometric analysis and summary, we obtained an overview of the research on albumin NPs in the field of oncology, identified the most influential countries, institutions, authors, journals, and citations, and discussed the current research hotspots and frontiers in this field. Our study may serve as an important reference for future research in this field.
Collapse
Affiliation(s)
- Ye Liu
- Department of Pharmacy, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yi Li
- Department of Pharmacy, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Wei Shen
- Department of Pharmacy, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Min Li
- Department of Pharmacy, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Wen Wang
- Department of Rheumatology and Immunology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Xin Jin
- Department of Pharmacy, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Qu N, Song K, Ji Y, Liu M, Chen L, Lee RJ, Teng L. Albumin Nanoparticle-Based Drug Delivery Systems. Int J Nanomedicine 2024; 19:6945-6980. [PMID: 39005962 PMCID: PMC11246635 DOI: 10.2147/ijn.s467876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
Nanoparticle-based systems are extensively investigated for drug delivery. Among others, with superior biocompatibility and enhanced targeting capacity, albumin appears to be a promising carrier for drug delivery. Albumin nanoparticles are highly favored in many disease therapies, as they have the proper chemical groups for modification, cell-binding sites for cell adhesion, and affinity to protein drugs for nanocomplex generation. Herein, this review summarizes the recent fabrication techniques, modification strategies, and application of albumin nanoparticles. We first discuss various albumin nanoparticle fabrication methods, from both pros and cons. Then, we provide a comprehensive introduction to the modification section, including organic albumin nanoparticles, metal albumin nanoparticles, inorganic albumin nanoparticles, and albumin nanoparticle-based hybrids. We finally bring further perspectives on albumin nanoparticles used for various critical diseases.
Collapse
Affiliation(s)
- Na Qu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Ke Song
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Yating Ji
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mingxia Liu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Lijiang Chen
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Yantai, 264000, People's Republic of China
| |
Collapse
|
13
|
Khakpour S, Hosano N, Moosavi-Nejad Z, Farajian AA, Hosano H. Advancing Tumor Therapy: Development and Utilization of Protein-Based Nanoparticles. Pharmaceutics 2024; 16:887. [PMID: 39065584 PMCID: PMC11279530 DOI: 10.3390/pharmaceutics16070887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Protein-based nanoparticles (PNPs) in tumor therapy hold immense potential, combining targeted delivery, minimal toxicity, and customizable properties, thus paving the way for innovative approaches to cancer treatment. Understanding the various methods available for their production is crucial for researchers and scientists aiming to harness these nanoparticles for diverse applications, including tumor therapy, drug delivery, imaging, and tissue engineering. This review delves into the existing techniques for producing PNPs and PNP/drug complexes, while also exploring alternative novel approaches. The methods outlined in this study were divided into three key categories based on their shared procedural steps: solubility change, solvent substitution, and thin flow methods. This classification simplifies the understanding of the underlying mechanisms by offering a clear framework, providing several advantages over other categorizations. The review discusses the principles underlying each method, highlighting the factors influencing the nanoparticle size, morphology, stability, and functionality. It also addresses the challenges and considerations associated with each method, including the scalability, reproducibility, and biocompatibility. Future perspectives and emerging trends in PNPs' production are discussed, emphasizing the potential for innovative strategies to overcome current limitations, which will propel the field forward for biomedical and therapeutic applications.
Collapse
Affiliation(s)
- Shirin Khakpour
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Nushin Hosano
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Zahra Moosavi-Nejad
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran 1993893973, Iran
| | - Amir A. Farajian
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA;
| | - Hamid Hosano
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan;
| |
Collapse
|
14
|
Lin W, Li A, Qiu L, Huang H, Cui P, Wang J. Albumin Nanoparticles Increase the Efficacy of Doxorubicin Hydrochloride Liposome Injection Based on Threshold Theory. Mol Pharm 2024; 21:2970-2980. [PMID: 38742943 DOI: 10.1021/acs.molpharmaceut.4c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
One of the most significant reasons hindering the clinical translation of nanomedicines is the rapid clearance of intravenously injected nanoparticles by the mononuclear phagocyte system, particularly by Kupffer cells in the liver, leading to an inefficient delivery of nanomedicines for tumor treatment. The threshold theory suggests that the liver's capacity to clear nanoparticles is limited, and a single high dose of nanoparticles can reduce the hepatic clearance efficiency, allowing more nanomedicines to reach tumor tissues and enhance therapeutic efficacy. Building upon this theory, researchers have conducted numerous validation studies based on the same nanoparticle carrier systems. These studies involve the use of albumin nanoparticles to improve the therapeutic efficacy of albumin nanomedicines as well as polyethylene glycol (PEG)-modified liposomal nanoparticles to enhance the efficacy of PEGylated liposomal nanomedicines. However, there is no research indicating the feasibility of the threshold theory when blank nanoparticles and nanomedicine belong to different nanoparticle carrier systems currently. In this study, we prepared two different sizes of albumin nanoparticles by using bovine serum albumin. We used the marketed nanomedicine liposomal doxorubicin hydrochloride injection (trade name: LIBOD, manufacturer: Shanghai Fudan-zhangjiang Biopharmaceutical Co., Ltd.), as the representative nanomedicine. Through in vivo experiments, we found that using threshold doses of albumin nanoparticles still can reduce the clearance rate of LIBOD, prolong its time in vivo, increase the area under the plasma concentration-time curve (AUC), and also lead to an increased accumulation of the drug at the tumor site. Furthermore, evaluation of in vivo efficacy and safety further indicates that threshold doses of 100 nm albumin nanoparticles can enhance the antitumor effect of LIBOD without causing harm to the animals. During the study, we found that the particle size of albumin nanoparticles influenced the in vivo distribution of the nanomedicine at the same threshold dose. Compared with 200 nm albumin nanoparticles, 100 nm albumin nanoparticles more effectively reduce the clearance efficiency of LIBOD and enhance nanomedicine accumulation at the tumor site, warranting further investigation. This study utilized albumin nanoparticles to reduce hepatic clearance efficiency and enhance the delivery efficiency of nonalbumin nanocarrier liposomal nanomedicine, providing a new avenue to improve the efficacy and clinical translation of nanomedicines with different carrier systems.
Collapse
Affiliation(s)
- Wei Lin
- School of Petroleum and Chemical Engineering, Changzhou University, Changzhou 213164, P. R. China
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Anyin Li
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Hai Huang
- School of Petroleum and Chemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
15
|
Fan Y, Gan C, Li Y, Kang L, Yi J. Fabrication of bovine serum albumin nanofibrils: Physicochemical characteristics, emulsifying and foaming activities. Int J Biol Macromol 2024; 271:132549. [PMID: 38782331 DOI: 10.1016/j.ijbiomac.2024.132549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Bovine serum albumin nanofibrils (BSNs) were fabricated under thermal treatment (85 °C) at acidic condition (pH 2.0) and the incubation time on the structural, and physicochemical characteristics were probed. The formation and development of BSNs have been detected and confirmed by Thioflavin T (ThT) fluorescence and circular dichroism (CD) measurements. The structural alterations of bovine serum albumin (BSA) have also been investigated using intrinsic fluorescence and Congo red (CGR) UV-vis spectroscopy. Atomic force microscopy (AFM) outcomes displayed the morphologies of BSNs at varied time, with a diameter of about 3 nm and a contour length of about 200 nm at 24 h. The apparent viscosities of BSNs at three different pH were in the following order: pH 3.0 > pH 5.0 > pH 7.0. Emulsifying and foaming properties of BSA were pronouncedly enhanced through fibrillation, which was highly correlated with the interfacial properties and structural characteristics. Highest EAI 54.2 m2/g was attained at 48 h and no pronounced alterations were observed for EAI at 24 h and 48 h. Maximum value of FC was obtained at 48 h for BSA. This study will provide some useful information in understanding the formation of BSNs and broaden their application in food systems as functional food ingredients.
