1
|
Mitra A, Chakraborty D, Naik L, Dhiman R, Sarkar N. Anti-amyloidogenic hexapeptide-coated gold nanoparticles for enhanced inhibition of amyloid formation: A promising therapeutic approach. Int J Biol Macromol 2025; 284:138002. [PMID: 39586437 DOI: 10.1016/j.ijbiomac.2024.138002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Under specific external stimulus, misfolded and natively disordered globular proteins undergo irreversible transformation into pathogenic β-sheet-rich insoluble fibrillar structure, and deposition of theses fibrils in cells and tissues leads to disorders like Alzheimer's, Dementia, Type II diabetes, and many more. Here, we have developed a positively-charged Arg-containing hexapeptide, SqP7, and elucidated its anti-amyloidogenic propensity on in vitro HEWL amyloid formation under acidic and neutral fibrillation conditions using computational tools and several biophysical techniques. SqP7, at a five-fold molar excess, displayed excellent amyloid inhibition capability at both pH conditions (~83 % and 72 % inhibition under acidic and neutral fibrillation conditions, respectively), and was further chosen as a coating agent on gold nanoparticles. This was done to investigate whether coating of this peptide on gold nanoparticles has any effect on its anti-amyloidogenic efficiency and effective inhibition concentration. The synthesized SqP7-coated gold nanoparticles were characterized to be spherical and highly-dispersed having a mean diameter of 9.12 ± 2.08 nm. The anti-amyloidogenic capability of the synthesized SqP7-coated gold nanoparticles was further evaluated, and a 10-fold reduction in the effective inhibition concentration of SqP7 was observed. This peptide‑gold nanoparticle based integrated approach can lead to the development of highly effective therapeutics for amyloid-related diseases, offering improved prevention and treatment options.
Collapse
Affiliation(s)
- Amit Mitra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Debashmita Chakraborty
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India.
| |
Collapse
|
2
|
Wang T, Li X, He F, Guo S, Du F, Song H, Liu R. Valence-dependent immune responses of earthworm coelomocytes: Toxicity pathways and molecular mechanisms of As (III) and As (V)-induced immunotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177474. [PMID: 39532183 DOI: 10.1016/j.scitotenv.2024.177474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Epidemiological studies in inorganic arsenic (iAs) exposure populations have offered convincing evidence that exposure to arsenite (As (III)) and arsenate (As (V)) are linked to immune dysfunction and immunosuppression. However, the valence-dependent immunotoxicity mechanism of iAs has not been explored. In this work, we conducted a thorough investigation and comparison of lysosome dysfunction in As (III) and As (V) induced earthworm typical immune cells coelomocytes, and the binding reaction between As (III)/As (V) and immunoprotein lysozyme (LZM). Results indicated As (III) and As (V) induced severe alterations in NR uptake and caused serious damage to lysosomal membrane, particularly As (III). As (III) (21.24 %) had a stronger inhibitory effect on LZM activity in coelomocytes than As (V) (67.40 %), which showed a similar toxic trend as enzyme activity in vitro (As (III)-68.66 % and As (V)-78.50 %). LZM skeleton relaxation, secondary structural transformation, fluorescence sensitization and particle alteration provided evidence for As (III) trigger more grievous immunoprotein dysfunction. In conclusion, As (III) and As (V) triggered lysosomal membrane destruction in coelomocytes, as well as induced structural changes in LZM result in lysosomal hydrolase dysfunction in coelomocytes. Ultimately, cellular lysosome dysfunction and destruction, which leads to the normal immune system of the cells is disrupted. As (III) induced stronger immunosuppression through lysosome pathway than As (V). Our work reveals the degree of lysosome dysfunction triggered by As (III) and As (V) probably responsible for the valence-dependent immunosuppression patterns of iAs, and provide new insights for As toxicity assessment.
Collapse
Affiliation(s)
- Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Fei Du
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Hengyu Song
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
3
|
Biesek J, Wlaźlak S, Brzycka Z, Ragus W, Adamski M. Impact of storage period on hatching egg quality, extra-embryonic structures, embryo morphometry, hatchability, and Rosa 1 chick quality. Animal 2024; 18:101366. [PMID: 39608182 DOI: 10.1016/j.animal.2024.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024] Open
Abstract
Storage duration affects the biological value of hatching eggs. The study evaluated the composition and characteristics of hatching eggs from Rosa 1 hens, the morphometric traits of embryos and chicks, and hatching results based on storage time. A total of 1 200 hatching eggs were divided into three groups: NS (control, non-stored), S4 (stored up to day 4), and S7 (stored up to day 7). Storage conditions were 17 °C and approx. 60% relative humidity. Each group's egg quality was measured for 30 eggs. Weight loss during storage was monitored. Lysozyme activity and viscosity were analysed from fresh eggs and incubated eggs on days 7 and 14, using thin and thick albumen or amniotic fluid. Embryo morphometry was measured on days 7, 10, 14, and 18, and posthatching results and the quality of 1-day-old chicks were assessed. Eggs stored for 7 days (S7) had higher (P < 0.05) weight loss compared to the NS group. The proportions of eggshell and yolk increased (P < 0.05) after storage, and the yolk index decreased. Vitelline membrane strength was lower (P < 0.001) in the S4 and S7 groups than in the NS group. The lowest (P < 0.05) pH levels of thin, thick albumen and yolk were observed in the NS group. Lysozyme activity increased (P < 0.001) in the thin albumen of eggs in the NS and S4 groups and the thick albumen from the NS group than in others. On day 7 of incubation, group S7 showed higher (P < 0.05) lysozyme activity in thick albumen, with no activity in amniotic fluid. By day 14, lysozyme activity increased (P < 0.001) in group S7's thick albumen and S4 and S7 groups' amniotic fluid. Viscosity was highest (P < 0.05) in fresh eggs' thin and thick albumen from group S7, but on day 7, thick albumen viscosity was lowest. On day 14, amniotic fluid viscosity was higher (P = 0.009) in group S4 than in NS. Seven-day-old embryos in group S7 had lower (P = 0.004) weight than others. Eye diameter in S7 embryos was also smaller on days 7 and 18. On day 10, NS group embryos had shorter body diagonal lengths. Storage up to 7 days adversely affected hatching efficiency. Storage affected the navel area of 1-day-old chicks, with the highest neck length in male chicks from group S4 and the lowest in females from group S4. It is concluded that egg storage at 17 °C and 60% relative humidity could be limited to 4 days to maintain hatchability and qualitative features.
Collapse
Affiliation(s)
- J Biesek
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland.
| | - S Wlaźlak
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - Z Brzycka
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - W Ragus
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland
| | - M Adamski
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084 Bydgoszcz, Poland
| |
Collapse
|
4
|
Mitra A, Naik L, Dhiman R, Sarkar N. Protonation-State Dependent Modulation of Hen Egg-White Lysozyme Fibrillation under the Influence of a Short Synthetic Peptide. J Phys Chem B 2024; 128:5995-6013. [PMID: 38875472 DOI: 10.1021/acs.jpcb.4c01578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Under the influence of various conditions, misfolding of soluble proteins occurs, leading to the formation of toxic insoluble amyloids. The formation and deposition of such amyloids within the body are associated with detrimental biological consequences such as the onset of several amyloid-related diseases. Previously, we established a strategy for the rational design of peptide inhibitors against amyloid formation based on the amyloidogenic-prone region of the protein. In the current study, we have designed and identified an Asp-containing rationally designed hexapeptide (SqP4) as an excellent inhibitor of hen egg-white lysozyme (HEWL) amyloid progression in vitro. First, SqP4 showed strong affinity toward the native monomeric HEWL leading to the stabilization of the native form and restriction in the unfolding process of monomeric HEWL. Second, SqP4 was found to arrest the amyloidogenic misfolded structure of HEWL in a nonfibrillar monomer-like stage. We also observed the differential effect of the protonation state of the charged amino acid (Asp) within the peptide inhibitor on the amyloid formation of HEWL and explored the reason behind the observations. The findings of this study can be implemented in future strategies for the development of potent therapeutics against other amyloid-related diseases.
Collapse
Affiliation(s)
- Amit Mitra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| |
Collapse
|
5
|
Yu Z, Gao Y, Shang Z, Wang T, He X, Lei J, Tai F, Zhang L, Chen Y. A stable delivery system for curcumin: Fabrication and characterization of self-assembling acylated kidney bean protein isolate nanogels. Food Chem 2024; 443:138526. [PMID: 38290298 DOI: 10.1016/j.foodchem.2024.138526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
The construction of protein-based nano-gels as curcumin delivery system effectively enhances the stability and bioavailability of curcumin. In this study, acylation modification and self-assembly techniques were jointly employed to construct acylated kidney bean protein isolate (AKBPI)-nanogels. Optimal conditions for AKBPI-nanogels were determined to be pH 7, concentration of 2 mg/mL, and temperature at 90℃ for 30 min. The optimized AKBPI-nanogels exhibited excellent uniformity as evidenced by decreasing average particle size (137.35 nm) and polydispersity index (0.38). Acylation enhanced the intermolecular interactions within the nanogel by reducing the polarity of tyrosine microenvironment and free sulfhydryl groups. AKBPI-nanogels demonstrated remarkable characteristics in terms of pH sensitivity, salt concentration, and storage tolerance. The curcumin-loaded AKBPI-nanogels exhibited an encapsulation efficiency of 92.30 % and maintained high antioxidant activity. In simulated gastrointestinal digestion, AKBPI-nanogels facilitated the controlled release and higher bioavailability of curcumin. Therefore, AKBPI-nanogels can be a stable tool for delivering curcumin.
