1
|
Zhang H, Li Q, Zhou H, Feng M, Zhao Y, Zhou R, Chen L, Tachibana H, Cheng X. Identification and characterization of a carbohydrate recognition domain-like region in Entamoeba histolytica Gal/GalNAc lectin intermediate subunit. Microbiol Spectr 2024; 12:e0053824. [PMID: 39365081 PMCID: PMC11537071 DOI: 10.1128/spectrum.00538-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/06/2024] [Indexed: 10/05/2024] Open
Abstract
Entamoeba histolytica is an enteric protozoan parasite that causes human amebic colitis and extraintestinal abscesses. As a prerequisite for parasite colonization and invasion, adherence of E. histolytica is predominantly mediated by galactose (Gal)- and N-acetyl-d-galactosamine (GalNAc)-inhibitable lectins. The intermediate subunit (Igl) of Gal-/GalNAc-inhibitable lectin is a cysteine-rich protein containing multiple CXXC motifs and is considered a key factor affecting trophozoite's pathogenicity. However, details of the function of Igl during parasite adherence remain unclear. Here, using segmentally expressed Igl proteins and a CHO cell model transfected with Igl fragments, we identified a carbohydrate-recognition domain (CRD)-like region between amino acids 989 and 1,088. Through single- and double-point mutations in the Igl segments, two core CXXC motifs responsible for carbohydrate recognition in the CRD-like region, which are highly conserved among several lectins, were confirmed. In addition to adhesion, the roles of CRD-like region and its core CXXC motifs in various pathogenic effects were further explored. To our knowledge, this is the first report showing an adhesion-related region in E. histolytica Igl. The identification and characterization of this CRD-like region provides further insights into molecular mechanisms underlying E. histolytica pathogenicity and also aids in the determination of a potential drug target in this parasite. IMPORTANCE Entamoeba histolytica adhesion mainly depends on galactose (Gal)-/N-acetyl-d-galactosamine (GalNAc)-inhibitable lectins, subsequently triggering a series of amebic reactions. Among the three subunits of Gal-/GalNAc-inhibitable lectin, heavy subunit and intermediate subunit (Igl) have exhibited lectin activity, but that of Igl remains poorly understood. In this study, we confirmed a carbohydrate-recognition domain (CRD)-like limiting region in E. histolytica Igl and further identified its two core CXXC motifs responsible for carbohydrate recognition. Moreover, the role of Igl's CRD-like region and its CXXC motifs in hemolysis and pathogenic effects was explored. This is the first study to determine an adhesion-related region in E. histolytica Igl protein, providing a new reference direction for subsequent research studies. Since the potential homogeneity of galectin-2 in several mammals and Igl CRD-like region, it could be meaningful to relate the corresponding pathogeneses and phenotypes of these two proteins. Except for adhesion, studies on the involvement of Igl CRD-like region in different parasite-host interactions are also promising.
Collapse
Affiliation(s)
- Hongze Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qingshan Li
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hang Zhou
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanqing Zhao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ruixue Zhou
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lijun Chen
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Yang W, Sun J, Leng J, Li Y, Guo Q, Wang L, Song L. A novel lectin with a distinct Gal_Lectin and CUB domain mediates haemocyte phagocytosis in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105222. [PMID: 38964676 DOI: 10.1016/j.dci.2024.105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Invertebrate lectins exhibit structural diversity and play crucial roles in the innate immune responses by recognizing and eliminating pathogens. In the present study, a novel lectin containing a Gal_Lectin, a CUB and a transmembrane domain was identified from the Pacific oyster Crassostrea gigas (defined as CgGal-CUB). CgGal-CUB mRNA was detectable in all the examined tissues with the highest expression in adductor muscle (11.00-fold of that in haemocytes, p < 0.05). The expression level of CgGal-CUB mRNA in haemocytes was significantly up-regulated at 3, 24, 48 and 72 h (8.37-fold, 12.13-fold, 4.28-fold and 10.14-fold of that in the control group, respectively) after Vibrio splendidus stimulation. The recombinant CgGal-CUB (rCgGal-CUB) displayed binding capability to Mannan (MAN), peptidoglycan (PGN), D-(+)-Galactose and L-Rhamnose monohydrate, as well as Gram-negative bacteria (Escherichia coli, V. splendidus and Vibrio anguillarum), Gram-positive bacteria (Micrococcus luteus, Staphylococcus aureus, and Bacillus sybtilis) and fungus (Pichia pastoris). rCgGal-CUB was also able to agglutinate V. splendidus, and inhibit V. splendidus growth. Furthermore, rCgGal-CUB exhibited the activities of enhancing the haemocyte phagocytosis towards V. splendidus, and the phagocytosis rate of haemocytes was descended in blockage assay with CgGal-CUB antibody. These results suggested that CgGal-CUB served as a pattern recognition receptor to bind various PAMPs and bacteria, and enhanced the haemocyte phagocytosis towards V. splendidus.