Collapse
Affiliation(s)
- Yuting Fan
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Chao Gan
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanmei Li
- Yining Customs Technology Center, Yining, Xinjiang 835000, China
| | - Ling Kang
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiang Yi
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
16
|
Cao C, Tian L, Li J, Raveendran R, Stenzel MH. Mix and Shake: A Mild Way to Drug-Loaded Lysozyme Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27177-27186. [PMID: 38753304 DOI: 10.1021/acsami.4c05497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Biocompatible nanoparticles as drug carriers can improve the therapeutic efficiency of hydrophobic drugs. However, the synthesis of biocompatible and biodegradable polymeric nanoparticles can be time-consuming and often involves toxic solvents. Here, a simple method for protein-based stable drug-loaded particles with a narrow polydispersity is introduced. In this process, lysozyme is mixed with hydrophobic drugs (curcumin, ellipticine, and dasatinib) and fructose to prepare lysozyme-based drug particles of around 150 nm in size. Fructose is mixed with the drug to generate nanoparticles that serve as templates for the lysozyme coating. The effect of lysozyme on the physicochemical properties of these nanoparticles is studied by transmission electron microscopy (TEM) and scattering techniques (e.g., dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS)). We observed that lysozyme significantly stabilized the curcumin fructose particles for 7 days. Moreover, additional drugs, such as ellipticine and dasatinib, can be loaded to form dual-drug particles with narrow polydispersity and spherical morphology. The results also reveal that lysozyme dual ellipticine/dasatinib curcumin particles enhance the cytotoxicity and uptake on MCF-7 cells, RAW 264.7 cells, and U-87 MG cells due to the larger and rigid hydrophobic core. In summary, lysozyme in combination with fructose and curcumin can serve as a powerful combination to form protein-based stable particles for the delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Cheng Cao
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Linqing Tian
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Joanna Li
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Radhika Raveendran
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
17
|
Jahanban-Esfahlan A, Amarowicz R. Molecularly imprinted polymers for sensing/depleting human serum albumin (HSA): A critical review of recent advances and current challenges. Int J Biol Macromol 2024; 266:131132. [PMID: 38531529 DOI: 10.1016/j.ijbiomac.2024.131132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Human serum albumin (HSA) is an essential biomacromolecule in the blood circulatory system because it carries numerous molecules, including fatty acids (FAs), bilirubin, metal ions, hormones, and different pharmaceuticals, and plays a significant role in regulating blood osmotic pressure. Fluctuations in HSA levels in human biofluids, particularly urine and serum, are associated with several disorders, such as elevated blood pressure, diabetes mellitus (DM), liver dysfunction, and a wide range of renal diseases. Thus, the ability to quickly and accurately measure HSA levels is important for the rapid identification of these disorders in human populations. Molecularly imprinted polymers (MIPs), well known as artificial antibodies (Abs), have been extensively used for the quantitative detection of small molecules and macromolecules, especially HSA, in recent decades. This review highlights major challenges and recent developments in the application of MIPs to detect HSA in artificial and real samples. The fabrication and application of various MIPs for the depletion of HSA are also discussed, as well as different MIP preparation approaches and strategies for overcoming obstacles that hinder the development of MIPs with high efficiency and recognition capability for HSA determination/depletion.
Collapse
Affiliation(s)
- Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran.
| | - Ryszard Amarowicz
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Street Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
18
|
Gagliardi A, Chiarella E, Voci S, Ambrosio N, Celano M, Cristina Salvatici M, Cosco D. DIFUCOSIN: DIclofenac sodium salt loaded FUCOidan-SericIN nanoparticles for the management of chronic inflammatory diseases. Int J Pharm 2024; 655:124034. [PMID: 38531433 DOI: 10.1016/j.ijpharm.2024.124034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
The current investigation emphasizes the use of fucoidan and sericin as dual-role biomaterials for obtaining novel nanohybrid systems for the delivery of diclofenac sodium (DS) and the potential treatment of chronic inflammatory diseases. The innovative formulations containing 4 mg/ml of fucoidan and 3 mg/ml of sericin showed an average diameter of about 200 nm, a low polydispersity index (0.17) and a negative surface charge. The hybrid nanosystems demonstrated high stability at various pHs and temperatures, as well as in both saline and glucose solutions. The Rose Bengal assay evidenced that fucoidan is the primary modulator of relative surface hydrophobicity with a two-fold increase of this parameter when compared to sericin nanoparticles. The interaction between the drug and the nanohybrids was confirmed through FT-IR analysis. Moreover, the release profile of DS from the colloidal systems showed a prolonged and constant drug leakage over time both at pH 5 and 7. The DS-loaded nanohybrids (DIFUCOSIN) induced a significant decrease of IL-6 and IL-1β with respect to the active compound in human chondrocytes evidencing a synergistic action of the individual components of nanosystems and the drug and demonstrating the potential application of the proposed nanomedicine for the treatment of inflammation.
Collapse
Affiliation(s)
- Agnese Gagliardi
- Department of Health Sciences, University "Magna Græcia", 88100 Catanzaro, Italy
| | - Emanuela Chiarella
- Department of Experimental and Clinical Medicine, University "Magna Græcia", 88100 Catanzaro, Italy
| | - Silvia Voci
- Department of Health Sciences, University "Magna Græcia", 88100 Catanzaro, Italy
| | - Nicola Ambrosio
- Department of Health Sciences, University "Magna Græcia", 88100 Catanzaro, Italy
| | - Marilena Celano
- Department of Health Sciences, University "Magna Græcia", 88100 Catanzaro, Italy
| | - Maria Cristina Salvatici
- Institute of Chemistry of Organometallic Compounds (ICCOM)-Electron Microscopy Centre (Ce.M.E.), National Research Council (CNR), 50019, Sesto Fiorentino, Firenze, Italy
| | - Donato Cosco
- Department of Health Sciences, University "Magna Græcia", 88100 Catanzaro, Italy.
| |
Collapse
|
19
|
Bejenaru C, Radu A, Segneanu AE, Biţă A, Ciocîlteu MV, Mogoşanu GD, Bradu IA, Vlase T, Vlase G, Bejenaru LE. Pharmaceutical Applications of Biomass Polymers: Review of Current Research and Perspectives. Polymers (Basel) 2024; 16:1182. [PMID: 38732651 PMCID: PMC11085205 DOI: 10.3390/polym16091182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Polymers derived from natural biomass have emerged as a valuable resource in the field of biomedicine due to their versatility. Polysaccharides, peptides, proteins, and lignin have demonstrated promising results in various applications, including drug delivery design. However, several challenges need to be addressed to realize the full potential of these polymers. The current paper provides a comprehensive overview of the latest research and perspectives in this area, with a particular focus on developing effective methods and efficient drug delivery systems. This review aims to offer insights into the opportunities and challenges associated with the use of natural polymers in biomedicine and to provide a roadmap for future research in this field.
Collapse
Affiliation(s)
- Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (C.B.); (A.R.)
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Maria Viorica Ciocîlteu
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania;
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| | - Ionela Amalia Bradu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
| | - Titus Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Gabriela Vlase
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM–WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania; (I.A.B.); (T.V.); (G.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania; (A.B.); (G.D.M.); (L.E.B.)
| |
Collapse
|
20
|
Hu ZY, Wang WJ, Hu L, Shi JH, Jiang SL. Comprehending the intermolecular interaction of dacomitinib with bovine serum albumin: experimental and theoretical approaches. J Biomol Struct Dyn 2024; 42:3579-3592. [PMID: 37288787 DOI: 10.1080/07391102.2023.2218926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023]
Abstract
Dacomitinib (DAC), as a member of tyrosine kinase inhibitors is primarily used to treat non-small cell lung cancer. The intermolecular interaction between DAC and bovine serum albumin (BSA) was comprehended with the help of experiments and theoretical simulations. The outcomes indicated that DAC quenched the endogenous fluorescence of BSA through static quenching mode. In the binding process, DAC was preferentially inserted into the hydrophobic cavity of BSA subdomain IA (site III), and a fluorescence-free DAC-BSA complex with molar ratio of 1:1 was generated. The outcomes confirmed that DAC had a stronger affinity on BSA and the non-radiative energy transfer occurred in the combination process of two. And, it can be inferred from the outcomes of thermodynamic parameters and competition experiments with 8-aniline-1-naphthalenesulfonic acid (ANS) and D-(+)- sucrose that hydrogen bonds (H-bonds), van der Waals forces (vdW) and hydrophobic forces had a significant impact in inserting DAC into the hydrophobic cavity of BSA. The outcomes from multi-spectroscopic measurements that DAC could affect the secondary structure of BSA, that was, α-helix content decreased slightly from 51.0% to 49.7%. Moreover, the combination of DAC and BSA led to a reduction in the hydrophobicity of the microenvironment around tyrosine (Tyr) residues in BSA while had little influence on the microenvironment of around tryptophan (Trp) residues. The outcomes from molecular docking and molecular dynamics (MD) simulation further demonstrated the insertion of DAC into site III of BSA and hydrogen energy and van der Waals energy were the dominant energy of DAC-BSA stability. In addition, the influence of metal ions (Fe3+, Cu2+, Co2+, etc.) on the affinity of the system was explored.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zhe-Ying Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou, China