Collapse
Affiliation(s)
- Zhihui Yu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Houji Laboratory in Shanxi Province, Taiyuan 030031, Shanxi, China; Food Nutrition and Safety Institute, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Yating Gao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Ziqi Shang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Tengfei Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Xuli He
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Jian Lei
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Fei Tai
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Lixin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Food Nutrition and Safety Institute, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China.
| | - Yisheng Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China; Houji Laboratory in Shanxi Province, Taiyuan 030031, Shanxi, China; Food Nutrition and Safety Institute, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China.
| |
Collapse
|
6
|
Su X, Liu W, Yang B, Yang S, Hou J, Yu G, Feng Y, Li J. Constructing network structures to enhance stability and target deposition of selenium nanoparticles via amphiphilic sodium alginate and alkyl glycosides. Int J Biol Macromol 2024; 267:131588. [PMID: 38615860 DOI: 10.1016/j.ijbiomac.2024.131588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/24/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Dietary selenium (Se) supplementation has recently received increasing attention; however, Selenium nanoparticles (SeNPs) exhibit poor stability and tend to aggregate in aqueous solution. Therefore, enhancing the stability of SeNPs and their effective delivery to plants remain challenging. In this study, sodium alginate (SA) and lysozyme (LZ) were reacted via the wet-heat Maillard reaction (MR) to obtain amphiphilic alginate-based polymers (SA-LZ). Alkyl glycosides (APG) were introduced into SA-LZ to enhance the deposition of SeNPs in leaves. Thus, a renewable and degradable polysaccharide-based material (SA-LZ/APG) loaded with Se formed an amphiphilic alginate-based-based shell with a Se core. Notably, the encapsulation of SeNPs into a polysaccharide base (SA-LZ/APG) increased the stabilization of SeNPs and resulted in orange-red, zero-valent, monoclinic and spherical SeNPs with a mean diameter of approximately 43.0 nm. In addition, SA-LZ/APG-SeNPs reduced the interfacial tension of plant leaves and increased the Se content of plants compared to the blank group. In vitro studies have reported that SA-LZ/APG-SeNPs and SA-LZ-SeNPs have significantly better clearance of DDPH and ABTS than that of APG-SeNPs. Thus, we believe that SA-LZ/APG is a promising smart delivery system that can synergistically enhance the stability of SeNPs in aqueous solutions and improve the bioavailability of Se nutrient solutions.
Collapse
Affiliation(s)
- Xiaona Su
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Wenyan Liu
- School of Food Science and Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Bei Yang
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Shujuan Yang
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Jinjian Hou
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China
| | - Gaobo Yu
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China.
| | - Yuhong Feng
- School of Materials Science and Engineering, Hainan University, Hainan, Haikou 570228, China.
| | - Jiacheng Li
- School of Chemistry and Chemical Engineering, Hainan University, Hainan, Haikou 570228, China.
| |
Collapse
|
7
|
Khan MRH, Armstrong Z, Lenertz M, Saenz B, Kale N, Li Q, MacRae A, Yang Z, Quadir M. Metal-Organic Framework Induced Stabilization of Proteins in Polymeric Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38490971 DOI: 10.1021/acsami.3c16534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Developing protein confinement platforms is an attractive research area that not only promotes protein delivery but also can result in artificial environment mimicking of the cellular one, impacting both the controlled release of proteins and the fundamental protein biophysics. Polymeric nanoparticles (PNPs) are attractive platforms to confine proteins due to their superior biocompatibility, low cytotoxicity, and controllable release under external stimuli. However, loading proteins into PNPs can be challenging due to the potential protein structural perturbation upon contacting the interior of PNPs. In this work, we developed a novel approach to encapsulate proteins in PNPs with the assistance of the zeolitic imidazolate framework (ZIF). Here, ZIF offers an additional protection layer to the target protein by forming the protein@ZIF composite via aqueous-phase cocrystallization. We demonstrated our platform using a model protein, lysozyme, and a widely studied PNP composed of poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PEG-PLGA). A comprehensive study via standard loading and release tests as well as various spectroscopic techniques was carried out on lysozyme loaded onto PEG-PLGA with and without ZIF protection. As compared with the direct protein encapsulation, an additional layer with ZIF prior to loading offered enhanced loading capacity, reduced leaching, especially in the initial stage, led to slower release kinetics, and reduced secondary structural perturbation. Meanwhile, the function, cytotoxicity, and cellular uptake of proteins encapsulated within the ZIF-bound systems are decent. Our results demonstrated the use of ZIF in assisting in protein encapsulation in PNPs and established the basis for developing more sophisticated protein encapsulation platforms using a combination of materials of diverse molecular architectures and disciplines. As such, we anticipate that the protein-encapsulated ZIF systems will serve as future polymer protein confinement and delivery platforms for both fundamental biophysics and biochemistry research and biomedical applications where protein delivery is needed to support therapeutics and/or nutrients.
Collapse
Affiliation(s)
- Md Rakib Hasan Khan
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Briana Saenz
- Department of Chemistry and Biochemistry, St. Mary's University, San Antonio, Texas 78228, United States
| | - Narendra Kale
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mohiuddin Quadir
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
8
|
Shi H, He F, Huo C, Wan J, Song H, Du F, Liu R. Molecular mechanisms of polystyrene nanoplastics and alpha-amylase interactions and their binding model: A multidimensional analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170036. [PMID: 38242479 DOI: 10.1016/j.scitotenv.2024.170036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Plastic fragments are widely distributed in different environmental media and has recently drawn special attention due to its difficulty in degradation and serious health and environmental problems. Among, nanoplastics (NPs) are smaller in size, larger in surface/volume ratio, and more likely to easily adsorb ambient pollutants than macro plastic particles. Moreover, NPs can be easily absorbed by wide variety of organisms and accumulate in multiple tissues/organs and cells, thus posing a more serious threat to living organisms. Alpha-amylase (α-amylase) is a hydrolase, which can be derived from various sources such as animals, plants, and microorganisms. Currently, no studies have concentrated on the binding of NPs with α-amylase and their interaction mechanisms by employing a multidimensional strategy. Hence, we explored the interaction mechanisms of polystyrene nanoplastics (PS-NPs) with α-amylase by means of multispectral analysis, in vitro enzymatic activity analysis, and molecular simulation techniques under in vitro conditions. The findings showed that PS-NPs had the capability to bind with the intrinsic fluorescence chromophores, leading to fluorescence changes of these specific amino acids. This interaction also caused the alterations in the micro-environment of the fluorophore residues mainly tryptophan (TRP) and tyrosine (TYR) residues of α-amylase. PS-NPs interaction promoted the unfolding and partial expansion of polypeptide chains and the loosening of protein skeletons, and destroyed the secondary structure (increased random coil contents and decreased α-helical contents) of this protein, forming a larger particle size of the PS-NPs-α-amylase complex. Moreover, the enzymatic activity of α-amylase in vitro was found to be inhibited in a concentration dependent manner, thereby impairing its physiological functions. Further molecular simulation found that PS-NPs had a higher tendency to bind to the active site of α-amylase, which is the cause for its structural and functional changes. Additionally, the hydrophobic force played a major role in mediating the binding interactions between PS-NPs and α-amylase. Taken together, our study indicated that PS-NPs interaction can initiate the abnormal physiological functions of α-amylase through PS-NPs-induced structural and conformational alternations.
Collapse
Affiliation(s)
- Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Hengyu Song
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Fei Du
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
9
|
Wlaźlak S, Brzycka Z, Ragus W, Banaszak M, Grabowicz M. Quality characteristics, lysozyme activity, and albumen viscosity of fresh hatching duck eggs after a week's storage at various temperatures. Sci Rep 2024; 14:5616. [PMID: 38454129 PMCID: PMC10920898 DOI: 10.1038/s41598-024-56351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
The study aimed to analyze the qualitative features of Cherry Valley duck' hatching eggs during storage at different temperatures. Eggs were divided into 3 equal groups with 30 eggs each: fresh egg and stored at 7 °C and 17 °C within one week. Qualitative analyses of duck eggs were carried out, considering the morphological composition, physicochemical characteristics, lysozyme activity, and albumen viscosity. The highest weight of yolk and its percentage was found in the 17 °C group. The weight and percentage of albumen were significantly the highest in the group of fresh eggs. Higher egg weight loss was observed in the group stored at higher temperatures. Higher thick albumen height and Haugh units were found in fresh eggs and eggs stored at 7 °C. Different temperatures of egg storage did not affect lysozyme activity in thick and thin albumen. Stored eggs were characterized by lower albumen viscosity only at a shear rate of 10 rpm. The higher viscosity of thick albumen compared to thin ones was demonstrated at 10 and 20 rpm shear rates. The presented research results indicate a large diversity of selected qualitative indicators of hatching duck eggs, which may affect their storage and suitability for incubation.