Collapse
Affiliation(s)
- Wenwen Yang
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jinyuan Leng
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yinan Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Qiuyan Guo
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- College of Life Sciences, Liaoning Normal University, Dalian, 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
3
|
Tien V, Singh U. Entamoeba histolytica (Amebiasis). PRINCIPLES AND PRACTICE OF PEDIATRIC INFECTIOUS DISEASES 2023:1341-1346.e3. [DOI: 10.1016/b978-0-323-75608-2.00263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Bañuelos C, Betanzos A, Javier-Reyna R, Galindo A, Orozco E. Molecular interplays of the Entamoeba histolytica endosomal sorting complexes required for transport during phagocytosis. Front Cell Infect Microbiol 2022; 12:855797. [PMID: 36389174 PMCID: PMC9647190 DOI: 10.3389/fcimb.2022.855797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 10/06/2022] [Indexed: 08/23/2024] Open
Abstract
Entamoeba histolytica, the causative agent of human amoebiasis, exhibits a continuous membrane remodelling to exert its virulence properties. During this dynamic process, the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery is a key player, particularly in phagocytosis, a virulence hallmark of this parasite. In addition to ESCRT, other molecules contribute to membrane remodelling, including the EhADH adhesin, EhRabs, actin, and the lysobisphosphatidic acid (LBPA). The endocytosis of a prey or molecules induces membrane invaginations, resulting in endosome and multivesicular bodies (MVBs) formation for cargo delivery into lysosomes. Alternatively, some proteins are recycled or secreted. Most of these pathways have been broadly characterized in other biological systems, but poorly described in protozoan parasites. Here, we encompass 10 years of ESCRT research in E. histolytica, highlighting the role of the ESCRT-I and ESCRT-III components and the EhADH and EhVps4-ATPase accessory proteins during phagocytosis. In particular, EhADH exhibits a multifunctional role along the endocytic pathway, from cargo recognition to endosome maturation and lysosomal degradation. Interestingly, the interaction of EhADH with EhVps32 seems to shape a concurrent route to the conventional one for MVBs biogenesis, that could optimize their formation. Furthermore, this adhesin is secreted, but its role in this event remains under study. Other components from the endosomal pathway, such as EhVps23 and LBPA, are also secreted. A proteomic approach performed here, using an anti-LBPA antibody, revealed that some proteins related to membrane trafficking, cellular transport, cytoskeleton dynamics, and transcriptional and translational functions are secreted and associated to LBPA. Altogether, the accumulated knowledge around the ESCRT machinery in E. histolytica, points it out as a dynamic platform facilitating the interaction of molecules participating in different cellular events. Seen as an integrated system, ESCRTs lead to a better understanding of E. histolytica phagocytosis.