| | - Wan-Jun Wang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou, China
| | - Lu Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou, China
| | - Jie-Hua Shi
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou, China
| | - Shao-Liang Jiang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
21
|
Gokara M, Yusuf Zamal M, Lavudiya VS, Subramanyam R. Deciphering the binding mechanism of gingerol molecules with plasma proteins: implications for drug delivery and therapeutic potential. J Biomol Struct Dyn 2024:1-18. [PMID: 38305837 DOI: 10.1080/07391102.2024.2310795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Ginger is a highly valued herb, renowned globally for its rich content of phenolic compounds. It has been traditionally used to treat various health conditions such as cardiovascular diseases, digestive issues, migraines, Alzheimer's disease, tumor reduction and chronic inflammation. Despite its potential medicinal applications, the therapeutic effectiveness of ginger is hindered by its limited availability and low plasma concentration levels. In this study, we explored the interaction of ginger's primary phenolic compounds, specifically 6-gingerol (6 G), 8-gingerol (8 G) and 10-gingerol (10 G), with plasma proteins which are human serum albumin (HSA) and α-1-acid glycoprotein (AGP). These two plasma proteins significantly influence drug distribution and disposition as they are key binding sites for most drugs. Fluorescence emission spectra indicated strong binding of 6, 8 and 10 G with HSA, with binding constants of 2.03 ± 0.01 × 104 M-1, 4.20 ± 0.01 × 104 M-1 and 6.03 ± 0.01 × 106 M-1, respectively. However, the binding of gingerols with AGP was found to be negligible. Molecular displacement by site-specific probes and molecular docking analyses revealed that gingerols bind at the IIA domain, with stability provided by hydrogen bonds, van der Waals forces, conventional hydrogen bonds, carbon-hydrogen bonds, alkyl and Pi-alkyl interactions. Further, the partial unfolding of the protein was observed upon binding the gingerol compound with HSA. In addition, molecular dynamic simulations demonstrated that gingerols remained stable in the subdomain IIA over 100 ns. This stability, coupled with Molecular Mechanics Generalized Born Surface Area indicating free energies of -43.765, -57.504 and -66.69 kcal/mol for 6, 8 and 10 G, respectively, reinforces the robust binding potential of these compounds. Circular dichroism studies suggested that the interaction of gingerols leads to the minimal transformation of HSA secondary structure, with the pattern being 10 G > 8 G > 6 G, a finding further substantiated by root mean square deviation and root mean square fluctuation fluctuations. These results propose that HSA has a stronger affinity to gingerols than AGP, which could have significant implications on the therapeutic circulating levels of gingerols.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahesh Gokara
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Mohammad Yusuf Zamal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Vijay Srinivas Lavudiya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
22
|
Jalan A, Moyon NS. Molecular interactions and binding dynamics of Alpelisib with serum albumins: insights from multi-spectroscopic techniques and molecular docking. J Biomol Struct Dyn 2024; 42:2127-2143. [PMID: 37098825 DOI: 10.1080/07391102.2023.2203256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/10/2023] [Indexed: 04/27/2023]
Abstract
Alpelisib (ALP) is a potent anti-cancer drug showing promising activity against advanced breast cancers. Hence, profound understanding of its binding dynamics within the physiological system is vital. Herein, we have investigated interaction of ALP with human serum albumin (HSA) and bovine serum albumin (BSA) using spectroscopic techniques like absorption, fluorescence, time-resolved, synchronous and 3D-fluorescence, FRET, FT-IR, CD, and molecular docking studies. The intrinsic fluorescence of both BSA and HSA quenched significantly by ALP with an appreciable red shift in its emission maxima. Stern-Volmer analysis showed increase in Ksv with temperature indicating involvement of dynamic quenching process. This was further validated by no significant change in absorption spectrum of BSA and HSA (at 280 nm) upon ALP interaction, and by results of fluorescence time-resolved lifetime studies. ALP exhibited moderately strong binding affinity with BSA (of the order 106 M-1) and HSA (of the order 105 M-1), and the major forces accountable for stabilizing the interactions are hydrophobic forces. Competitive drug binding experiments and molecular docking suggested that ALP binds to site I in subdomain IIA of BSA and HSA. The Förster distance r was found to be less than 8 nm and 0.5 Ro < r < 1.5 Ro which suggests possible energy transfer between donors BSA/HSA and acceptor ALP. Synchronous and 3D-fluoresecnce, FT-IR and CD studies indicated that ALP induces conformational changes of BSA and HSA upon interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ankita Jalan
- Department of Chemistry, National Institute of Technology Silchar, Cachar, Assam, India
| | - N Shaemningwar Moyon
- Department of Chemistry, National Institute of Technology Silchar, Cachar, Assam, India
| |
Collapse
|
23
|
Chen X, Li M, Shao R, Cheng S, Chen J, Xiao Y, Cheng J. Green tea polysaccharide conjugates and bovine serum albumin have a synergistic effect in improving the emulsification ability. Int J Biol Macromol 2024; 257:128692. [PMID: 38092120 DOI: 10.1016/j.ijbiomac.2023.128692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Our previous study revealed that green tea polysaccharide conjugate (gTPC) has emulsion effect, but its emulsifying ability is weak. In order to improve the emulsification ability of gTPC, gTPC and bovine serum albumin (BSA) were combined to form five different mass proportions of the TPC/BSA (TB) complex: TPC/BSA: 5:1, 5:2, 5:3, 5:4, and 5:5 w/w. We observed that the 5:5 w/w TB emulsion was more hydrophobic and surface-active. Furthermore, the emulsions prepared using 50.00 wt% medium-chain triglycerides exhibited the best stability. In addition, the TB emulsion exhibited stability in adverse environments of pH, salt, and heat; in particular, under salt conditions, no significant changes were observed in zeta potential. Subsequently, in vitro simulated digestion experiments were performed to investigate the use of TB emulsions for β-carotene encapsulation. We observed that the encapsulation efficiency for β-carotene was approximately 90.0 %; it was subsequently released in the intestine.
Collapse
Affiliation(s)
- Xiaoqiang Chen
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| | - Mengyang Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Ruixiang Shao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Shuiyuan Cheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jianxin Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuan Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Junhua Cheng
- Hubei Sanhua Ecological Agriculture Technology Development Co., LTD, Huangshi 435112, China
| |
Collapse
|
24
|
Patel H, Li J, Bo L, Mehta R, Ashby CR, Wang S, Cai W, Chen ZS. Nanotechnology-based delivery systems to overcome drug resistance in cancer. MEDICAL REVIEW (2021) 2024; 4:5-30. [PMID: 38515777 PMCID: PMC10954245 DOI: 10.1515/mr-2023-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024]
Abstract
Cancer nanomedicine is defined as the application of nanotechnology and nanomaterials for the formulation of cancer therapeutics that can overcome the impediments and restrictions of traditional chemotherapeutics. Multidrug resistance (MDR) in cancer cells can be defined as a decrease or abrogation in the efficacy of anticancer drugs that have different molecular structures and mechanisms of action and is one of the primary causes of therapeutic failure. There have been successes in the development of cancer nanomedicine to overcome MDR; however, relatively few of these formulations have been approved by the United States Food and Drug Administration for the treatment of cancer. This is primarily due to the paucity of knowledge about nanotechnology and the fundamental biology of cancer cells. Here, we discuss the advances, types of nanomedicines, and the challenges regarding the translation of in vitro to in vivo results and their relevance to effective therapies.
Collapse
Affiliation(s)
- Harsh Patel
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Jiaxin Li
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Letao Bo
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Riddhi Mehta
- St. John’s College of Liberal Arts and Sciences, St. John’s University, New York, NY, USA
| | - Charles R. Ashby
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Shanzhi Wang
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| |
Collapse
|
25
|
Costa-Tuna A, Chaves OA, Loureiro RJS, Pinto S, Pina J, Serpa C. Interaction between a water-soluble anionic porphyrin and human serum albumin unexpectedly stimulates the aggregation of the photosensitizer at the surface of the albumin. Int J Biol Macromol 2024; 255:128210. [PMID: 37992936 DOI: 10.1016/j.ijbiomac.2023.128210] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
The 5,10,15,20-tetrakis(2,6-difluoro-3-sulfophenyl)porphyrin (TDFPPS4) was reported as a potential photosensitizer for photodynamic therapy. The capacity of the photosensitizers to be carried in the human bloodstream is predominantly determined by its extension of binding, binding location, and binding mechanism to human serum albumin (HSA), influencing its biodistribution and ultimately its photodynamic therapy efficacy in vivo. Thus, the present work reports a biophysical characterization on the interaction between the anionic porphyrin TDFPPS4 and HSA by UV-visible absorption, circular dichroism, steady-state, time-resolved, and synchronous fluorescence techniques under physiological conditions, combined with molecular docking calculations and molecular dynamics simulations. The interaction HSA:TDFPPS4 is spontaneous (ΔG° < 0), strong, and enthalpically driven (ΔH° = -70.1 ± 3.3 kJ mol-1) into subdomain IIA (site I). Curiously, despite the porphyrin binding into an internal pocket, about 50 % of TDFPPS4 structure is still accessible to the solvent, making aggregation in the bloodstream possible. In silico calculations were reinforced by spectroscopic data indicating porphyrin aggregation between bound and unbound porphyrins. This results in an adverse scenario for anionic porphyrins to achieve their therapeutical potential as photosensitizers and control of effective dosages. Finally, a trend of anionic porphyrins to have a combination of quenching mechanisms (static and dynamic) was noticed.