Collapse
Affiliation(s)
- Sebastian Wlaźlak
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland.
| | - Zuzanna Brzycka
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | - Weronika Ragus
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | - Mirosław Banaszak
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | - Małgorzata Grabowicz
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| |
Collapse
|
10
|
He F, Shi H, Guo S, Li X, Tan X, Liu R. Molecular mechanisms of nano-sized polystyrene plastics induced cytotoxicity and immunotoxicity in Eisenia fetida. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133032. [PMID: 38000284 DOI: 10.1016/j.jhazmat.2023.133032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/29/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Nanoplastics (NPs) are currently everywhere and environmental pollution by NPs is a pressing global problem. Nevertheless, until now, few studies have concentrated on the mechanisms and pathways of cytotoxic effects and immune dysfunction of NPs on soil organisms employing a multidimensional strategy. Hence, earthworm immune cells and immunity protein lysozyme (LZM) were selected as specific receptors to uncover the underlying mechanisms of cytotoxicity, genotoxicity, and immunotoxicity resulting from exposure to polystyrene nanoplastics (PS-NPs), and the binding mechanisms of PS-NPs-LZM interaction. Results on cells indicated that when earthworm immune cells were exposed to high-dose PS-NPs, it caused a notable rise in the release of reactive oxygen species (ROS), resulting in oxidative stress. PS-NPs exposure significantly decreased the cell viability of earthworm immune cells, inducing cytotoxicity through ROS-mediated oxidative stress pathway, and oxidative injury effects, including reduced antioxidant defenses, lipid peroxidation, DNA damage, and protein oxidation. Moreover, PS-NPs stress inhibited the intracellular LZM activity in immune cells, resulting in impaired immune function and immunotoxicity by activating the oxidative stress pathway mediated by ROS. The results from molecular studies revealed that PS-NPs binding destroyed the LZM structure and conformation, including secondary structure changes, protein skeleton unfolding/loosening, fluorescence sensitization, microenvironment changes, and particle size changes. Molecular docking suggested that PS-NPs combined with active center of LZM easier and inhibited the protein function more, and formed a hydrophobic interaction with TRP 62, a crucial amino acid residue closely associated with the function and conformation of LZM. This is also responsible for LZM conformational changes and functional inhibition /inactivation. These results of this research offer a fresh outlook on evaluating the detriment of NPs to the immune function of soil organisms using cellular and molecular strategies.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xuejie Tan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
11
|
He F, Shi H, Hu S, Liu R. Regulation mechanisms of ferric ions release from iron-loaded transferrin protein caused by nano-sized polystyrene plastics-induced conformational and structural changes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133495. [PMID: 38232549 DOI: 10.1016/j.jhazmat.2024.133495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Currently, the binding of iron-binding protein transferrin (TF) with NPs and their interaction mechanisms have not been completely elucidated yet. Here, we probed the conformation-dependent release of Fe ions from TF induced by nano-sized polystyrene plastics (PS-NPs) using dialysis, ICP-MS, multi-spectroscopic techniques, and computational simulation. The results showed that the release of free Fe ions from TF was activated after PS-NPs binding, which displayed a clear dose-effect correlation. PS-NPs binding can induce the unfolding and loosening of polypeptide chain and backbone of TF. Alongside this we found that the TF secondary structure was destroyed, thereby causing TF protein misfolding and denaturation. In parallel, PS-NPs interacted with the chromophores, resulting in the occurrence of fluorescence sensitization effects and the disruption of the surrounding micro-environment of aromatic amino acids. Also, the binding of PS-NPs induced the formation of new aggregates in the PS-NPs-TF system. Further simulations indicated that PS-NPs exhibited a preference for binding to the hinge region that connects the C-lobe and N-lobe, which is responsible for the Fe ions release and structural alterations of TF. This finding provides a new understanding about the regulation of the release of Fe ions of iron-loaded TF through NPs-induced conformational and structural changes.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
12
|
Liu Y, Ma L, Guo Y, Kuang H, Liu Y. Fabricating oleic acid-ovalbumin complexes using an ultrasonic-coupled weakly alkaline pH technique: Improving the dispersibility, stability, and bioaccessibility of lutein in water. Food Chem 2024; 435:137593. [PMID: 37776652 DOI: 10.1016/j.foodchem.2023.137593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/09/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
This study constructed a self-assembly non-covalent oleic acid (OA) and ovalbumin (OVA) complex via an ultrasonic coupled pH-driven approach to simultaneously improve the water dispersibility, stability, and bioaccessibility of lutein (LUT). The results showed that homogeneous, stable hydrophilic OA-OVA particles were obtained in optimized conditions (an OVA concentration of 4.0 mg/mL, pH 9.0, ultrasonic conditions of 200 W for 2 min, and OA-OVA molar ratios of 2:1-20:1), with the LUT encapsulation efficiency (EE) exceeding 88.9%. Furthermore, Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) confirmed complete LUT encapsulation in the OA-OVA particles, displaying spherical particle formation with smooth surfaces. The OA-OVA complexes effectively improved the thermal and storage stability of LUT and significantly enhanced its bioaccessibility. These findings suggest that fatty acid-protein complexes may have potential application value as carotenoid delivery vectors.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Liyuan Ma
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Yuanjie Guo
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Huiying Kuang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China.
| |
Collapse
|
13
|
Abdou AM, Awad DAB. Lysozyme Peptides as a Novel Nutra-Preservative to Control Some Food Poisoning and Food Spoilage Microorganisms. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10226-2. [PMID: 38376818 DOI: 10.1007/s12602-024-10226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
Foodborne illnesses and microbial food contamination are crucial concerns and still issues of great worldwide concern. Additionally, the serious health hazards associated with the use of chemical preservatives in food technology. Lysozyme (Lz) is an active protein against Gram-positive bacterial cell wall through its muramidase lytic activity; however, several authors could identify some antimicrobial peptides derived from Lz that have an exaggerated and broad-spectrum antibacterial activity. Therefore, a lysozyme peptides preparation (LzP) is developed to broaden the Lz spectrum. In this work, we investigated the potential efficacy of LzP as a novel Nutra-preservative (food origin) agent against some pathogenic and spoilage bacteria. Our results showed that LzP demonstrated only 11% of the lysozyme lytic activity. However, LzP exhibited strong antibacterial activity against Escherichia coli, Salmonella enteritidis, and Pseudomonas species, while Salmonella typhi and Aeromonas hydrophila exhibited slight resistance. Despite the lowest LzP concentration (0.1%) employed, it performs stronger antibacterial activity than weak organic acids (0.3%). Interestingly, the synergistic multi-component formulation (LzP, glycine, and citric acid) could inhibit 6 log10 cfu/ml of E. coli survival growth. The effect of heat treatment on LzP showed a decrease in its antibacterial activity at 5 and 67% by boiling at 100 °C/30 min, and autoclaving at 121 °C/15 min; respectively. On the other hand, LzP acquired stable antibacterial activity at different pH values (4-7). In conclusion, LzP would be an innovative, natural, and food origin preservative to control the growth of food poisoning and spoilage bacteria in food instead chemical one.
Collapse
Affiliation(s)
- Adham M Abdou
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Moshtohor, 13736, Kaliobeya, Egypt.
| | - Dina A B Awad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Moshtohor, 13736, Kaliobeya, Egypt
| |
Collapse
|
14
|
Wang X, Sheng Y, Cui H, Qiao J, Song Y, Li X, Huang H. Corner Engineering: Tailoring Enzymes for Enhanced Resistance and Thermostability in Deep Eutectic Solvents. Angew Chem Int Ed Engl 2024; 63:e202315125. [PMID: 38010210 DOI: 10.1002/anie.202315125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Deep eutectic solvents (DESs), heralded for their synthesis simplicity, economic viability, and reduced volatility and flammability, have found increasing application in biocatalysis. However, challenges persist due to a frequent diminution in enzyme activity and stability. Herein, we developed a general protein engineering strategy, termed corner engineering, to acquire DES-resistant and thermostable enzymes via precise tailoring of the transition region in enzyme structure. Employing Bacillus subtilis lipase A (BSLA) as a model, we delineated the engineering process, yielding five multi-DESs resistant variants with highly improved thermostability, such as K88E/N89 K exhibited up to a 10.0-fold catalytic efficiency (kcat /KM ) increase in 30 % (v/v) choline chloride (ChCl): acetamide and 4.1-fold in 95 % (v/v) ChCl: ethylene glycol accompanying 6.7-fold thermal resistance improvement than wild type at ≈50 °C. The generality of the optimized approach was validated by two extra industrial enzymes, endo-β-1,4-glucanase PvCel5A (used for biofuel production) and esterase Bs2Est (used for plastics degradation). The molecular investigations revealed that increased water molecules at substrate binding cleft and finetuned helix formation at the corner region are two dominant determinants governing elevated resistance and thermostability. This study, coupling corner engineering with obtained molecular insights, illuminates enzyme-DES interaction patterns and fosters the rational design of more DES-resistant and thermostable enzymes in biocatalysis and biotransformation.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Yijie Sheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Haiyang Cui
- RWTH Aachen University, Templergraben 55, 52062, Aachen, Germany
- Current address: Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Jie Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Yibo Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing, 210097, China
| |
Collapse
|
15
|
He F, Wan J, Huo C, Li X, Cui Z, Li Y, Liu R, Zong W. New strategies for evaluating imidacloprid-induced biological consequences targeted to Eisenia fetida species and the corresponding mechanisms of its toxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119456. [PMID: 37897899 DOI: 10.1016/j.jenvman.2023.119456] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/04/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Imidacloprid (IMI), a neonicotinoid insecticide, has a wide variety of applications in both agriculture and horticulture. As a result of it massive and repeated use, its traces remained in soil pose severe damage to soil invertebrates, particularly earthworms. Limited information is available regarding the underlying mechanisms of IMI toxicity toward earthworms at the molecular, transcriptional, and cellular levels. Here, Eisenia fetida coelomocytes and key defensive proteins were selected as targeted receptors to explore the toxic mechanisms of oxidative stress-mediated cytotoxicity, genotoxicity, and antioxidant responses induced by IMI stress and the molecular mechanisms underlying the binding of IMI and superoxide dismutase (SOD)/catalase (CAT). Results showed that IMI exposure destroyed the cell membrane integrity of earthworm cells, causing cell damage and cytotoxicity. The intracellular levels of ROS, including ·O2- and H2O2 were induced by IMI exposure, thereby triggering oxidative stress and damage. Moreover, IMI exposure attenuated the antioxidative stress responses (reduced antioxidant capacity and CAT/SOD activities) and caused deleterious effects (enhanced DNA damage, lipid peroxidation (LPO), and protein carbonylation (PCO)) through ROS-mediated oxidative stress pathway. Aberrant gene expression associated with oxidative stress and defense regulation, including CAT, CRT, MT, SOD, GST, and Hsp70 were induced after IMI exposure. Concentration-dependent conformational and structural alterations of CAT/SOD were observed when IMI binding. Also, direct binding of IMI resulted in significant inhibition of CAT/SOD activities in vitro. Molecular simulation showed that IMI preferred to bind to CAT active center through its direct binding with the key residue Tyr 357, while IMI bound more easily to the connecting cavity of two subunits away from SOD active center. In addition, hydrogen bonds and hydrophobic force are the main driving force of IMI binding with CAT/SOD. These findings have implications for comprehensive evaluation of IMI toxicity to soil eco-safety and offer novel strategies to elucidate the toxic mechanisms and pathways of IMI stress.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Zhihan Cui
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Yuze Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong, 250014, PR China
| |
Collapse
|
16
|
Oliva R, Ostermeier L, Jaworek MW, Del Vecchio P, Gajardo-Parra N, Cea-Klapp E, Held C, Petraccone L, Winter R. Modulation of protein-saccharide interactions by deep-sea osmolytes under high pressure stress. Int J Biol Macromol 2024; 255:128119. [PMID: 37977458 DOI: 10.1016/j.ijbiomac.2023.128119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Deep-sea organisms must cope with high hydrostatic pressures (HHP) up to the kbar regime to control their biomolecular processes. To alleviate the adverse effects of HHP on protein stability most organisms use high amounts of osmolytes. Little is known about the effects of these high concentrations on ligand binding. We studied the effect of the deep-sea osmolytes trimethylamine-N-oxide, glycine, and glycine betaine on the binding between lysozyme and the tri-saccharide NAG3, employing experimental and theoretical tools to reveal the combined effect of osmolytes and HHP on the conformational dynamics, hydration changes, and thermodynamics of the binding process. Due to their different chemical makeup, these cosolutes modulate the protein-sugar interaction in different ways, leading to significant changes in the binding constant and its pressure dependence. These findings suggest that deep-sea organisms may down- and up-regulate reactions in response to HHP stress by altering the concentration and type of the intracellular osmolyte.