Collapse
Affiliation(s)
- Cecilia Bañuelos
- Coordinación General de Programas de Posgrado Multidisciplinarios, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Abigail Betanzos
- Investigadores por Mexico, Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City, Mexico
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Ausencio Galindo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
5
|
Quantitative Proteomics Reveals Metabolic Reprogramming in Host Cells Induced by Trophozoites and Intermediate Subunit of Gal/GalNAc Lectins from Entamoeba histolytica. mSystems 2022; 7:e0135321. [PMID: 35343800 PMCID: PMC9040881 DOI: 10.1128/msystems.01353-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Entamoeba histolytica is an intestinal protozoan parasite with remarkable ability to kill and phagocytose host cells, causing amoebic colitis and extraintestinal abscesses. The intermediate subunit (Igl) of galactose (Gal)- and N-acetyl-d-galactosamine (GalNAc)-specific lectins is considered an important surface antigen involved in the pathogenesis of E. histolytica. Here, we applied mass spectrometry-based quantitative proteomics technology to analyze the protein expression profile changes occurring in host Caco2 cells incubated with E. histolytica trophozoites or stimulated by purified native Igl protein. The expression levels of 1,490 and 489 proteins were significantly altered in the E. histolytica-treated and Igl-treated groups, respectively, among 6,875 proteins totally identified. Intriguingly, central carbon metabolism of host cells was suppressed in both E. histolytica-treated and Igl-treated groups, with evidence of decreased expression levels of several key enzymes, including pyruvate kinase muscle type 2, presenting a Warburg-like effect in host cells. Besides, Igl had potential physical interactions with central carbon metabolism enzymes and the proteolytic degradation family members proteasome subunit alpha and beta, which may be responsible for the degradation of key enzymes in carbon metabolism. These results provided a novel perspective on the pathogenic mechanism of E. histolytica and compelling evidence supporting the important role of Igl in the virulence of E. histolytica. IMPORTANCE Metabolic reprogramming is considered a hallmark of some infectious diseases. However, in amoebiasis, a neglected tropical disease caused by protozoan parasite E. histolytica, metabolic changes in host cells have yet to be proven. In this study, advanced data-independent acquisition mass spectrometry-based quantitative proteomics was applied to investigate the overall host cellular metabolic changes as high-throughput proteomics could measure molecular changes in a cell or tissue with high efficiency. Enrichment analysis of differentially expressed proteins showed biological processes and cellular pathways related to amoeba infection and Igl cytotoxicity. Specifically, central carbon metabolism of host cells was dramatically suppressed in both E. histolytica-treated and Igl-treated groups, indicating the occurrence of a Warburg-like effect induced by trophozoites or Igl from E. histolytica. Distinct differences in ubiquitin-mediated proteolysis, rapamycin (mTOR) signaling pathway, autophagy, endocytosis, and tight junctions provided novel perspectives on the pathogenic mechanism of E. histolytica.
Collapse
|
6
|
Desure S, Mallika A, Roy M, Jyoti A, Kaushik S, Srivastava VK. The flip side of reactive oxygen species in the tropical disease-Amoebiasis. Chem Biol Drug Des 2021; 98:930-942. [PMID: 34519164 DOI: 10.1111/cbdd.13950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
Entamoeba histolytica is the conductive agent of amoebiasis. Upon the parasite's infection, macrophages and neutrophils are activated by interferon γ, IL-13 and tumour necrosis factor. These immune cells then carry out the amoebicidal activity by releasing nitric oxide synthase and reactive oxygen species (ROS). This review talks about the protective and destructive role of ROS in Eh. E. histolytica has defence strategies against oxidative stress which is a result of excess ROS production. They possess antioxidants for their defence such as L-Cysteine, flavodiiron proteins, peroxiredoxin and trichostatin A, which contribute to the parasite's virulence. The ROS are harmful to the host cells as excess ROS production stimulates cell death by mechanisms like apoptosis and necroptosis. NADPH oxidase (NOX) is a key source of ROS in mammalian cells and causes apoptosis of host cells via the protein kinase transduction pathway. This review provides insights into why NOX inhibitors that could be a potent antiparasitic drug, is not effective for in vivo purposes. This paper also gives an insight into a solution that could be a potent source in generating new treatment and vaccines for amoebiasis by targeting parasite development.
Collapse
Affiliation(s)
- Sakshi Desure
- Amity Institute of Biotechnology, Amity University, Jaipur, India
| | - Arya Mallika
- Amity Institute of Biotechnology, Amity University, Jaipur, India
| | - Mrinalini Roy
- Amity Institute of Biotechnology, Amity University, Jaipur, India
| | - Anupam Jyoti
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University, Jaipur, India
| | | |
Collapse
|
7
|
Uribe-Querol E, Rosales C. Immune Response to the Enteric Parasite Entamoeba histolytica. Physiology (Bethesda) 2021; 35:244-260. [PMID: 32490746 DOI: 10.1152/physiol.00038.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Entamoeba histolytica is a protozoan parasite responsible for amoebiasis, a disease with a high prevalence in developing countries. Establishing an amoebic infection involves interplay between pathogenic factors for invasion and tissue damage, and immune responses for protecting the host. Here, we review the pathogenicity of E. histolytica and summarize the latest knowledge on immune response and immune evasion mechanisms during amoebiasis.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