Collapse
Affiliation(s)
- Andreia Costa-Tuna
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Otávio A Chaves
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Rui J S Loureiro
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Sara Pinto
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - João Pina
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Carlos Serpa
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|
26
|
Ghadi R, Pandey PK, Gabhale A, Wadikar A, Dharshini M, Kuche K, Date T, Jain S. Genipin-crosslinked albumin nanoparticles containing neratinib and silibinin: A dual-death therapy for triple negative breast cancer. Int J Pharm 2023; 648:123570. [PMID: 37918494 DOI: 10.1016/j.ijpharm.2023.123570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Triple negative breast cancer (TNBC) cells resist chemotherapy by hijacking apoptosis. Alternative cell death forms like ferroptosis offer new treatment options. A combined therapy using neratinib (NTB; ferroptosis inducer) and silibinin (SLB; apoptosis inducer) via albumin-based nanocarriers (N-S Alb NPs) was explored to target TNBC. N-S Alb NPs had optimal size (134.26 ± 10.23 nm), PDI (0.224 ± 0.01), and % entrapment efficiency (∼80 % for NTB and ∼87 % for SLB). Transmission electron microscopy confirmed their spherical shape. In vitro release studies showed sustained drug release without hemolysis risk. N-S Alb NPs had higher cellular uptake and cytotoxicity than individual drugs or their mixture. IC50 values for N-S Alb NPs were significantly reduced in MDA-MB-231 (∼2.23-fold) and 4T1 (∼1.85-fold) cell lines and apoptosis index were significantly higher in MDA-MB-231 (∼1.31-fold) and 4T1 cell line (∼1.35-fold) than the physical mixture of both drugs (NTB + SLB). N-S Alb NPs generated more reactive oxygen species (ROS) and caused mitochondrial membrane depolarization, indicating increased cell death. They also exhibited better ferroptosis induction by reducing glutathione (GSH), increasing Fe2+ activity and MDA levels in TNBC cells. Thus, N-S Alb NPs had the ability to promote "mixed" type cell death, showed promise in enhancing the payload capabilities and targeting in TNBC.
Collapse
Affiliation(s)
- Rohan Ghadi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Pawan Kumar Pandey
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Akash Gabhale
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Aaradhya Wadikar
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - M Dharshini
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Kaushik Kuche
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Tushar Date
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
27
|
Banu A, Naqvi S, Qashqoosh MTA, Manea YK. Multispectroscopic and computational study of interaction of the bovine serum albumin with atropine and atropine-loaded chitosan nanoparticles (synthesized and characterized). J Biomol Struct Dyn 2023; 41:11137-11147. [PMID: 37211826 DOI: 10.1080/07391102.2023.2212802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/12/2022] [Indexed: 05/23/2023]
Abstract
Two different systems of bovine serum albumin (BSA) were used for multiple spectroscopic and computational studies to determine interaction of BSA and atropine (Atrop), that is, BSA-Atrop system and Atrop-loaded chitosan nanoparticles (Atrop@CS NPs), that is, BSA-Atrop@CS NPs system. The study suggests that BSA-Atrop system and BSA-Atrop@CS NPs system involve non-fluorescent complexes of Ksv = 3.2 × 103 Lmol-1 and 3.1 × 104 Lmol-1, kq = 3.2 × 1011 Lmol-1 s-1 and 3.1 × 1012 Lmol-1 s-1, the binding constant Kb = 1.4 × 103 Lmol-1, 2.0 × 102 Lmol-1, respectively, and number of binding sites n ∼ 1 for both the systems. The negligible conformational changes induced in BSA were also observed. Synchronous fluorescence spectroscopic study revealed that more quenching occurred in intrinsic fluorescence of tryptophan (Trp, W) than that in tyrosine residue (Tyr, Y). UV-vis spectroscopic study verified the presence of static quenching from the presence of BSA-Atrop and BSA-Atrop@CS NPs complexes. CD spectra confirmed the conformational changes induced in BSA upon increment of concentrations of Atrop and Atrop@CS NPs separately into the constant concentration of BSA. The coherent observations from various spectroscopic studies were in agreement with those of computational study, showing BSA-Atrop complex formation and other related details. The hydrogen bonds (H-bonds), van der Walls (vdW) interactions and π -type of interactions were mainly involved in stabilization of the formed BSA-Atrop complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Afreen Banu
- Chemistry Section, Women's College, Aligarh Muslim University, Aligarh, India
| | - Saeeda Naqvi
- Chemistry Section, Women's College, Aligarh Muslim University, Aligarh, India
| | | | | |
Collapse
|
28
|
Li Z, Chen R, Qin C, Lu P, Lin J, Zheng W, Xiong Y, Li C. Assessment of the Binding of Pseudallecin A to Human Serum Albumin with Multi-Spectroscopic Analysis, Molecular Docking and Molecular Dynamic Simulation. Chem Biodivers 2023; 20:e202301217. [PMID: 37870539 DOI: 10.1002/cbdv.202301217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/24/2023]
Abstract
The binding of pseudallecin A (PA), a potential antibiotic with strong inhibitory activities against Gram-positive Escherichia coli and Gram-negative Staphylococcus aureus, to human serum albumin (HSA) was explored. The interaction between them was assessed by multi-spectroscopic analysis, binding site competitive analysis, molecular docking and molecular dynamic simulation, showing the results as follows: PA effectively quenched the innate fluorescence of HSA by a static quenching process, formed a complex at a molar ratio of approximately 1 : 1 and performed an effective non-radiative energy transfer; the binding of PA to HSA was a spontaneous exothermic reaction driven by enthalpy with strong affinity and had a slight effect on the conformation of HSA; PA bound at site III of HSA and hydrogen bonds were the major binding forces to maintain the stability of the PA-HSA complex. Molecular dynamic simulation was performed to calculate the root mean square deviation (RMSD), root mean square fluctuation (RMSF) and radius of gyration (Rg) for this complex and effectively supported the spectroscopic outcome. These results meant that the delivery and distribution of PA as a water-insoluble molecule can be efficiently accomplished via HSA in human blood and, it has a good potential for future drug application and pharmacological development.
Collapse
Affiliation(s)
- Ziyang Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Ruolan Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Chan Qin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Peijun Lu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Jiaru Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Wenxu Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Yahong Xiong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| | - Chunyuan Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 510642, Guangzhou, China
| |
Collapse
|
29
|
Peng M, Wang Y, Wu C, Cai X, Wu Y, Du E, Zheng L, Fu J. Investigating sulfonamides - Human serum albumin interactions: A comprehensive approach using multi-spectroscopy, DFT calculations, and molecular docking. Biochem Biophys Res Commun 2023; 683:149108. [PMID: 37862782 DOI: 10.1016/j.bbrc.2023.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
The environmental and health risks associated with sulfonamide antibiotics (SAs) are receiving increasing attention. Through multi-spectroscopy, density functional theory (DFT), and molecular docking, this study investigated the interaction features and mechanisms between six representative SAs and human serum albumin (HSA). Multi-spectroscopy analysis showed that the six SAs had significant binding capabilities with HSA. The order of binding constants at 298 K was as follows: sulfadoxine (SDX): 7.18 × 105 L mol-1 > sulfamethizole (SMT): 6.28 × 105 L mol-1 > sulfamerazine (SMR): 2.70 × 104 L mol-1 > sulfamonomethoxine (SMM): 2.54 × 104 L mol-1 > sulfamethazine (SMZ): 3.06 × 104 L mol-1 > sulfadimethoxine (SDM): 2.50 × 104 L mol-1. During the molecular docking process of the six SAs with HSA, the binding affinity range is from -7.4 kcal mol-1 to -8.6 kcal mol-1. Notably, the docking result of HSA-SDX reached the maximum of -8.6 kcal mol-1, indicating that SDX may possess the highest binding capacity to HSA. HSA-SDX binding, identified as a static quenching and exothermic process, is primarily driven by hydrogen bonds (H bonds) or van der Waals (vdW) interactions. The quenching processes of SMR/SMZ/SMM/SDX/SMT to HSA are a combination of dynamic and static quenching, indicating an endothermic reaction. Hydrophobic interactions are primarily accountable for SMR/SMZ/SMM/SDX/SMT and HSA binding. Competition binding results revealed that the primary HSA-SAs binding sites are in the subdomain IB of the HAS structure, consistent with the results of molecule docking. The correlation analysis based on DFT calculations revealed an inherent relationship between the structural chemical features of SAs and the binding performance of HSA-SAs. The dual descriptor (DD) and the electrophilic Fukui function were found to have a significant relationship (0.71 and -0.71, respectively) with the binding constants of HSA-SAs, predicting the binding performance of SAs and HSA. These insights have substantial scientific value for evaluating the environmental risks of SAs as well as understanding their impact on biological life activities.
Collapse
Affiliation(s)
- Mingguo Peng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Yicui Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Chunge Wu
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Xuewen Cai
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yao Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou, 213164, China.
| | - Lu Zheng
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Jiajun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
30
|
Mardikasari SA, Katona G, Sipos B, Ambrus R, Csóka I. Preparation and Optimization of Bovine Serum Albumin Nanoparticles as a Promising Gelling System for Enhanced Nasal Drug Administration. Gels 2023; 9:896. [PMID: 37998986 PMCID: PMC10670644 DOI: 10.3390/gels9110896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
Bovine serum albumin (BSA) has been used extensively as a suitable carrier system for alternative drug delivery routes, such as nasal administration. However, the optimization of BSA nanoparticles with respect to their nasal applicability has not been widely studied. The present study focuses on the characterization of BSA nanoparticles prepared using the desolvation method, followed by a gelation process to facilitate intranasal drug delivery. The results demonstrated that the ratio of BSA and the desolvating agent, ethanol, played a critical role in the nanoparticle characteristics of the BSA nanogel matrices (BSA-NGs). Based on the gelling properties, the formulations of BSA-NG 2, BSA-NG 4, and BSA-NG 6 were selected for further investigation. The Raman spectra confirmed that there were no specific changes to the secondary structures of the BSA. The mucoadhesion studies revealed moderately high mucoadhesive properties, with a mucin binding efficiency (MBE) value of around 67%, allowing the dose to avoid elimination due to rapid mucociliary clearance of the nasal passage. Via studying the nexus of the carrier system, BSA-NGs loaded with dexamethasone as a model drug were prepared and evaluated by differential scanning calorimetry (DSC) and thermal gravimetry (TG), ascertaining that no ethanol remained in the samples after the freeze-drying process. Furthermore, the viscosity measurements exhibited moderate viscosity, which is suitable for nasal liquid preparations. The in vitro release studies performed with a simulated nasal electrolyte solution (SNES) medium showed 88.15-95.47% drug release within 4 h. In conclusion, BSA nanoparticle gelling matrices can offer potential, value-added drug delivery carriers for improved nasal drug administration.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (S.A.M.); (B.S.); (R.A.); (I.C.)