Collapse
Affiliation(s)
- Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 26, 80126 Naples, Italy.
| | - Lena Ostermeier
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Michel W Jaworek
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 26, 80126 Naples, Italy
| | - Nicolas Gajardo-Parra
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| | - Esteban Cea-Klapp
- Departamento de Ingeniería Química, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | - Christoph Held
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 26, 80126 Naples, Italy
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
| |
Collapse
|
17
|
Yang Q, Lyu S, Xu M, Li S, Du Z, Liu X, Shang X, Yu Z, Liu J, Zhang T. Potential Benefits of Egg White Proteins and Their Derived Peptides in the Regulation of the Intestinal Barrier and Gut Microbiota: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13168-13180. [PMID: 37639307 DOI: 10.1021/acs.jafc.3c03230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Impaired intestinal barrier function can impede the digestion and absorption of nutrients and cause a range of metabolic disorders, which are the main causes of intestinal disease. Evidence suggests that proper dietary protein intake can prevent and alleviate intestinal diseases. Egg white protein (EWP) has received considerable attention, because of its high protein digestibility and rich amino acid composition. Furthermore, bioactive peptides may have an increased repair effect due to their high degradation efficiency in the gut. In this study, we aimed to review the effects of EWP and its bioactive peptides on intestinal structural repair. The potential modulation mechanisms by which EWP and their peptides regulate the gut microbiota and intestinal barrier can be summarized as follows: (1) restoring the structure of the intestinal barrier to its intact form, (2) enhancing the intestinal immune system and alleviating the inflammatory response and oxidative damage, and (3) increasing the relative abundance of beneficial bacteria and metabolites. Further in-depth analysis of the coregulation of multiple signaling pathways by EWP is required, and the combined effects of these multiple mechanisms requires further evaluation in experimental models. Human trials can be considered to understand new directions for development.
Collapse
Affiliation(s)
- Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Menglei Xu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Shengrao Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Xiaomin Shang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, 570228 Haikou, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, Jilin University, 130062 Changchun, China
- College of Food Science and Engineering, Jilin University, 130062 Changchun, China
| |
Collapse
|
18
|
Lentink S, Salazar Marcano DE, Moussawi MA, Vandebroek L, Van Meervelt L, Parac-Vogt TN. Fine-tuning non-covalent interactions between hybrid metal-oxo clusters and proteins. Faraday Discuss 2023; 244:21-38. [PMID: 37102318 DOI: 10.1039/d2fd00161f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interactions between the protein Hen Egg White Lysozyme (HEWL) and three different hybrid Anderson-Evans polyoxometalate clusters - AE-NH2 (δ-[MnMo6O18{(OCH2)3CNH2}2]3-), AE-CH3 (δ-[MnMo6O18{(OCH2)3CCH3}2]3-) and AE-Biot (δ-[MnMo6O18{(OCH2)3CNHCOC9H15N2OS}2]3-) - were studied via tryptophan fluorescence spectroscopy and single crystal X-ray diffraction. Quenching of tryptophan fluorescence was observed in the presence of all three hybrid polyoxometalate clusters (HPOMs), but the extent of quenching and the binding affinity were greatly dependent on the nature of the organic groups attached to the cluster. Control experiments further revealed the synergistic effect of the anionic polyoxometalate core and organic ligands towards enhanced protein interactions. Furthermore, the protein was co-crystallised with each of the three HPOMs, resulting in four different crystal structures, thus allowing for the binding modes of HPOM-protein interactions to be investigated with near-atomic precision. All crystal structures displayed a unique mode of binding of the HPOMs to the protein, with both functionalisation and the pH of the crystallisation conditions influencing the interactions. From the crystal structures, it was determined that HPOM-protein non-covalent complexes formed through a combination of electrostatic attraction between the polyoxometalate cluster and positively charged surface regions of HEWL, and direct and water-mediated hydrogen bonds with both the metal-oxo inorganic core and the functional groups of the ligand, where possible. Hence, functionalisation of metal-oxo clusters shows great potential in tuning their interactions with proteins, which is of interest for several biomedical applications.
Collapse
Affiliation(s)
- Sarah Lentink
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
| | | | - Mhamad Aly Moussawi
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
| | - Laurens Vandebroek
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
| | | |
Collapse
|
19
|
Li Y, Li X, Cui Z, He F, Zong W, Liu R. Probing the toxic effect of quinoline to catalase and superoxide dismutase by multispectral method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122449. [PMID: 36753919 DOI: 10.1016/j.saa.2023.122449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Quinoline is a common nitrogen heterocyclic aromatic hydrocarbon with high water solubility. Studies have shown that quinoline can be teratogenic, carcinogenic and mutagenic. And Hepatocytes are the target cell of quinoline, which contain a large number of mitochondria and are related to cell function and the balance of reactive oxygen species (ROS). However, the research on the effect of quinoline on hepatocyte damage and anti-oxidation system is still unclear. Through the means of multispectral experiments, it is concluded that quinoline can affect the catalase (CAT) and superoxide dismutase (SOD), change their structure and affect their activity. The binding mode and binding site of quinoline to CAT/SOD were analyzed by isothermal calorimetric titration (ITC) and Molecular Operating Environment (MOE). In molecular docking simulation, the binding site of quinoline-CAT system is close to the active site, and affect the microenvironment of Tyr 357. This may be the reason why quinoline affects CAT activity and synchronous fluorescence (Δλ = 15 nm). This study demonstrated that quinoline has a great effect on CAT, which may affect the intracellular ROS balance and become a potential way to cause hepatocyte damage.
Collapse
Affiliation(s)
- Yuze Li
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Zhihan Cui
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, China - America CRC for Environment & Health, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
20
|
Rani K, Pippal B, Singh SK, Karmakar A, Vankayala R, Jain N. Effects of the aspect ratio of plasmonic gold nanorods on the inhibition of lysozyme amyloid formation. Biomater Sci 2023. [PMID: 37161699 DOI: 10.1039/d3bm00400g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amyloid formation due to altered protein folding and aggregation has gained significant attention due to its association with neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and systemic lysozyme amyloidosis. Amyloids are characterized by parallel and anti-parallel cross-β-strands arranged to form stacks of sheets that provide stability and rigidity to the amyloid core. The prototypic protein Hen Egg White Lysozyme (HEWL) has been extensively used to understand protein hydrolysis, fragmentation, folding, misfolding, and amyloid formation. In the present study, we have examined the efficacy of plasmonic gold nanorods (GNRs) as an anti-amyloid agent against HEWL amyloids. Our results reveal that (i) the amyloid inhibition by plasmonic GNRs is dependent on their aspect ratio, (ii) the large aspect ratio GNRs ameliorate amyloid assembly completely, and (iii) GNRs interfere at several stages along the lysozyme fibril-formation pathway and block the conversion of monomeric and oligomeric intermediates into mature fibrils. Using a multi-parametric approach, we demonstrate that GNRs drive HEWL into off-pathway and amyloid-incompetent forms. To establish GNRs as generic amyloid inhibitors, we extended our studies to another archetypal protein, Bovine Serum Albumin (BSA), and observed similar results of GNRs inhibiting BSA aggregation. We believe that our results will pave the way for the potential use of GNRs with current therapeutics to reduce the burden of amyloid-related diseases.