8
|
Lima PC, Hartley-Tassell L, Cooper O, Wynne JW. Searching for the sweet spot of amoebic gill disease of farmed Atlantic salmon: the potential role of glycan-lectin interactions in the adhesion of Neoparamoeba perurans. Int J Parasitol 2021; 51:545-557. [PMID: 33675796 DOI: 10.1016/j.ijpara.2020.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 01/25/2023]
Abstract
One of the first critical steps in the pathogenesis of amoebic gill disease (AGD) of farmed salmon is the adhesion of the causative amoeba to the host. The current study aimed to investigate the potential involvement of glycan-binding proteins expressed on the extracellular surface of Neoparamoeba perurans in gill tissue recognition and binding. The glycan-binding properties of the surface membrane of N. perurans and the carbohydrate binding profile of Atlantic salmon gill-derived epithelial cells were identified through the use of glycan and lectin microarrays, respectively. The occurrence of specific carbohydrate-mediated binding was then further assessed by in vitro attachment assays using microtitre plates pre-coated with the main glycan candidates. Adhesion assays were also performed in the presence of exogenous saccharides with the aim of blocking glycan-specific binding activity. Comparative analysis of the results from both lectin and glycan arrays showed significant overlap, as some glycans to which binding by the amoeba was seen were reflected as being present on the gill epithelial cells. The two main candidates proposed to be involved in amoeba attachment to the gills are mannobiose and N-acetylgalactosamine (GalNAc). Adhesion of amoebae significantly increased by 33.5 and 23% when cells were added to α1,3-Mannobiose-BSA and GalNAc-BSA coated plates. The observed increased in attachment was significantly reduced when the amoebae were incubated with exogenous glycans, further demonstrating the presence of mannobiose- and GalNAc-binding sites on the surfaces of the cells. We believe this study provides the first evidence for the presence of a highly specific carbohydrate recognition and binding system in N. perurans. These preliminary findings could be of extreme importance given that AGD is an external parasitic infestation and much of the current research on the development of alternative treatment strategies relies on either instant amoeba detachment or blocking parasite attachment.
Collapse
Affiliation(s)
- P C Lima
- CSIRO Agriculture and Food, Livestock & Aquaculture, Queensland Biosciences Precinct, 306 Carmody Road, Brisbane, QLD 4067, Australia.
| | - L Hartley-Tassell
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - O Cooper
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia
| | - J W Wynne
- CSIRO Agriculture and Food, Livestock & Aquaculture, Castray Esplanade, Battery Point, TAS 7004, Australia
| |
Collapse
|
9
|
Shrivastav MT, Malik Z, Somlata. Revisiting Drug Development Against the Neglected Tropical Disease, Amebiasis. Front Cell Infect Microbiol 2021; 10:628257. [PMID: 33718258 PMCID: PMC7943716 DOI: 10.3389/fcimb.2020.628257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/30/2020] [Indexed: 11/15/2022] Open
Abstract
Amebiasis is a neglected tropical disease which is caused by the protozoan parasite Entamoeba histolytica. This disease is one of the leading causes of diarrhea globally, affecting largely impoverished residents in developing countries. Amebiasis also remains one of the top causes of gastrointestinal diseases in returning international travellers. Despite having many side effects, metronidazole remains the drug of choice as an amebicidal tissue-active agent. However, emergence of metronidazole resistance in pathogens having similar anaerobic metabolism and also in laboratory strains of E. histolytica has necessitated the identification and development of new drug targets and therapeutic strategies against the parasite. Recent research in the field of amebiasis has led to a better understanding of the parasite’s metabolic and cellular pathways and hence has been useful in identifying new drug targets. On the other hand, new molecules effective against amebiasis have been mined by modifying available compounds, thereby increasing their potency and efficacy and also by repurposing existing approved drugs. This review aims at compiling and examining up to date information on promising drug targets and drug molecules for the treatment of amebiasis.
Collapse
Affiliation(s)
- Manish T Shrivastav
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Zainab Malik
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Somlata
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
10
|
Guzmán-Téllez P, Martínez-Castillo M, Flores-Huerta N, Rosales-Morgan G, Pacheco-Yépez J, la Garza MD, Serrano-Luna J, Shibayama M. Lectins as virulence factors in Entamoeba histolytica and free-living amoebae. Future Microbiol 2020; 15:919-936. [PMID: 32716210 DOI: 10.2217/fmb-2019-0275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Currently, there is growing interest in the identification and purification of microbial lectins due to their involvement in the pathogenicity mechanisms of pathogens, such as Entamoeba histolytica and free-living amoebae. The Gal/GalNAc lectin from E. histolytica participates in adhesion, cytotoxicity and regulation of immune responses. Furthermore, mannose- and galactose-binding protein have been described in Acanthamoeba castellanii and Balamuthia mandrillaris, respectively and they also contribute to host damage. Finally, in Naegleria fowleri, molecules containing mannose and fucose are implicated in adhesion and cytotoxicity. Considering their relevance in the pathogenesis of the diseases caused by these protozoa, lectins appear to be promising targets in the diagnosis, vaccination and treatment of these infections.