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (S.A.M.); (B.S.); (R.A.); (I.C.)
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (S.A.M.); (B.S.); (R.A.); (I.C.)
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (S.A.M.); (B.S.); (R.A.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (S.A.M.); (B.S.); (R.A.); (I.C.)
| |
Collapse
|
31
|
Mahanthappa M, Savanur MA, Ramu J, Tatagar A. Elucidating the significance of molecular interaction between sulphur doped zinc oxide nanoparticles and serum albumin using multispectroscopic approach. J Mol Recognit 2023; 36:e3054. [PMID: 37696651 DOI: 10.1002/jmr.3054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023]
Abstract
Ingenious nanomaterials with improved biocompatibility and multifunctional properties are gaining vital significance in biomedical applications, including advanced drug delivery and nanotheranostics. In a biological system, these nanoparticles interact with serum proteins forming a dynamic corona that affects their biological or toxicological properties producing undesirable effects. Thus, the current study focuses on the synthesis of sulphur-doped zinc oxide nanoparticles (ZnO/S NPs) and characterizing their mechanism of interaction with serum proteins using multispectroscopic approach. ZnO/S NPs were synthesized by employing a co-precipitation approach and characterized using various analytical techniques. The results of interaction studies demonstrated that ZnO/S NPs interact with serum albumins via the static quenching process. Analysis of thermodynamic parameters (ΔG, ΔH and ΔS) revealed that the binding process is spontaneous, exothermic and van der Waals force or hydrogen bonding plays a major role. The interaction of ZnO/S NPs with tyrosine residue in bovine serum albumin was established by synchronous fluorescence spectroscopy. In addition, the results of UV-visible, circular dichroism, Fourier transform infrared, Forster's resonance energy transfer theory and dynamic light scattering spectroscopic studies revealed that the ZnO/S NPs interact with albumin by inducing the conformational changes in secondary structure and reducing the α-helix content.
Collapse
Affiliation(s)
- Mallappa Mahanthappa
- Department of Chemistry, School of Applied Sciences, REVA University, Bangalore, India
| | - Mohammed Azharuddin Savanur
- Department of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Jagadish Ramu
- Department of Chemistry, Maharani's Science College for Women, Mysore, India
- Department of Chemistry, Government First Grade College, Chikkaballapur, India
| | - Asma Tatagar
- Department of Chemistry, SDM College of Engineering and Technology, Dharwad, India
| |
Collapse
|
32
|
Shalaby M, Hamouda D, Khedr SM, Mostafa HM, Saeed H, Ghareeb AZ. Nanoparticles fabricated from the bioactive tilapia scale collagen for wound healing: Experimental approach. PLoS One 2023; 18:e0282557. [PMID: 37862350 PMCID: PMC10588885 DOI: 10.1371/journal.pone.0282557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023] Open
Abstract
The creation of innovative wound-healing nanomaterials based on natural compounds emerges as a top research goal. This research aimed to create a gel containing collagen nanoparticles and evaluate its therapeutic potential for skin lesions. Collagen nanoparticles were produced from fish scales using desolvation techniques. Using SDS PAGE electrophoresis, Fourier transform infrared spectroscopy (FTIR) as well as the structure of the isolated collagen and its similarities to collagen type 1 were identified. The surface morphology of the isolated collagen and its reformulation into nanoparticles were examined using transmission and scanning electron microscopy. A Zeta sizer was used to examine the size, zeta potential, and distribution of the synthesized collagen nanoparticles. The cytotoxicity of the nanomaterials was investigated and an experimental model was used to evaluate the wound healing capability. The overall collagen output from Tilapia fish scales was 42%. Electrophoretic patterns revealed that the isolated collagen included a unique protein with chain bands of 126-132 kDa and an elevated beta band of 255 kDa. When compared to the isolated collagen, the collagen nanoparticles' FTIR results revealed a significant drop in the amide II (42% decrease) and amide III (32% decrease) band intensities. According to SEM analysis, the generated collagen nanoparticles ranged in size from 100 to 350 nm, with an average diameter of 182 nm determined by the zeta sizer. The produced collagen nanoparticles were polydispersed in nature and had an equivalent average zeta potential of -17.7 mV. Cytotoxicity study showed that, when treating fibroblast cells with collagen nanoparticle concentrations, very mild morphological alterations were detected after human skin fibroblasts were treated with collagen nanoparticles 32 μg/ml for 24 hours, as higher concentrations of collagen nanoparticles caused cell detachment. Macroscopical and histological investigations proved that the fabricated fish scale collagen nanoparticles promoted the healing process in comparison to the saline group.
Collapse
Affiliation(s)
- Manal Shalaby
- Medical Biotechnology Department, Institute of Genetic Engineering and Biotechnology, City of Scientific Research and Technological Applications, Alexandria, Egypt
- Centre of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Centre, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, Egypt
| | - Dalia Hamouda
- Medical Biotechnology Department, Institute of Genetic Engineering and Biotechnology, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Shaimaa M. Khedr
- Centre of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Centre, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, Egypt
| | - Haitham M. Mostafa
- Medical Biotechnology Department, Institute of Genetic Engineering and Biotechnology, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt
| | - Ahmed Z. Ghareeb
- Centre of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Centre, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, Egypt
| |
Collapse
|
33
|
Mardikasari SA, Katona G, Budai-Szűcs M, Sipos B, Orosz L, Burián K, Rovó L, Csóka I. Quality by design-based optimization of in situ ionic-sensitive gels of amoxicillin-loaded bovine serum albumin nanoparticles for enhanced local nasal delivery. Int J Pharm 2023; 645:123435. [PMID: 37741560 DOI: 10.1016/j.ijpharm.2023.123435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
A recommended first-line acute bacterial rhinosinusitis (ABR) treatment regimen includes a high dose of orally administered amoxicillin, despite its frequent systemic adverse reactions coupled with poor oral bioavailability. Therefore, to overcome these issues, nasal administration of amoxicillin might become a potential approach for treating ABR locally. The present study aimed to develop a suitable carrier system for improved local nasal delivery of amoxicillin employing the combination of albumin nanoparticles and gellan gum, an ionic-sensitive polymer, under the Quality by Design methodology framework. The application of albumin nanocarrier for local nasal antibiotic therapy means a novel approach by hindering the nasal absorption of the drug through embedding into an in situ gelling matrix, further prolonging the drug release in the nasal cavity. The developed formulations were characterized, including mucoadhesive properties, in vitro drug release and antibacterial activities. Based on the results, 0.3 % w/v gellan gum concentration was selected as the optimal in situ gelling matrix. Essentially, each formulation adequately inhibited the growth of five common nasal pathogens in ABR. In conclusion, the preparation of albumin-based nanoparticles integrated with in situ ionic-sensitive polymer provides promising ability as nanocarrier systems for delivering amoxicillin intranasally for local antibiotic therapy.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary; Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary.
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary
| | - László Orosz
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis str. 6, H-6725 Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis str. 6, H-6725 Szeged, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Tisza Lajos krt. 111, H-6725 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary
| |
Collapse
|
34
|
Tincu (Iurciuc) CE, Andrițoiu CV, Popa M, Ochiuz L. Recent Advancements and Strategies for Overcoming the Blood-Brain Barrier Using Albumin-Based Drug Delivery Systems to Treat Brain Cancer, with a Focus on Glioblastoma. Polymers (Basel) 2023; 15:3969. [PMID: 37836018 PMCID: PMC10575401 DOI: 10.3390/polym15193969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive malignant tumor, and the most prevalent primary malignant tumor affecting the brain and central nervous system. Recent research indicates that the genetic profile of GBM makes it resistant to drugs and radiation. However, the main obstacle in treating GBM is transporting drugs through the blood-brain barrier (BBB). Albumin is a versatile biomaterial for the synthesis of nanoparticles. The efficiency of albumin-based delivery systems is determined by their ability to improve tumor targeting and accumulation. In this review, we will discuss the prevalence of human glioblastoma and the currently adopted treatment, as well as the structure and some essential functions of the BBB, to transport drugs through this barrier. We will also mention some aspects related to the blood-tumor brain barrier (BTBB) that lead to poor treatment efficacy. The properties and structure of serum albumin were highlighted, such as its role in targeting brain tumors, as well as the progress made until now regarding the techniques for obtaining albumin nanoparticles and their functionalization, in order to overcome the BBB and treat cancer, especially human glioblastoma. The albumin drug delivery nanosystems mentioned in this paper have improved properties and can overcome the BBB to target brain tumors.