Collapse
Affiliation(s)
- Khushboo Rani
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Bhumika Pippal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Shubham Kumar Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Anurupa Karmakar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
- Interdisciplinary Research Platform Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, India
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
- Centre for Emerging Technologies for Sustainable Development (CETSD), Indian Institute of Technology Jodhpur, Karwar 342030, India
| |
Collapse
|
21
|
Antibacterial Activity of ZnSe, ZnSe-TiO2 and TiO2 Particles Tailored by Lysozyme Loading and Visible Light Irradiation. Antioxidants (Basel) 2023; 12:antiox12030691. [PMID: 36978939 PMCID: PMC10045246 DOI: 10.3390/antiox12030691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
ZnSe, ZnSe-TiO2 microspheres and nanostructured TiO2 obtained by hydrothermal and sol–gel methods were tested against Staphylococcus aureus ATCC 25923 and Micrococcus lysodeikticus ATCC 4698 before and after lysozyme (Lys) loading. Morphological characterization of inorganic matrices and hybrid organic–inorganic complexes were performed by microscopy techniques (SEM, AFM and Dark Field Hyperspectral Microscopy). Light absorption properties of ZnSe, ZnSe-TiO2 and TiO2 powders were assessed by UV–visible spectroscopy and their ability to generate reactive oxygen species (•OH and O2•−) under visible light irradiation was investigated. Antibacterial activity of ZnSe, ZnSe-TiO2, TiO2, Lys/ZnSe, Lys/ZnSe-TiO2 and Lys/TiO2 samples under exposure to visible light irradiation (λ > 420 nm) was tested against Staphylococcus aureus and Micrococcus lysodeikticus and correlated with ROS photogeneration.
Collapse
|
22
|
Huo C, Zhao Q, Liu R, Li X, He F, Jing M, Wan J, Zong W. Cytotoxicity and Oxidative Stress Effects of Indene on Coelomocytes of Earthworm ( Eisenia foetida): Combined Analysis at Cellular and Molecular Levels. TOXICS 2023; 11:136. [PMID: 36851011 PMCID: PMC9961689 DOI: 10.3390/toxics11020136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Indene (IND) is a kind of important aromatic hydrocarbon that is extracted from coal tar and has important applications in industry and biology. In the process of production and utilization, it is easy to enter the soil and produce toxic effects on the soil or organisms. The earthworm is an important organism in the soil. The toxicity of indene on earthworm coelomocytes is rarely studied, and the oxidative stress effects of IND on earthworm coelomocytes remain unclear. In this study, coelomocytes from earthworms and antioxidant enzymes were selected as the research targets. In addition, IND caused oxidative stress, and its related toxic effects and mechanisms were systematically studied and evaluated at the cellular and molecular levels. The results showed that IND destroyed the redox balance in earthworm coelomocytes, and the large accumulation of reactive oxygen species (ROS) significantly inhibited the activities of the antioxidant system, including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), and caused lipid peroxidation and membrane permeability changes, resulting in a decrease in cell viability to 74.5% of the control group. At the molecular level, IND was bound to SOD by the arene-H bond, and the binding constant was 4.95 × 103. IND changed the secondary structure of the SOD and led to a loosening of the structure of the SOD peptide chain. Meanwhile, IND caused SOD fluorescence sensitization, and molecular simulation showed that IND was mainly bound to the junction of SOD subunits. We hypothesized that the changes in SOD structure led to the increase in SOD activity. This research can provide a scientific basis for IND toxicity evaluation.
Collapse
Affiliation(s)
- Chengqian Huo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao 266237, China
| | - Qiang Zhao
- Shandong Provincial Eco-Environment Monitoring Center, 3377 Jingshi Dong Lu, Jinan 250100, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao 266237, China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao 266237, China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao 266237, China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao 266237, China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao 266237, China
| | - Wansong Zong
- College of Population, Resources and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan 250014, China
| |
Collapse
|
23
|
Dauer K, Werner C, Lindenblatt D, Wagner KG. Impact of process stress on protein stability in highly-loaded solid protein/PEG formulations from small-scale melt extrusion. Int J Pharm X 2022; 5:100154. [PMID: 36632069 PMCID: PMC9826855 DOI: 10.1016/j.ijpx.2022.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
As protein-based therapeutics often exhibit a limited stability in liquid formulations, there is a growing interest in the development of solid protein formulations due to improved protein stability in the solid state. We used small-scale (<3 g) ram and twin-screw extrusion for the solid stabilization of proteins (Lysozyme, BSA, and human insulin) in PEG-matrices. Protein stability after extrusion was systematically investigated using ss-DSC, ss-FTIR, CD spectroscopy, SEM-EDX, SEC, RP-HPLC, and in case of Lysozyme an activity assay. The applied analytical methods offered an accurate assessment of protein stability in extrudates, enabling the comparison of different melt extrusion formulations and process parameters (e.g., shear stress levels, screw configurations, residence times). Lysozyme was implemented as a model protein and was completely recovered in its active form after extrusion. Differences seen between Lysozyme- and BSA- or human insulin-loaded extrudates indicated that melt extrusion could have an impact on the conformational stability. In particular, BSA and human insulin were more susceptible to heat exposure and shear stress compared to Lysozyme, where shear stress was the dominant parameter. Consequently, ram extrusion led to less conformational changes compared to TSE. Ram extrusion showed good protein particle distribution resulting in the preferred method to prepare highly-loaded solid protein formulations.
Collapse
Key Words
- BSA, bovine serum albumin
- BSE, backscattered electron
- CD, circular dichroism
- DSC, Differential Scanning Calorimetry
- EDX, energy-dispersive X-ray detector
- EVA, Ethylene-vinyl acetate
- FTIR, Fourier transformation infrared spectroscopy
- HME, hot-melt extrusion
- HMWS, high molecular weight species
- Hot-melt extrusion
- PEG, polyethylene glycol
- PEO, polyethylene oxide
- PLGA, Poly Lactic-co-Glycolic Acid
- Protein stability
- SEM, scanning electron microscopy
- Small-scale
- Solid-state characterization
- TSE, twin-screw extrusion
- ss, solid-state
Collapse
Affiliation(s)
- Katharina Dauer
- University of Bonn, Department of Pharmaceutics, Institute of Pharmacy, Bonn, Germany
| | - Christian Werner
- University of Cologne, Department of Chemistry, Institute of Biochemistry, Cologne, Germany
| | - Dirk Lindenblatt
- University of Cologne, Department of Chemistry, Institute of Biochemistry, Cologne, Germany
| | - Karl Gerhard Wagner
- University of Bonn, Department of Pharmaceutics, Institute of Pharmacy, Bonn, Germany
- Corresponding author at: University of Bonn, Department of Pharmaceutics, 53121 Bonn, Germany.
| |
Collapse
|
24
|
Sanchez-Fernandez A, Basic M, Xiang J, Prevost S, Jackson AJ, Dicko C. Hydration in Deep Eutectic Solvents Induces Non-monotonic Changes in the Conformation and Stability of Proteins. J Am Chem Soc 2022; 144:23657-23667. [PMID: 36524921 PMCID: PMC9801427 DOI: 10.1021/jacs.2c11190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 12/23/2022]
Abstract
The preservation of labile biomolecules presents a major challenge in chemistry, and deep eutectic solvents (DESs) have emerged as suitable environments for this purpose. However, how the hydration of DESs impacts the behavior of proteins is often neglected. Here, we demonstrate that the amino acid environment and secondary structure of two proteins (bovine serum albumin and lysozyme) and an antibody (immunoglobulin G) in 1:2 choline chloride:glycerol and 1:2 choline chloride:urea follow a re-entrant behavior with solvent hydration. A dome-shaped transition is observed with a folded or partially folded structure at very low (<10 wt % H2O) and high (>40 wt % H2O) DES hydration, while protein unfolding increases between those regimes. Hydration also affects protein conformation and stability, as demonstrated for bovine serum albumin in hydrated 1:2 choline chloride:glycerol. In the neat DES, bovine serum albumin remains partially folded and unexpectedly undergoes unfolding and oligomerization at low water content. At intermediate hydration, the protein begins to refold and gradually retrieves the native monomer-dimer equilibrium. However, ca. 36 wt % H2O is required to recover the native folding fully. The half-denaturation temperature of the protein increases with decreasing hydration, but even the dilute DESs significantly enhance the thermal stability of bovine serum albumin. Also, protein unfolding can be reversed by rehydrating the sample to the high hydration regime, also recovering protein function. This correlation provides a new perspective to understanding protein behavior in hydrated DESs, where quantifying the DES hydration becomes imperative to identifying the folding and stability of proteins.