Collapse
Affiliation(s)
- Paula Guzmán-Téllez
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Moisés Martínez-Castillo
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
- Department of Experimental Medicine, Liver, Pancreas & Motility Laboratory (HIPAM), School of Medicine, National Autonomous University of Mexico (UNAM) Mexico City, Mexico
| | - Nadia Flores-Huerta
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Gabriela Rosales-Morgan
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Mireya de la Garza
- Department of Cell Biology, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Mineko Shibayama
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| |
Collapse
|
11
|
Quintanilla-Licea R, Vargas-Villarreal J, Verde-Star MJ, Rivas-Galindo VM, Torres-Hernández ÁD. Antiprotozoal Activity against Entamoeba histolytica of Flavonoids Isolated from Lippia graveolens Kunth. Molecules 2020; 25:molecules25112464. [PMID: 32466359 PMCID: PMC7321152 DOI: 10.3390/molecules25112464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
Amebiasis caused by Entamoeba histolytica is nowadays a serious public health problem worldwide, especially in developing countries. Annually, up to 100,000 deaths occur across the world. Due to the resistance that pathogenic protozoa exhibit against commercial antiprotozoal drugs, a growing emphasis has been placed on plants used in traditional medicine to discover new antiparasitics. Previously, we reported the in vitro antiamoebic activity of a methanolic extract of Lippia graveolens Kunth (Mexican oregano). In this study, we outline the isolation and structure elucidation of antiamoebic compounds occurring in this plant. The subsequent work-up of this methanol extract by bioguided isolation using several chromatographic techniques yielded the flavonoids pinocembrin (1), sakuranetin (2), cirsimaritin (3), and naringenin (4). Structural elucidation of the isolated compounds was achieved by spectroscopic/spectrometric analyses and comparing literature data. These compounds revealed significant antiprotozoal activity against E. histolytica trophozoites using in vitro tests, showing a 50% inhibitory concentration (IC50) ranging from 28 to 154 µg/mL. Amebicide activity of sakuranetin and cirsimaritin is reported for the first time in this study. These research data may help to corroborate the use of this plant in traditional Mexican medicine for the treatment of dyspepsia.
Collapse
Affiliation(s)
- Ramiro Quintanilla-Licea
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, C.P. 66455 Nuevo León, Mexico; (M.J.V.-S.); (Á.D.T.-H.)
- Correspondence: ; Tel.: +52-81-83763668
| | - Javier Vargas-Villarreal
- Laboratorio de Bioquímica y Biología Celular, Centro de Investigaciones Biomédicas del Noreste (CIBIN), Dos de abril esquina con San Luis Potosí, C.P. 64720 Monterrey, Mexico;
| | - María Julia Verde-Star
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, C.P. 66455 Nuevo León, Mexico; (M.J.V.-S.); (Á.D.T.-H.)
| | - Verónica Mayela Rivas-Galindo
- Facultad de Medicina, Universidad Autónoma de Nuevo León (UANL), Madero y Aguirre Pequeño, Mitras Centro, Monterrey, C.P. 64460 Nuevo León, Mexico;
| | - Ángel David Torres-Hernández
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León (UANL), Av. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza, C.P. 66455 Nuevo León, Mexico; (M.J.V.-S.); (Á.D.T.-H.)
| |
Collapse
|
12
|
Singh RS, Walia AK, Kennedy JF. Mushroom lectins in biomedical research and development. Int J Biol Macromol 2020; 151:1340-1350. [DOI: 10.1016/j.ijbiomac.2019.10.180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
|
13
|
Singh RS, Walia AK. Purification of a potent mitogenic homodimeric Penicillium griseoroseum lectin and its characterisation. J Basic Microbiol 2019; 59:1238-1247. [PMID: 31613018 DOI: 10.1002/jobm.201900428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/14/2019] [Accepted: 09/29/2019] [Indexed: 11/08/2022]
Abstract
Penicillium griseoroseum lectin was 80-fold purified by successive DEAE Sepharose anion exchange and Sephadex G-100 gel permeation chromatography. P. griseoroseum lectin exhibited haemagglutination activity towards protease-treated rabbit erythrocytes. It showed specificity towards various carbohydrates such as d-mannose, N-acetyl-d-glucosamine, mucins, and so forth. P. griseoroseum lectin was found as a glycoprotein with glycan content of 4.33%. Purified P. griseoroseum lectin is homodimeric having a molecular mass of 57 kDa with subunit molecular mass of 28.6 kDa. Haemagglutination activity of purified P. griseoroseum lectin was completely stable from 25°C to 35°C at a pH range of 6-7.5. Lectin activity was not influenced by divalent metal ions and denaturants. P. griseoroseum lectin manifested mitogenicity towards mice splenocytes and activity reached a peak at 75 μg/ml of lectin concentration. P. griseoroseum lectin in microgram concentrations stimulated proliferation of mice splenocytes. Thus, P. griseoroseum lectin exhibits potential mitogenicity, which can be exploited for further biomedical applications.