Collapse
Affiliation(s)
- Camelia-Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Apitherapy Medical Center, Balanesti, Nr. 336-337, 217036 Gorj, Romania;
- Specialization of Nutrition and Dietetics, Faculty of Pharmacy, Vasile Goldis Western University of Arad, Liviu Rebreanu Street, 86, 310045 Arad, Romania
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iasi, Romania;
| |
Collapse
|
35
|
Hsu WH, Ku CL, Lai YR, Wang SSS, Chou SH, Lin TH. Developing targeted drug delivery carriers for breast cancer using glutathione-sensitive doxorubicin-coupled glycated bovine serum albumin nanoparticles. Int J Biol Macromol 2023; 249:126114. [PMID: 37541475 DOI: 10.1016/j.ijbiomac.2023.126114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Incorporation of the nano-based carriers into drug delivery provides a promising alternative to overcome the limitations of the conventional chemotherapy. Doxorubicin (DOXO) is an effective chemotherapeutic drug widely used in chemotherapy for breast cancer treatment. A globular protein bovine serum albumin (BSA) holds great potential as carriers in pharmaceutical applications. This work is aimed at developing the DOXO-coupled glycated BSA nanoparticles via desolvation method for improving the capability of targeting the GLUT5 transporters over-expressed on breast cancer cells. Fructosamine assay and Fourier transform infrared spectroscopy were employed to determine the content of fructosamine structure and structural changes on the surfaces of nanoparticles, respectively. Additionally, the synthesized BSA nanoparticles were further characterized by electron microscopy and dynamic light scattering. Results revealed that the DOXO-coupled glycated BSA nanoparticles were spherically shaped with a hydrodynamic diameter of ~60.74 nm and a ζ-potential of ~ - 42.20 mV. Moreover, the DOXO release behavior of as-synthesized DOXO-coupled glycated BSA nanoparticles was examined under different conditions. Finally, the DOXO-coupled glycated BSA nanoparticles were found to exhibit cytotoxicity toward both MCF-7 and MDA-MB-231 cells. Our findings evidently suggested that the drug-coupled glycated BSA nanoparticles serve as the potential candidates for targeted drug delivery platform used in breast cancer therapy.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chien-Liang Ku
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City 24205, Taiwan
| | - You-Ren Lai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Shiu-Huey Chou
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City 24205, Taiwan.
| | - Ta-Hsien Lin
- Laboratory of Nuclear Magnetic Resonance, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|
36
|
Jiang SL, Hu L, Wu M, Li L, Shi JH. Assessment on binding characteristics of ethiprole and a model protein bovine serum albumin (BSA) through various spectroscopic techniques integrated with computer simulation. J Biomol Struct Dyn 2023; 41:7862-7873. [PMID: 36152999 DOI: 10.1080/07391102.2022.2126398] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
Abstract
To investigate the binding characteristics of pesticide ethiprole (ETP) with serum albumin is of great significance for pathological analysis of pesticide poisoning, gene mutation, and clinical detection. In present work, the binding characteristics of ETP with a model protein BSA has been estimated by means of multi-spectroscopic approaches integrated with computer simulation. The outcomes testified that the intrinsic fluorescence of BSA was mainly quenched by ETP in a static quenching mode and the stable ETP-BSA complex with the stoichiometry of 1:1 and the binding constant of 6.81 × 103 M-1 (298 K) was produced. The outcomes revealed that ETP combined preferentially to the subdomain IIA (Site I) of BSA and caused the decline in the content of α-helix of BSA and the enhancement in the hydrophobicity of environment centered on Trp residues. The outcomes of experimental and theoretical studies provide the sufficient evidence about the driving forces for the complexation of ETP with BSA, which included van der Waals forces (vdW), hydrogen bonding (H-bonding) interaction, and hydrophobicity. Simultaneously, the theoretical calculation results also confirmed the existence of the significant changes in the physicochemical natures of ETP including molecular conformation, dipole moment, frontier orbital energy, and the atomic charge distribution, which was a responsible for the complexation with BSA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shao-Liang Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Lu Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Meng Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Li Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jie-Hua Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
37
|
Famta P, Shah S, Vambhurkar G, Srinivasarao DA, Jain N, Begum N, Sharma A, Shahrukh S, Kumar KC, Bagasariya D, Khatri DK, Singh SB, Srivastava S. Quality by design endorsed fabrication of Ibrutinib-loaded human serum albumin nanoparticles for the management of leukemia. Eur J Pharm Biopharm 2023; 190:94-106. [PMID: 37467865 DOI: 10.1016/j.ejpb.2023.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Ibrutinib (IB), a BCS class II drug suffers from limited aqueous solubility, short half-life and extensive first-pass metabolism. In this project, we aim to recruit the desirable properties of human serum albumin (HSA) as a biocompatible drug carrier to circumvent nanoparticle-associated drawbacks. Quality by design and multivariate analysis was used for the optimization of IB-NPs. Cell culture studies performed on the K562 cell line revealed that the Ibrutinib-loaded HSA NPs demonstrated improved cytotoxicity, drug uptake, and reactive oxygen species generation in the leukemic K562 cells. Cell cycle analysis revealed G2/M phase retention of the leukemia cells. In vitro protein corona and hemolysis studies revealed superior hematological stability compared to the free drug which showed greater than 40 % hemolysis. In vitro drug release studies showed prolonged release profile till 48 h. Pharmacokinetic studies demonstrated a 2.31-fold increase in AUC and an increase in half-life from 0.43 h to 2.887 h with a tremendous reduction in clearance and elimination rate indicating prolonged systemic circulation which is desirable in leukemia. Hence, we conclude that IB-loaded albumin nanoparticles could be a promising approach for the management of leukemia.
Collapse
Affiliation(s)
- Paras Famta
- Pharmaceutical Innovation and Translation Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translation Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translation Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translation Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Naitik Jain
- Pharmaceutical Innovation and Translation Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nusrat Begum
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Pharmaceutical Innovation and Translation Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translation Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translation Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translation Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
38
|
Kim JY, Kim SG, Garagiola U. Relevant Properties and Potential Applications of Sericin in Bone Regeneration. Curr Issues Mol Biol 2023; 45:6728-6742. [PMID: 37623245 PMCID: PMC10453912 DOI: 10.3390/cimb45080426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
The potential of sericin, a protein derived from silkworms, is explored in bone graft applications. Sericin's biocompatibility, hydrophilic nature, and cost-effectiveness make it a promising candidate for enhancing traditional graft materials. Its antioxidant, anti-inflammatory, and UV-resistant properties contribute to a healthier bone-healing environment, and its incorporation into 3D-printed grafts could lead to personalized medical solutions. However, despite these promising attributes, there are still gaps in our understanding. The precise mechanism through which sericin influences bone cell growth and healing is not fully understood, and more comprehensive clinical trials are needed to confirm its long-term biocompatibility in humans. Furthermore, the best methods for incorporating sericin into existing graft materials are still under investigation, and potential allergic reactions or immune responses to sericin need further study.
Collapse
Affiliation(s)
- Jwa-Young Kim
- Department of Oral and Maxillofacial Surgery, Hallym University Kangnam Sacred Heart Hospital, Hallym University Medical Center, Seoul 07441, Republic of Korea;
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 28644, Republic of Korea
| | - Umberto Garagiola
- Biomedical, Surgical and Oral Sciences Department, Maxillofacial and Dental Unit, School of Dentistry, University of Milan, 20122 Milan, Italy;
| |
Collapse
|
39
|
Kolesova EP, Egorova VS, Syrocheva AO, Frolova AS, Kostyushev D, Kostyusheva A, Brezgin S, Trushina DB, Fatkhutdinova L, Zyuzin M, Demina PA, Khaydukov EV, Zamyatnin AA, Parodi A. Proteolytic Resistance Determines Albumin Nanoparticle Drug Delivery Properties and Increases Cathepsin B, D, and G Expression. Int J Mol Sci 2023; 24:10245. [PMID: 37373389 DOI: 10.3390/ijms241210245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Proteolytic activity is pivotal in maintaining cell homeostasis and function. In pathological conditions such as cancer, it covers a key role in tumor cell viability, spreading to distant organs, and response to the treatment. Endosomes represent one of the major sites of cellular proteolytic activity and very often represent the final destination of internalized nanoformulations. However, little information about nanoparticle impact on the biology of these organelles is available even though they represent the major location of drug release. In this work, we generated albumin nanoparticles with a different resistance to proteolysis by finely tuning the amount of cross-linker used to stabilize the carriers. After careful characterization of the particles and measurement of their degradation in proteolytic conditions, we determined a relationship between their sensitivity to proteases and their drug delivery properties. These phenomena were characterized by an overall increase in the expression of cathepsin proteases regardless of the different sensitivity of the particles to proteolytic degradation.