Collapse
Affiliation(s)
- Adrian Sanchez-Fernandez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Universidade
de Santiago de Compostela, Rúa de Jenaro de la Fuente, s/n, Santiago de Compostela 15705, Spain
- Food
Technology, Engineering and Nutrition, Lund
University, Box 124, Lund 221 00, Sweden
| | - Medina Basic
- Food
Technology, Engineering and Nutrition, Lund
University, Box 124, Lund 221 00, Sweden
| | - Jenny Xiang
- Food
Technology, Engineering and Nutrition, Lund
University, Box 124, Lund 221 00, Sweden
| | - Sylvain Prevost
- Institut
Laue-Langevin, DS / LSS,
71 Avenue des Martyrs, Grenoble 38000, France
| | - Andrew J. Jackson
- European
Spallation Source, Box
176, Lund 221 00, Sweden
- Department
of Physical Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Cedric Dicko
- Pure
and
Applied Biochemistry, Department of Chemistry, Lund University, Box
124, Lund SE-221 00, Sweden
- Lund
Institute of Advanced Neutron and X-ray Science, SE-223 70 Lund, Sweden
| |
Collapse
|
25
|
Khalil A, Kashif M. Interaction studies of levofloxacin with human lysozyme in a ternary complex using multispectroscopic and computational analysis: A circular dichroism method for the quantitation of levofloxacin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
He F, Wang J, Yuan D, Liu Y, Liu R, Zong W. Ferric ions release from iron-binding protein: Interaction between acrylamide and human serum transferrin and the underlying mechanisms of their binding. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157583. [PMID: 35882343 DOI: 10.1016/j.scitotenv.2022.157583] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Acrylamide (ACR) is a surprisingly common chemical due to its widespread use in industry and various other applications. However, its toxicity is a matter of grave concern for public health. Even worse, ACR is frequently detected in numerous fried or baked carbohydrate-rich foods due to the Maillard browning reaction. Herein, this study intends to delineate the underlying molecular mechanisms of Fe ions released from iron-binding protein transferrin (TF) after acrylamide binding by combining multiple methods, including multiple complementary spectroscopic techniques (UV-Vis, fluorescence, and circular dichroism spectroscopy), isothermal titration calorimetry, ICP-MS measurements, and modeling simulations. Results indicated that free Fe was released from TF only under high-dose ACR exposure (>100 μM). Acrylamide binding induced the loosening and unfolding of the backbone and polypeptide chain and destroyed the secondary structure of TF, thereby leading to protein misfolding and denaturation of TF and forming a larger size of TF agglomerates. Of which, H-binding and van der Waals force are the primary driving force during the binding interaction between ACR and TF. Further modeling simulations illustrated that ACR prefers to bind to the hinge region connecting the C-lobe and N-lobe, after that it attaches to the Fe binding sites of this protein, which is the cause of free Fe release from TF. Moreover, ACR interacted with the critical fluorophore residues (Tyr, Trp, and Phe) in the binding pocket, which might explain such a phenomenon of fluorescence sensitization. The two binding sites (Site 2 and Site 3) located around the Fe (III) ions with low-energy conformations are more suitable for ACR binding. Collectively, our study demonstrated that the loss of iron in TF caused by acrylamide-induced structural and conformational changes of transferrin.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jinhu Wang
- College of Chemistry, Chemical Engineering and Material Science, Zaozhuang University, Zaozhuang, Shandong 277160, PR China
| | - Dong Yuan
- Department of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013, PR China.
| | - Yang Liu
- Department of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| |
Collapse
|
27
|
Qu S, Qiao Z, Zhong W, Liang K, Jiang X, Shang L. Chirality-Dependent Dynamic Evolution of the Protein Corona on the Surface of Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44147-44157. [PMID: 36153958 DOI: 10.1021/acsami.2c11874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Elucidating the biological behavior of engineered nanoparticles, for example, the protein corona, is important for the development of safe and efficient nanomedicine, but our current understanding is still limited due to its highly dynamic nature and lack of adequate analytical tools. In the present work, we demonstrate the establishment of a fluorescence resonance energy transfer (FRET)-based platform for monitoring the dynamic evolution behavior of the protein corona in complex biological media. With human serum albumin and lysozyme as the model serum proteins, the protein exchange process of the preformed corona on the surface of chiral quantum dots (QDs) upon feeding either individual protein or human serum was monitored in situ by FRET. Important parameters characterizing the evolution process of protein corona could be obtained upon quantitative analysis of FRET data. Further combining real-time FRET monitoring with gel electrophoresis experiments revealed that the nature of the protein initially adsorbed on the surface of QDs significantly affects the subsequent dynamic exchange behavior of the protein corona. Furthermore, our results also revealed that only a limited proportion of proteins are involved in the protein exchange, and the exchange process exhibits a significant dependence on the surface chirality of QDs. This work demonstrates the feasibility of FRET as a powerful tool to exploit the dynamic evolution process of the protein corona, which can provide theoretical guidance for further design of advanced nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Shaohua Qu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Zihan Qiao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Wencheng Zhong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Kangqiang Liang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Xiue Jiang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| |
Collapse
|
28
|
An overview of the functional properties of egg white proteins and their application in the food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Nnyigide OS, Nnyigide TO, Lee SG, Hyun K. Protein Repair and Analysis Server: A Web Server to Repair PDB Structures, Add Missing Heavy Atoms and Hydrogen Atoms, and Assign Secondary Structures by Amide Interactions. J Chem Inf Model 2022; 62:4232-4246. [DOI: 10.1021/acs.jcim.2c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Sun-Gu Lee
- School of Chemical Engineering, Pusan National University, Busan 46241, Korea
| | - Kyu Hyun
- School of Chemical Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
30
|
Hu X, Liu Y, Zhu D, Jin Y, Jin H, Sheng L. Preparation and characterization of edible carboxymethyl cellulose films containing natural antibacterial agents: Lysozyme. Food Chem 2022; 385:132708. [PMID: 35306235 DOI: 10.1016/j.foodchem.2022.132708] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 11/26/2022]
Abstract
Carboxymethyl cellulose (CMC) films containing lysozyme (Lys) were prepared in this study and changes in properties of the films were investigated. Enhancement in mechanical properties was observed with increased Lys, maximum (0.05 g/100 mL) reached to 39.07 MPa (TS) and 25.04 % (EAB). Meanwhile, water resistance ability improved, the minimum (0.05 g/100 mL) reached to 0.42 g·mm·(m2·h·KPa)-1, 84.62 % of pure CMC film. Thermogravimetric test showed better thermal stability of films. Scanning electron microscope illustrated that few cracks on surface of films. Fourier Transform infrared spectroscopy supported that more intermolecular hydrogen between Lys and CMC was formed with increased Lys, yet keeping increasing formed less intermolecular hydrogen. X-ray Diffraction observed the aggregated Lys by crystal structure. Antibacterial test showed an inhibitory effect on two common food-borne pathogens. Weight loss experiment indicated that films reduced the dry consumption of meat. Overall, the modification of CMC film by adding Lys was effective.
Collapse
Affiliation(s)
- Xiaoxian Hu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yaofa Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Dandan Zhu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Haobo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
31
|
Cui Z, He F, Li X, Jing M, Huo C, Zong W, Liu R. Molecular insights into the binding model and response mechanisms of triclosan with lysozyme. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Jiang G, Sun H, Sun H, Fu Y, Li X, Wang L, Liu X. Effects of γ-aminobutyric acid on freshness and processing properties of eggs during storage. Food Res Int 2022; 157:111443. [PMID: 35761683 DOI: 10.1016/j.foodres.2022.111443] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022]
Abstract
Effects of γ-aminobutyric acid (GABA) on egg storage properties were investigated by comparing freshness and processing properties between eggs treated with different GABA concentrations and untreated controls. GABA treatment delayed storage-associated increases of albumen pH value and surface hydrophobicity and decreases of protein index, yolk index, Haugh unit (HU) value, albumen height, solubility, gel hardness, and apparent viscosity. Highest HU, yolk index, and emulsion stability values and peak storage performance were observed after injection of eggs with 0.05 mL of GABA (0.3 g/mL). Even after 25 days of storage, GABA-treated eggs exhibited freshness resembling that of fresh eggs, indicating that GABA treatment extended shelf life by 10 days relative to controls. Peak solubility, emulsifying activity, emulsifying stability, foaming capacity, and foaming stability values of 89.74%, 0.72, 14.18, 43.35, and 45.57, respectively, for GABA-treated eggs exceeded corresponding control group values, thus demonstrating that GABA treatment of eggs slowed storage-related deterioration of freshness and processing quality.
Collapse
Affiliation(s)
| | - Hongrui Sun
- Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Hongjiao Sun
- Jilin Jinong Hi-tech Inc., Ltd, Gongzhuling 136100, China
| | - Yuan Fu
- Jilin Agricultural University, Changchun 130118, China
| | - Xuefeng Li
- Baicheng product quality inspection institute, Baicheng 137099, China
| | - Liyan Wang
- Jilin Agricultural University, Changchun 130118, China.