Collapse
Affiliation(s)
- Ram S Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, India
| | - Amandeep K Walia
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, India
| |
Collapse
|
14
|
Singh RS, Walia AK, Kennedy JF. Structural aspects and biomedical applications of microfungal lectins. Int J Biol Macromol 2019; 134:1097-1107. [DOI: 10.1016/j.ijbiomac.2019.05.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 11/17/2022]
|
15
|
Nagaraja S, Ankri S. Target identification and intervention strategies against amebiasis. Drug Resist Updat 2019; 44:1-14. [PMID: 31112766 DOI: 10.1016/j.drup.2019.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
Entamoeba histolytica is the etiological agent of amebiasis, which is an endemic parasitic disease in developing countries and is the cause of approximately 70,000 deaths annually. E. histolytica trophozoites usually reside in the colon as a non-pathogenic commensal in most infected individuals (90% of infected individuals are asymptomatic). For unknown reasons, these trophozoites can become virulent and invasive, cause amebic dysentery, and migrate to the liver where they cause hepatocellular damage. Amebiasis is usually treated either by amebicides which are classified as (a) luminal and are active against the luminal forms of the parasite, (b) tissue and are effective against those parasites that have invaded tissues, and (c) mixed and are effective against the luminal forms of the parasite and those forms which invaded the host's tissues. Of the amebicides, the luminal amebicide, metronidazole (MTZ), is the most widely used drug to treat amebiasis. Although well tolerated, concerns about its adverse effects and the possible emergence of MTZ-resistant strains of E. histolytica have led to the development of new therapeutic strategies against amebiasis. These strategies include improving the potency of existing amebicides, discovering new uses for approved drugs (repurposing of existing drugs), drug rediscovery, vaccination, drug targeting of essential E. histolytica components, and the use of probiotics and bioactive natural products. This review examines each of these strategies in the light of the current knowledge on the gut microbiota of patients with amebiasis.
Collapse
Affiliation(s)
- Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
16
|
Purification and characterization of a heterodimeric mycelial lectin from Penicillium proteolyticum with potent mitogenic activity. Int J Biol Macromol 2019; 128:124-131. [DOI: 10.1016/j.ijbiomac.2019.01.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
|
17
|
Betanzos A, Zanatta D, Bañuelos C, Hernández-Nava E, Cuellar P, Orozco E. Epithelial Cells Expressing EhADH, An Entamoeba histolytica Adhesin, Exhibit Increased Tight Junction Proteins. Front Cell Infect Microbiol 2018; 8:340. [PMID: 30324093 PMCID: PMC6172307 DOI: 10.3389/fcimb.2018.00340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022] Open
Abstract
In Entamoeba histolytica, the EhADH adhesin together with the EhCP112 cysteine protease, form a 124 kDa complex named EhCPADH. This complex participates in trophozoite adherence, phagocytosis and cytolysis of target cells. EhCPADH and EhCP112 are both involved on epithelium damage, by opening tight junctions (TJ) and reaching other intercellular junctions. EhADH is a scaffold protein belonging to the ALIX family that contains a Bro1 domain, expresses at plasma membrane, endosomes and cytoplasm of trophozoites, and is also secreted to the medium. Contribution of EhADH to TJ opening still remains unknown. In this paper, to elucidate the role of EhADH on epithelium injury, we followed two strategies: producing a recombinant protein (rEhADH) and transfecting the ehadh gene in MDCK cells. Results from the first strategy revealed that rEhADH reached the intercellular space of epithelial cells and co-localized with claudin-1 and occludin at TJ region; later, rEhADH was mainly internalized by clathrin-coated vesicles. In the second strategy, MDCK cells expressing EhADH (MDCK-EhADH) showed the adhesin at plasma membrane. In addition, MDCK-EHADH cells exhibited adhesive features, producing epithelial aggregation and adherence to erythrocytes, as described in trophozoites. Surprisingly, the adhesin expression produced an increase of claudin-1, occludin, ZO-1 and ZO-2 at TJ, and also the transepithelial electric resistance (TEER), which is a measure of TJ gate function. Moreover, MDCK-EhADH cells resulted more susceptible to trophozoites attack, as showed by TEER and cytopathic experiments. Overall, our results indicated that EhADH disturbed TJ from the extracellular space and also intracellularly, suggesting that EhADH affects by itself TJ proteins, and possibly synergizes the action of other parasite molecules during epithelial invasion.