Collapse
Affiliation(s)
- Ekaterina P Kolesova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Vera S Egorova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiia O Syrocheva
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasiia S Frolova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Dmitry Kostyushev
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Anastasiia Kostyusheva
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey Brezgin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Daria B Trushina
- Department of Biomedical Engineering, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, 119333 Moscow, Russia
| | | | - Mikhail Zyuzin
- School of Physics, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
| | - Polina A Demina
- Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, 119333 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Evgeny V Khaydukov
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Federal Scientific Research Center "Crystallography and Photonics", Russian Academy of Sciences, 119333 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrey A Zamyatnin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7X, UK
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
40
|
Zhang L, Guan Q, Tang L, Jiang J, Sun K, Manirafasha E, Zhang M. Effect of Cu 2+ and Al 3+ on the interaction of chlorogenic acid and caffeic acid with serum albumin. Food Chem 2023; 410:135406. [PMID: 36610087 DOI: 10.1016/j.foodchem.2023.135406] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/25/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Despite the phenolic acids' health benefits, their interactions with proteins are still unclear. In this study, the interactions of Bovine Serum Albumin (BSA) with chlorogenic acid (CHA), caffeic acid (CA), and their Al3+, Cu2+ complexes were studied by using circular dichroism (CD) spectroscopy, fluorescence spectroscopy, and UV/Vis spectroscopy. It was found that esterification of carboxyl group of CA with quinic acid increased the binding affinities for BSA. After chelating with Cu2+ and Al3+, both CHA and CA exhibited high binding affinities for BSA. CHA could form CHA-Cu2 and CHA-Al2 complex with Cu2+ and Al3+. The result of CD spectroscopy demonstrated that the binding of CHA and Al3+ with BSA contributed to the folding of BSA secondary structure. In addition, with the presence of CHA, binding with Al3+ could also induce changes in BSA conformation. The binding sites of both CHA and CA were closed to Trp213.
Collapse
Affiliation(s)
- Liangliang Zhang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China.
| | - Qinhao Guan
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China
| | - Lihuan Tang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China
| | - Jianchun Jiang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China; Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China
| | - Emmanuel Manirafasha
- University of Rwanda-College of Education, Rukara Campus Eastern Province, Po Box: 55 Rwamagana-Eastern Province, Kigali, Rwanda
| | - Meng Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224002, China
| |
Collapse
|
41
|
Bayraktar O, Oder G, Erdem C, Kose MD, Cheaburu-Yilmaz CN. Selective Encapsulation of the Polyphenols on Silk Fibroin Nanoparticles: Optimization Approaches. Int J Mol Sci 2023; 24:ijms24119327. [PMID: 37298277 DOI: 10.3390/ijms24119327] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/06/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The present study proposes a method for designing small bioactive nanoparticles using silk fibroin as a carrier to deliver hydrophobic polyphenols. Quercetin and trans-resveratrol, widely distributed in vegetables and plants, are used here as model compounds with hydrophobic properties. Silk fibroin nanoparticles were prepared by desolvation method and using various concentrations of ethanol solutions. The optimization of the nanoparticle formation was achieved by applying Central Composite Design (CCD) and the response surface methodology (RSM). The effects of silk fibroin and ethanol solution concentrations together with the pH on the selective encapsulation of phenolic compounds from a mixture were reported. The obtained results showed that nanoparticles with an average particle size of 40 to 105 nm can be prepared. The optimized system for the selective encapsulation of the polyphenols on the silk fibroin substrate was determined to be 60% ethanol solution and 1 mg/mL silk fibroin concentration at neutral pH. The selective encapsulation of the polyphenols was achieved, with the best results being obtained in the case of resveratrol and quercetin and encapsulation of gallic and vanillic acids being rather poor. Thin-layer chromatography confirmed the selective encapsulation and the loaded silk fibroin nanoparticles exhibited antioxidant activity.
Collapse
Affiliation(s)
- Oguz Bayraktar
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Gizem Oder
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Cansu Erdem
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Merve Deniz Kose
- Department of Chemical Engineering, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Catalina N Cheaburu-Yilmaz
- Laboratory of Physical Chemistry of Polymers, Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
- Biochemistry Division, Department of Chemistry, Faculty of Science, Dokuz Eylul University, 35390 Izmir, Turkey
| |
Collapse
|
42
|
Tran TT, Chua A, Pu S, Park JW, Hadinoto K. Maintaining supersaturation generation and protein integrity of amorphous curcumin-albumin nanoplex during storage by freeze drying with trehalose. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
43
|
Amirinasab M, Dehestani M. Theoretical aspects of interaction of the anticancer drug cytarabine with human serum albumin. Struct Chem 2023:1-9. [PMID: 37363044 PMCID: PMC10052281 DOI: 10.1007/s11224-023-02164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023]
Abstract
Despite diagnostic and therapeutic methods, cancer is a major cause of death worldwide. Since anticancer drugs affect both normal and cancer cells, targeted drug delivery systems can play a key role in reducing the destructive effects of anticancer drugs on normal cells. In this regard, the use of stimulus-sensitive polymers has increased in recent years. This study has attempted to investigate interaction of the anticancer drug cytarabine with a stimuli-sensitive polymer, human serum albumin (HSA), one of the most abundant protein in blood plasma, via computational methods at both body temperature and tumor temperature. For this purpose, molecular docking was performed using Molegro virtual Docker software to select the best ligand in terms of binding energy to simulate molecular dynamics. Then, molecular dynamics simulation was performed on human serum albumin with code (1Ao6) and cytarabine with code (AR3), using Gromacs software and the results were presented in the graphs. The simulations were performed at 310 K (normal cell temperature) and 313 K (cancer cell temperature) in 100 ns. Results showed drug release occurred at a temperature of 313 K. These findings demonstrated the sensitivity of human serum albumin to temperature.
Collapse
Affiliation(s)
- Maryam Amirinasab
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Dehestani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
44
|
Sepehri N, Valipour M, Parchizadeh E, Maghami P. Investigating the Protective Role of Biochaga Drug on Structural Changes of Bovine Serum Albumin in the Presence of Methyl tert-butyl Ether. Protein J 2023; 42:112-124. [PMID: 36905495 DOI: 10.1007/s10930-023-10102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND The health benefits of natural products have a long history. Chaga (Inonotus obliques) is used in traditional medicine and is an essential antioxidant for protecting the body from oxidants. Reactive oxygen species (ROS) are produced routinely due to metabolic processes. However, environmental pollution factors such as methyl tert-butyl ether (MTBE) can increase oxidative stress in the human body. MTBE is widely used as a fuel oxygenator that can harm health. The widespread use of MTBE has posed significant threats to the environment by polluting environmental resources, including groundwater. This compound can accumulate in the bloodstream by inhaling polluted air, with a strong affinity for blood proteins. The primary mechanism of MTBE's harmful effects is ROS production. The use of antioxidants may help reduce MTBE oxidation conditions. The present study proposes that biochaga, as an antioxidant, can reduce MTBE damage in the bovine serum albumin (BSA) structure. METHODS AND RESULTS This study investigated the role of different concentrations of biochaga in the structural change of BSA in the presence of MTBE by biophysical methods such as UV-Vis, fluorescence, FTIR spectroscopy, DPPH radical inhibition method, aggregation test, and molecular docking. Research at the molecular level is critical to investigate the structural change of proteins by MTBE and the protective effect of the ideal dose (2.5 µg/ml) of biochaga. CONCLUSION the results of spectroscopic examinations showed that the concentration of 2.5 µg/ml of biochaga has the least destructive effect on the structure of BSA in the presence and absence of MTBE, and it can play as an antioxidant.
Collapse
Affiliation(s)
- Niloofar Sepehri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoumeh Valipour
- Department of Biology, Faculty of Basic Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Elmira Parchizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
45
|
Zhao P, Huang X, Li Y, Huo X, Feng Q, Zhao X, Xu C, Wang J. An artificialed protein corona coating the surface of magnetic nanoparicles:a simple and efficient method for label antibody. Heliyon 2023; 9:e13860. [PMID: 36923872 PMCID: PMC10008981 DOI: 10.1016/j.heliyon.2023.e13860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Background Protein Corona (PC) of nanoparticles is a structure which composed of one or more layers of proteins adsorbed on the surface of nanomaterials, and the formation of PC is a universal process of spontaneous randomness. We take advantage of the formation principle of the PC, developed a simple and efficient method for label protein to nanoparticles. Methods The artificialed protein corona (APC) on the surface of nanoparticles was synthesized via the artificialed methods of desolvation aggregation and crosslinking with control. Results The dosage of precipitator and the ratio of protein to magnetic nanoparticles (MNPs)(particle size: 3 nm) were optimized, and the core-shell nanoparticles with narrow particle size (particle size: 10 nm) distribution were obtained. The MNPs with APC were characterized by transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). Additionally, a hemolysis test on prepared MNPs was conducted with APC. The presence of APC coating on the surface of MNPs showed an improving effect to reduce the cytotoxicity. Cellular toxicity of MNPs with APC was also investigated on HFF1 cell lines. And the cells survival in the presence of APC coated MNPs and display neither reduced metabolism nor cytostatic effect. The functional test of the MNPs with APC showed that proteins can be modified and labeled onto magnetic nanoparticles and retain their original activity. Conclusions This marking method is gentle and effective. And the properties of the APC propose MNPs as a promising candidate for multifunctional biomedical applications.