| | - Xuejun Liu
- Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
33
|
He F, Wan J, Chu S, Li X, Zong W, Liu R. Toxic mechanism on phenanthrene-triggered cell apoptosis, genotoxicity, immunotoxicity and activity changes of immunity protein in Eisenia fetida: Combined analysis at cellular and molecular levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153167. [PMID: 35051481 DOI: 10.1016/j.scitotenv.2022.153167] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Phenanthrene (PHE) is a harmful organic contaminant and exists extensively in the soil environment. The accumulation of PHE would potentially threaten soil invertebrates, including earthworms, and the toxicity is also high. Currently, the possible mechanisms underlying apoptotic pathways induced by PHE and its immunotoxicity and genotoxicity in earthworms remain unclear. Thus, Eisenia fetida coelomocytes and immunity protein lysozyme (LYZ) were chosen as targeted receptors to reveal the apoptotic pathways, genotoxicity, and immunotoxicity triggered by PHE and its binding mechanism with LYZ, using cellular, biochemical, and molecular methods. Results indicated that PHE exposure can cause cell membrane damage, increase cell membrane permeability, and ultimately trigger mitochondria-mediated apoptosis. Increased 8-hydroxy-2-deoxyguanosine (8-OHdG) levels indicated PHE had triggered DNA oxidative damage in cells after PHE exposure. Occurrence of detrimental effects on the immune system in E. fetida coelomocytes due to decreased phagocytic efficacy and destroyed the lysosomal membrane. The LYZ activity in coelomocytes after PHE exposure was consistent with the molecular results, in which the LYZ activity was inhibited. After PHE binding, the protein structure (secondary structure and protein skeleton) and protein environment (the micro-environment of aromatic amino acids) of LYZ were destroyed, forming a larger particle size of the PHE-LYZ complex, and causing a significant sensitization effect on LYZ fluorescence. Molecular simulation indicated the key residues Glu 35, Asp 52, and Trp 62 for protein function located in the binding pocket, suggesting PHE preferentially binds to the active center of LYZ. Additionally, the primary driving forces for the binding interaction between PHE and LYZ molecule are hydrophobicity forces and hydrogen bonds. Taken together, PHE exposure can induce apoptosis by mitochondria-mediated pathway, destroy the normal immune system, and trigger DNA oxidative damage in earthworms. Besides, this study provides a comprehensive evaluation of phenanthrene toxicity to earthworms on molecular and cellular level.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
34
|
Sheng L, Liu Q, Dong W, Cai Z. Effect of high intensity ultrasound assisted glycosylation on the gel properties of ovalbumin: Texture, rheology, water state and microstructure. Food Chem 2022; 372:131215. [PMID: 34601420 DOI: 10.1016/j.foodchem.2021.131215] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023]
Abstract
In this paper, the effects of ultrasonic assisted glycosylation on the gel properties of ovalbumin (OVA) were studied. The molecular characteristics of native ovalbumin, heated ovalbumin, traditional glycosylated ovalbumin, ultrasonic ovalbumin and ultrasonic assisted glycosylated ovalbumin were compared. The lowest free amino group content and the highest browning intensity indicated that ultrasonic can facilitate the Maillard reaction. The gel hardness of ultrasonic glycosylation and the traditional heating glycosylation groups individually increased to 653.2 and 526.9 g compared with the control (344.9 g). The transformation of protein structure was confirmed by FTIR and fluorescence spectrum, which prompted negatively charged groups to reach the protein surface and form more disulfide bond in sOVA-X gel. The interaction between the water and the protein was strengthened, thereby increasing the water holding capacity. These results supplied a theoretical basis for the application of ultrasonic to improve protein properties.
Collapse
Affiliation(s)
- Long Sheng
- National Research and Development Center for Egg Processing, Hubei Hongshan Laboratory, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qiao Liu
- National Research and Development Center for Egg Processing, Hubei Hongshan Laboratory, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Wanyi Dong
- National Research and Development Center for Egg Processing, Hubei Hongshan Laboratory, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhaoxia Cai
- National Research and Development Center for Egg Processing, Hubei Hongshan Laboratory, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
35
|
Adsorption kinetics of ovalbumin and lysozyme at the air-water interface and foam properties at neutral pH. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Shi X, Li X, Li X, He Z, Chen X, Song J, Zeng L, Liang Q, Li J, Xu G, Zheng J. Antibacterial Properties of TMA against Escherichia coli and Effect of Temperature and Storage Duration on TMA Content, Lysozyme Activity and Content in Eggs. Foods 2022; 11:foods11040527. [PMID: 35206004 PMCID: PMC8870930 DOI: 10.3390/foods11040527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Studies on trimethylamine (TMA) in egg yolk have focused on how it impacts the flavor of eggs, but there has been little focus on its other functions. We designed an in vitro antibacterial test of TMA according to TMA concentrations that covered the TMA contents typically found in egg yolk. The change in TMA content in yolk was analyzed at different storage temperatures and for different storage durations. The known antibacterial components of eggs, including the cuticle quality of the eggshell and the lysozyme activity and content in egg white, were also assessed. The total bacterial count (TBC) of different parts of eggs were detected. The results showed that the inhibitory effect of TMA on Escherichia coli (E. coli) growth increased with increasing TMA concentration, and the yolk TMA content significantly increased with storage duration (p < 0.05). The cuticle quality and lysozyme content and activity significantly decreased with storage time and increasing temperature, accompanied by a significant increase in the TBC on the eggshell surface and in the egg white (p < 0.05). This work reveals a new role for trace TMA in yolks because it reduces the risk of bacterial colonization, especially when the antibacterial function of eggs is gradually weakened during storage.
Collapse
Affiliation(s)
- Xuefeng Shi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Xingzheng Li
- Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agriculture Sciences, Shenzhen 440307, China;
| | - Xianyu Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Zhaoxiang He
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Xia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100094, China;
| | - Jianlou Song
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Lingsen Zeng
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Qianni Liang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Junying Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Guiyun Xu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
| | - Jiangxia Zheng
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.S.); (X.L.); (Z.H.); (J.S.); (L.Z.); (Q.L.); (J.L.); (G.X.)
- Correspondence: ; Tel.: +86-10-6273-2741; Fax: +86-10-6273-1080
| |
Collapse
|
37
|
Intermolecular interactions between imidazolium- and cholinium-based ionic liquids and lysozyme: Regularities and peculiarities. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118426] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Huang Y, Cui L, Yang H, Chen N, Guo H, Gan X, Wang R, Shi W, Wu Y, Zhang Y, Lv P. Lysozyme Improves the Inhibitory Effects of Panax notoginseng Saponins on Phenotype Transformation of Vascular Smooth Muscle Cells by Binding to Ginsenoside Re. Front Nutr 2022; 8:795888. [PMID: 35004822 PMCID: PMC8733556 DOI: 10.3389/fnut.2021.795888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
Panax notoginseng saponins (PNS) have been used to treat cardiovascular diseases for hundreds of years in China. Lysozyme can bind to exogenous compounds and promote their activity. Nevertheless, knowledge of whether there is a synergistic role between lysozyme and PNS is far from sufficient. In this study, we show that the mixture of PNS and lysozyme synergistically inhibited platelet derived growth factor BB (PDGF-BB)-induced vascular smooth muscle cell (VSMC) viability, and in the five main components of PNS, GS-Re, but not GS-Rb1, NG-R1, GS-Rg1, or GS-Rd, reduced VSMC viability by combined application with lysozyme. Next, the supramolecular complexes formed by GS-Re and lysozyme were detected by mass spectrometry, and the binding ability increased with the concentration ratio of GS-Re to lysozyme from 4:1 to 12:1. In the supramolecular complexes, the relative contents of α-helix of lysozyme were increased, which was beneficial for stabilizing the structure of lysozyme. The 12:1 mixture of GS-Re and lysozyme (12.8 μmol/L GS-Re+1.067 μmol/L lysozyme) repressed PDGF-BB-induced VSMC viability, proliferation, and migration, which were associated with the upregulated differentiated markers and downregulated dedifferentiated markers. Finally, in CaCl2-induced rodent abdominal aortic aneurysm (AAA) models, we found that the 12:1 mixture of GS-Re and lysozyme slowed down AAA progression and reversed phenotype transformation of VSMCs. Thus, Gs-Re combined with a small amount of lysozyme may provide a novel therapeutic strategy for vascular remodeling-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Yun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Cardiovascular Medical Science Center, Department of Cell Biology, Hebei Medical University, Shijiazhuang, China
| | - Lijian Cui
- Experiment Center, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Hongchao Yang
- Cardiovascular Medical Science Center, Department of Cell Biology, Hebei Medical University, Shijiazhuang, China
| | - Ning Chen
- Cardiovascular Medical Science Center, Department of Cell Biology, Hebei Medical University, Shijiazhuang, China
| | - Huishan Guo
- Cardiovascular Medical Science Center, Department of Cell Biology, Hebei Medical University, Shijiazhuang, China
| | - Xiaoruo Gan
- Cardiovascular Medical Science Center, Department of Cell Biology, Hebei Medical University, Shijiazhuang, China
| | - Rong Wang
- Cardiovascular Medical Science Center, Department of Cell Biology, Hebei Medical University, Shijiazhuang, China
| | - Weiye Shi
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yu Wu
- Cardiovascular Medical Science Center, Department of Cell Biology, Hebei Medical University, Shijiazhuang, China
| | - Yan Zhang
- Cardiovascular Medical Science Center, Department of Cell Biology, Hebei Medical University, Shijiazhuang, China.,Hebei Food Safety Key Laboratory, Hebei Food Inspection and Research Institute, Shijiazhuang, China
| | - Pin Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,Cardiovascular Medical Science Center, Department of Cell Biology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
39
|
YU Y, LU X, LIU B, WANG Q, SUN B, ZHAO C, GAO F. Functional and structural properties of glycosylation ovalbumin with pectin through wet-heating and ultrasound method. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.87522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
|
41
|
Devi M, Verma I, Pal SK. Distinct interfacial ordering of liquid crystals observed by protein-lipid interactions that enabled the label-free sensing of cytoplasmic protein at the liquid crystal-aqueous interface. Analyst 2021; 146:7152-7159. [PMID: 34734590 DOI: 10.1039/d1an01444g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interfaces formed between a lipid decorated liquid crystal (LC) film and an aqueous phase can mimic the bimolecular membrane where interfacially occurring biological phenomena (e.g., lipid-protein interactions, protein adsorption) can be visually monitored by observing the surface-sensitive orientations of LCs. The ordering behavior of LCs at different phospholipid-based LC interfaces (1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and lysophosphatidic acid (LPA)) were investigated to determine the sensing of an important cytoplasmic protein (juxtamembrane of epidermal growth factor receptor (JM-EGFR)). At both DLPC and LPA decorated interfaces, the LC adopts homeotropic ordering, causing a dark optical appearance under crossed polarizers. Interestingly, upon the introduction of JM-EGFR to these LC-aqueous interfaces, the homeotropic orientation of the LC changed to planar (bright optical appearance), suggesting the potential of the designed system for JM-EGFR sensing. The use of different lipid decorated LC-aqueous interfaces results in the emergence of distinct optical patterns. For example, at a DLPC laden interface, elongated bright domains are observed, whereas a uniform bright texture is observed on an LPA laden interface. The DLPC decorated LC-aqueous interface is found to be highly selective for the sensing of JM-EGFR with a detection limit in the nanomolar concentration region (∼ 50 nM). When compared to spectroscopic and other conventional techniques, the LC-based design is simpler, and it allows the simple and label-free optical sensing of JM-EGFR at fluidic interfaces.