Collapse
Affiliation(s)
- Abigail Betanzos
- Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.,Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dxinegueela Zanatta
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Cecilia Bañuelos
- Coordinación General de Programas de Posgrado Multidisciplinarios, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Patricia Cuellar
- Centro Regional de Educación Superior, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
18
|
Singh RS, Walia AK, Kennedy JF. Purification and characterization of a mitogenic lectin from Penicillium duclauxii. Int J Biol Macromol 2018; 116:426-433. [DOI: 10.1016/j.ijbiomac.2018.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 02/03/2023]
|
19
|
Delgado-Galván CJ, Padilla-Vaca F, Montiel FBR, Rangel-Serrano Á, Paramo-Pérez I, Anaya-Velázquez F, Franco B. Red fluorescent protein (DsRFP) optimization for Entamoeba histolytica expression. Exp Parasitol 2018; 187:86-92. [PMID: 29476758 DOI: 10.1016/j.exppara.2018.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 12/01/2022]
Abstract
Entamoeba histolytica genetic organization and genome structure is complex and under intense research. The genome is fully sequenced, and several tools have been developed for the molecular study of this organism. Nevertheless, good protein tracking tags that are easy to measure and image, like the fluorescent proteins are lacking. In this report, we codon-optimized the red fluorescent protein from the coral Discosoma striata (DsRFP) for its use in E. histolytica and demonstrated functionality in vivo. We envision that this protein can be widely used for the development of transcriptional reporter systems and protein-tagging applications.
Collapse
Affiliation(s)
- Cindy Jazmín Delgado-Galván
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico
| | - Fátima Berenice Ramírez Montiel
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico
| | - Ángeles Rangel-Serrano
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico
| | - Itzel Paramo-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico
| | - Fernando Anaya-Velázquez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico.
| |
Collapse
|
20
|
Su T, Qi X, Zuo G, Pan X, Zhang J, Han Z, Dong W. Polysaccharide metallohydrogel obtained from Salecan and trivalent chromium: Synthesis and characterization. Carbohydr Polym 2018; 181:285-291. [DOI: 10.1016/j.carbpol.2017.10.088] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 11/24/2022]
|
21
|
Hwang HJ, Han JW, Kim GH, Han JW. Functional Expression and Characterization of the Recombinant N-Acetyl-Glucosamine/N-Acetyl-Galactosamine-Specific Marine Algal Lectin BPL3. Mar Drugs 2018; 16:E13. [PMID: 29303968 PMCID: PMC5793061 DOI: 10.3390/md16010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/16/2017] [Accepted: 12/28/2017] [Indexed: 01/29/2023] Open
Abstract
Lectins, characterized by their carbohydrate-binding ability, have extensive practical applications. However, their industrial use is limited due to impurity. Thus, quality-controlled production of recombinant lectin is necessary. In this study, the algal lectin BPL3 (Bryopsis plumosa lectin 3) was successfully produced using a bacterial expression system, BL21(DE3), with an artificial repeated structure (dimeric construct). Recombinant dimeric BPL3 (rD2BPL3) was confirmed by LC-MS/MS spectrometry. Expression efficiency was greater for the construct with the repeat structure (rD2BPL3) than the monomeric form (rD1BPL3). Optimal conditions for expression were 1 mM IPTG at 20 °C. Recombinant lectin was purified under denaturing conditions and refolded by the flash dilution method. Recombinant BPL3 was solubilized in 1× PBS containing 2 M urea. rD2BPL3 showed strong hemagglutination activity using human erythrocyte. rD2BPL3 had a similar sugar specificity to that of the native protein, i.e., to N-acetyl-glucosamine (GlcNAc) and N-acetyl-galactosamine (GalNAc). Glycan array results showed that recombinant BPL3 and native BPL3 exhibited different binding properties. Both showed weak binding activity to α-Man-Sp. Native BPL3 showed strong binding specificity to the alpha conformation of amino sugars, and rD2BPL3 had binding activity to the beta conformation. The process developed in this study was suitable for the quality-controlled large-scale production of recombinant lectins.