Collapse
Affiliation(s)
- Penghua Zhao
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xiaoyan Huang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Yaping Li
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xueping Huo
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Qing Feng
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xiangrong Zhao
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Cuixiang Xu
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Corresponding author. Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710068, China.
| | - Jianhua Wang
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Corresponding author. Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710068, China.
| |
Collapse
|
46
|
Jalali ES, Shojaosadati SA, Hamedi S. Green synthesis of bovine serum albumin/oxidized gum Arabic nanocomposite as pH-responsive carrier for controlled release of piperine and the molecular docking study. Int J Biol Macromol 2023; 225:51-62. [PMID: 36460248 DOI: 10.1016/j.ijbiomac.2022.11.283] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
A safe drug carrier was synthesized by albumin (BSA) and oxidized gum arabic (OGA). Piperine (PIP) was loaded into BSA/OGA nanobiocomposites by desolvation method. A set of experiments were designed by considering different contents of OGA (5, 7.5 and 10 mg) and PIP (1 and 2 mg). The presence of the band at 1600-1660 cm-1 in FTIR spectra revealed the successful interaction between OGA and BSA. PIP2-BSA/OGA5 was selected as a suitable carrier due to its smaller size (<300 nm) and higher loading efficiency (1.5 ± 0.2 %). The encapsulation efficiency of PIP into BSA/OGA5 was 57.6 ± 2 %. The average size, polydispersity index and zeta potential of PIP2-BSA/OGA5 were 292 ± 4.4 nm, 0.185 ± 0.03 and - 24.4 ± 1.7 mV, respectively. SEM and TEM images proved the formation of spherical-shaped nanoparticles. The disappearance of endothermic peak belonging to free PIP in DSC thermogram of PIP2-BSA/OGA5 evidenced its encapsulation into carrier. PIP2-BSA/OGA5 exhibited the sustained drug release. The cell viability of MCF-7 cells after 48 h exposure to BSA/OGA5, PIP2-BSA/OGA5 and free PIP was reported 90 %, 40.1 % and 30.6 %, respectively. The molecular docking study reported that the binding affinity of PIP for BSA/OGA nanocomposite was -8.7 kcal/mol indicating the acceptable stability of the prepared drug carrier.
Collapse
Affiliation(s)
- Elham Saleh Jalali
- Biotechnology Group, Chemical Engineering Faculty, Tarbiat Modares University, P.O. Box: 14115-114, Tehran, Iran
| | - Seyed Abbas Shojaosadati
- Biotechnology Group, Chemical Engineering Faculty, Tarbiat Modares University, P.O. Box: 14115-114, Tehran, Iran.
| | - Sepideh Hamedi
- Bio-refinery Group, Faculty of New Technologies Engineering, Shahid Beheshti University, P.O. Box: 47815-168, Zirab Campus, Tehran, Iran.
| |
Collapse
|
47
|
Chen Y, Liu S, Liao Y, Yang H, Chen Z, Hu Y, Fu S, Wu J. Albumin-Modified Gold Nanoparticles as Novel Radiosensitizers for Enhancing Lung Cancer Radiotherapy. Int J Nanomedicine 2023; 18:1949-1964. [PMID: 37070100 PMCID: PMC10105590 DOI: 10.2147/ijn.s398254] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/01/2023] [Indexed: 04/19/2023] Open
Abstract
Background Considering the strong attenuation of photons and the potential to increase the deposition of radiation, high-atomic number nanomaterials are often used as radiosensitizers in cancer radiotherapy, of which gold nanoparticles (GNPs) are widely used. Materials and Methods We prepared albumin-modified GNPs (Alb-GNPs) and observed their radiosensitizing effects and biotoxicity in human non-small-cell lung carcinoma tumor-bearing mice models. Results The prepared nanoparticles (Alb-GNPs) demonstrated excellent colloidal stability and biocompatibility at the mean size of 205.06 ± 1.03 nm. Furthermore, clone formation experiments revealed that Alb-GNPs exerted excellent radiosensitization, with a sensitization enhancement ratio (SER) of 1.432, which is higher than X-ray alone. Our in vitro and in vivo data suggested that Alb-GNPs enabled favorable accumulation in tumors, and the combination of Alb-GNPs and radiotherapy exhibited a relatively greater radiosensitizing effect and anti-tumor activity. In addition, no toxicity or abnormal irritating response resulted from the application of Alb-GNPs. Conclusion Alb-GNPs can be used as an effective radiosensitizer to improve the efficacy of radiotherapy with minimal damage to healthy tissues.
Collapse
Affiliation(s)
- Yao Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yin Liao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Hanshan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Zhuo Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Yuru Hu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Correspondence: Shaozhi Fu; Jingbo Wu, Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, People’s Republic of China, Tel/Fax +86 8303165696, Email ;
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, People’s Republic of China
| |
Collapse
|
48
|
Zhu R, Liang Y, Luo H, Cao H, Liu Y, Huang S, Xiao Q. Investigations of interaction mechanism and conformational variation of serum albumin affected by artemisinin and dihydroartemisinin. J Mol Recognit 2023; 36:e3000. [PMID: 36315411 DOI: 10.1002/jmr.3000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
In this work, binding interactions of artemisinin (ART) and dihydroartemisinin (DHA) with human serum albumin (HSA) and bovine serum albumin (BSA) were investigated thoroughly to illustrate the conformational variation of serum albumin. Experimental results indicated that ART and DHA bound strongly with the site I of serum albumins via hydrogen bond (H-bond) and van der Waals force and subsequently statically quenched the intrinsic fluorescence of serum albumins through concentration-dependent manner. The quenching abilities of two drugs on the intrinsic fluorescence of HSA were much higher than the quenching abilities of two drugs on the intrinsic fluorescence of BSA. Both ART and DHA, especially DHA, caused the conformational variation of serum albumins and reduced the α-helix structure content of serum albumins. DHA with hydrophilic hydroxyl group bound with HSA more strongly, suggesting the important roles of the chemical polarity and the hydrophilicity during the binding interactions of two drugs with serum albumins. These results reveal the molecular understanding of binding interactions between ART derivatives and serum albumins, providing vital information for the future application of ART derivatives in biological and clinical areas.
Collapse
Affiliation(s)
- Rukui Zhu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China
| | - Yu Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China
| | - Huajian Luo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China
| | - Huishan Cao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China.,State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, People's Republic of China
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China
| |
Collapse
|
49
|
Behjati Hosseini S, Asadzadeh-Lotfabad M, Erfani M, Babayan-Mashhadi F, Mokaberi P, Amiri-Tehranizadeh Z, Saberi MR, Chamani J. A novel vision into the binding behavior of curcumin with human serum albumin-holo transferrin complex: molecular dynamic simulation and multi-spectroscopic perspectives. J Biomol Struct Dyn 2022; 40:11154-11172. [PMID: 34328379 DOI: 10.1080/07391102.2021.1957713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this work, we investigated the simultaneous binding of curcumin (CUR) to human serum albumin (HSA) and human-holo transferrin (HTF) in the roles of binary and ternary systems. The binding affinity and binding site of protein-protein interaction were studied by the methods of multiple spectroscopic and molecular dynamics (MD) simulation. According to the results, the measurements for binding constant of HSA-CUR, HTF-CUR and (HSA-HTF) CUR complexes were observed to be 1.51 × 105, 7.93 × 104 and 1.44 × 105 M-1 respectively. Thermodynamic parameters were considered to be set at three varying temperatures including 298, 303, and 308 K. In conformity to the negative values of ΔH0 and ΔS0 the significant roles of hydrogen binding and van der-Waals forces in the formation of complexes are quiet evident. The binding distance between Trp residues of HSA, HTF and HSA-HTF upon interaction with CUR, were acquired by applying the Förster's theory of non-radioactive energy transfer and reported to be 2.04 nm, 1.78 nm, and 1.86 nm, respectively. In accordance with the conductometry and Resonance light scattering (RLS) results, there were different interaction behaviors among the HSA-HTF complex and CUR in ternary system when being compared to the outcomes of binary system. The secondary structure of all three cases increased as the CUR concentration was intensified, which confirmed the inducement of proteins conformational changes through the application of circular dichroism (CD) technique. The experimental results that were acquired throughout the binding of HSA-CUR, HTF-CUR, and (HSA-HTF) CUR complexes were approved by molecular modeling.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soroush Behjati Hosseini
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Maryam Erfani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Fatemeh Babayan-Mashhadi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Mokaberi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zeinab Amiri-Tehranizadeh
- Department of Medical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
50
|
Wang J, Cheng J. Spectroscopic and molecular docking studies of the interactions of sunset yellow and allura red with human serum albumin. J Food Saf 2022. [DOI: 10.1111/jfs.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jun Wang
- College of Life Science and Technology Hubei Engineering University Xiaogan China
| | - Jing‐jing Cheng
- College of Life Science and Technology Hubei Engineering University Xiaogan China
| |
Collapse
|