Collapse
Affiliation(s)
- Manisha Devi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | - Indu Verma
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali (IISERM), Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| |
Collapse
|
42
|
Zhao Q, Ding L, Xia M, Huang X, Isobe K, Handa A, Cai Z. Role of lysozyme on liquid egg white foaming properties: Interface behavior, physicochemical characteristics and protein structure. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106876] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Chernysheva MG, Shnitko AV, Skrabkova HS, Badun GA. Peculiarities of alkylamidopropyldimethylbenzylammonium (Miramistin) in the relationship to lysozyme in comparison with quaternary ammonium surfactants: Coadsorption at the interfaces, enzymatic activity and molecular docking. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
He F, Chu S, Sun N, Li X, Jing M, Wan J, Zong W, Tang J, Liu R. Binding interactions of acrylamide with lysozyme and its underlying mechanisms based on multi-spectra, isothermal titration microcalorimetry and docking simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Effect of pH and xanthan gum on emulsifying property of ovalbumin stabilized oil-in water emulsions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111621] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Pan Y, Li XM, Meng R, Zhang B. Stability and bioaccessibility of curcumin emulsions stabilized by casein hydrolysates after maleic anhydride acylation and pullulan glycation. J Dairy Sci 2021; 104:8425-8438. [PMID: 33985779 DOI: 10.3168/jds.2020-19613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/16/2021] [Indexed: 11/19/2022]
Abstract
The effects of maleic anhydride (MA) acylation and pullulan glycation on casein hydrolysates (CH) and the physicochemical stability of modified or unmodified CH-stabilized emulsions were explored. Compared with casein, the solubility of CH was improved, and CH1 (hydrolysis degree 4%) exhibited the optimal emulsifying properties. After the acylation of MA, degrees of acylation (DA) increased with increasing addition of MA. Fourier-transform infrared spectroscopy revealed that a covalent bond was formed between MA and CH1. The results of pullulan glycation indicated that the degree of glycation decreased with increasing DA. Acylation combined with glycation effectively reduced the surface hydrophobicity of CH. Results of analysis of physicochemical stability and gastrointestinal fate of curcumin in emulsions revealed that CH modified by MA acylation and pullulan glycation played a positive role in enhancing the stability and bioaccessibility of curcumin loaded in emulsions.
Collapse
Affiliation(s)
- Yi Pan
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, P. R. China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Xiao-Min Li
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, P. R. China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Ran Meng
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, P. R. China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Bao Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, P. R. China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P. R. China.
| |
Collapse
|
47
|
Abstract
The changes of lysozyme conformation in the absence and presence of luteolin and luteoloside were investigated by spectral analysis including fluorescence, UV, CD, Raman, and ATR-FTIR, and the biological activity of lysozyme was investigated by lysozyme assay kit. The results showed that the microenvironment hydrophobicity of lysozyme increased and peptide extension decreased with the addition of luteolin or luteoloside. The α-helix of lysozyme might be influenced by luteolin or luteoloside, and its relative content had a significant difference after adding luteolin or luteoloside by the ATR-FTIR method, which was reconfirmed by CD and Raman spectra. The lysozyme activity changed obviously after adding luteolin or luteoloside. All of the conclusions above indicated the active site of lysozyme in the α-helix might be influenced by luteolin and luteoloside.
Collapse
|
48
|
Akarca G, Istek Ö, Tomar O. The effect of resin coating on the quality characteristics of chicken eggs during storage. J Food Sci 2021; 86:1243-1257. [PMID: 33761140 DOI: 10.1111/1750-3841.15686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 11/26/2022]
Abstract
In this study, after washing, changes in the quality characteristics of chicken eggs coated with apricot, almond, and sour cherry tree resins were examined during two different temperatures (4 °C and 22 °C) storage for 60 days. While air cell height, weight loss, albumen and yolk pH and a* (redness) values increased in all samples during storage, Haugh unit, albumen and yolk index, shell fracture and vitelline membrane strength, albumen and yolk L* (lightness) and b* (yellowness) values decreased (P < 0.05). The lowest weight loss (0.54 g) and air cell height (2.89 mm), highest Haugh unit (73.95 HU), albumen index (8.81%), and yolk index (40.37%) were found in the samples coated with sour cherry wood resin stored at 4 °C. The shell breakage and vitelline membrane strength of the coated samples were determined to be higher than the control samples and the samples stored after washing. Higher weight loss, air cell height, and pH values, while lower Haugh unit, Albumen and yolk index were found in samples stored at 22 °C (P < 0.05). At the end of storage, the maximum increase in the counts of total aerobic mesophilic and psychrophilic bacteria was found in the albumin and egg yolk of washed samples stored at ambient temperature. As a result, the coating materials prepared with the resin of apricot, almond, and sour cherry trees were suitable for eggshell's shelf life extension. PRACTICAL APPLICATION: The consumers demand the eggs be in their freshest condition, but the currently available storage conditions are not sufficient to maintain freshness in many regions of Turkey. The physical, chemical and, microbiological qualities of the eggs coated with wood resins were determined to be superior compared to other samples. Because resins have good barrier properties, it is recommended to conduct extensive studies on their applicability in different products.
Collapse
Affiliation(s)
- Gökhan Akarca
- Department of Food Engineering, Faculty of Engineering, Afyon Kocatepe University, Afyonkarahisar, 03200, Turkey
| | - Ömer Istek
- Department of Food Engineering, Faculty of Engineering, Afyon Kocatepe University, Afyonkarahisar, 03200, Turkey
| | - Oktay Tomar
- Faculty of Agriculture and Natural Science, Arslanbey Campus, Kocaeli University, Kocaeli, 41285, Turkey
| |
Collapse
|
49
|
Hu G, Batool Z, Cai Z, Liu Y, Ma M, Sheng L, Jin Y. Production of self-assembling acylated ovalbumin nanogels as stable delivery vehicles for curcumin. Food Chem 2021; 355:129635. [PMID: 33780798 DOI: 10.1016/j.foodchem.2021.129635] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/28/2021] [Accepted: 03/13/2021] [Indexed: 12/22/2022]
Abstract
In this study, we evaluated potential usage of acylated ovalbumin (AOVA) nanogels fabricated via acylation modification and heat-induced self-assembly process as novel delivery systems for curcumin. Compared to native ovalbumin (NOVA) nanogels without chemical acylation, the obtained AOVA nanogels have shown smaller average hydrodynamic diameter (155.73 nm), relatively uniform size distribution (polydispersity index around 0.28), enhanced negative surface charge (-24.3 mV), and an improved stability under the conditions of high ionic strength, different pH and storage time. Moreover, AOVA nanogels exhibited a remarkable conformational change in secondary and tertiary structures, improved surface hydrophobicity, and increased free sulfhydryl content compared with NOVA nanogels. Moreover, curcumin encapsulated in AOVA nanogels displayed higher encapsulation efficiency (93.64%) and slower sustained release under simulated gastrointestinal conditions as compared with NOVA nanogels. Hence, we have suggested that AOVA nanogels successfully fabricated with improved physicochemical properties as a novel ideal carrier for hydrophobic active compounds.
Collapse
Affiliation(s)
- Gan Hu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zahra Batool
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhaoxia Cai
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuanyuan Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
50
|
Jin H, Li P, Jin Y, Sheng L. Effect of sodium tripolyphosphate on the interaction and aggregation behavior of ovalbumin-lysozyme complex. Food Chem 2021; 352:129457. [PMID: 33706135 DOI: 10.1016/j.foodchem.2021.129457] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
The mechanism by which sodium tripolyphosphate affected the aggregation behavior of ovalbumin-lysozyme complexes was investigated in this work. The highest stability coefficients were detected for natural ovalbumin and lysozyme at pH 9.0 and pH 5.0, with values of 0.981 and 0.931, respectively. The turbidity of the phosphorylated ovalbumin-lysozyme complexes was 1.71-fold to the natural complexes at pH 7.0. This result was related to the fact that the phosphorylated sample had a lower isoelectric point. Besides, both intermolecular forces and SDS-PAGE analysis indicated that the disulfide bond was the most important interaction in the complex. Circular dichroism analysis showed that phosphorylation weakened the unfolding and stretching of the structure caused by heat treatment. Moreover, transmission electron microscopy pictures confirmed that the network structure of phosphorylated ovalbumin-lysozyme complex was broader than natural protein. This study provides information for further understanding the effect of phosphorylation on protein aggregation behavior.
Collapse
Affiliation(s)
- Haobo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peishan Li
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|