Collapse
Affiliation(s)
- Hyun-Ju Hwang
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Jin-Woo Han
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| | - Gwang Hoon Kim
- Department of Biology, Kongju National University, Kongju 32588, Korea.
| | - Jong Won Han
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea.
| |
Collapse
|
22
|
Singh RS, Walia AK, Khattar JS, Singh DP, Kennedy JF. Cyanobacterial lectins characteristics and their role as antiviral agents. Int J Biol Macromol 2017; 102:475-496. [PMID: 28437766 DOI: 10.1016/j.ijbiomac.2017.04.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022]
Abstract
Lectins are ubiquitous proteins/glycoproteins of non-immune origin that bind reversibly to carbohydrates in non-covalent and highly specific manner. These lectin-glycan interactions could be exploited for establishment of novel therapeutics, targeting the adherence stage of viruses and thus helpful in eliminating wide spread viral infections. Here the review focuses on the haemagglutination activity, carbohydrate specificity and characteristics of cyanobacterial lectins. Cyanobacterial lectins exhibiting high specificity towards mannose or complex glycans have potential role as anti-viral agents. Prospective role of cyanobacterial lectins in targeting various diseases of worldwide concern such as HIV, hepatitis, herpes, influenza and ebola viruses has been discussed extensively. The review also lays emphasis on recent studies involving structural analysis of glycan-lectin interactions which in turn influence their mechanism of action. Altogether, the promising approach of these cyanobacterial lectins provides insight into their use as antiviral agents.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147002, Punjab, India.
| | - Amandeep Kaur Walia
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147002, Punjab, India
| | | | - Davinder Pal Singh
- Department of Botany, Punjabi University, Patiala 147 002, Punjab, India
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science & Technology Institute, Kyrewood House, Tenbury Wells, Worcestershire WR1 8SG, UK
| |
Collapse
|
23
|
Ansari MF, Hayat F, Inam A, Kathrada F, van Zyl RL, Coetzee M, Ahmad K, Shin D, Azam A. New antiprotozoal agents: Synthesis and biological evaluation of different 4-(7-chloroquinolin-4-yl) piperazin-1-yl)pyrrolidin-2-yl)methanone derivatives. Bioorg Med Chem Lett 2016; 27:460-465. [PMID: 28027871 DOI: 10.1016/j.bmcl.2016.12.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 11/25/2022]
Abstract
In an endeavor to develop efficacious antiprotozoal agents 4-(7-chloroquinolin-4-yl) piperazin-1-yl)pyrrolidin-2-yl)methanone derivatives (5-14) were synthesized, characterized and biologically evaluated for antiprotozoal activity. The compounds were screened in vitro against the HM1: IMSS strain of Entamoeba histolytica and NF54 chloroquine-sensitive strain of Plasmodium falciparum. Among the synthesized compounds six exhibited promising antiamoebic activity with IC50 values (0.14-1.26μM) lower than the standard drug metronidazole (IC50 1.80μM). All nine compounds exhibited antimalarial activity (IC50 range: 1.42-19.62μM), while maintaining a favorable safety profile to host red blood cells. All the compounds were less effective as an antimalarial and more toxic (IC50 range: 14.67-81.24μM) than quinine (IC50: 275.6±16.46μM) against the human kidney epithelial cells. None of the compounds exhibited any inhibitory effect on the viability of Anopheles arabiensis mosquito larvae.
Collapse
Affiliation(s)
| | - Faisal Hayat
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 406-799, South Korea
| | - Afreen Inam
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Fatima Kathrada
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa; WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa
| | - Robyn L van Zyl
- Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa; WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa
| | - Maureen Coetzee
- WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa; Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Kamal Ahmad
- Centre for Interdisciplinary Science, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 406-799, South Korea
| | - Amir Azam
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
24
|
Singh RS, Walia AK, Kanwar JR. Protozoa lectins and their role in host–pathogen interactions. Biotechnol Adv 2016; 34:1018-1029. [DOI: 10.1016/j.biotechadv.2016.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 11/29/2022]
|