1
|
Hong Y, Shi Y, Fan Y, Pan H, Yao X, Xie Y, Wang X. Biotransformation of ginsenoside compound K using β-glucosidase in deep eutectic solvents. Bioprocess Biosyst Eng 2024; 47:1647-1657. [PMID: 38935112 DOI: 10.1007/s00449-024-03056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Ginsenoside compound K (CK) holds significant potential for application in the pharmaceutical industry, which exhibits numerous pharmacological activity such as cardioprotective and antidiabetic. However, the difficult separation technique and limited yield of CK hinder its widespread use. The study investigated the process of converting ginsenoside CK using β-glucosidase. It aimed to determine the specific site where the enzyme binds and the most favorable arrangement of the enzyme. Molecular docking was also employed to determine the interaction between β-glucosidase and ginsenosides, indicating a strong and spontaneous contact force between them. The effectiveness of the conversion process was further improved using a "green" deep eutectic solvent (DES). A univariate experimental design was used to determine the composition of DES and the optimal hydrolysis conditions for β-glucosidase to convert ginsenoside Rb1 into ginsenoside CK. The employment of β-glucosidase enzymatic hydrolysis in the synthesis of rare ginsenoside CK applying the environmentally friendly solvent DES is not only viable and effective but also appropriate for industrial use. The characterization methods confirmed that DES did not disrupt the structure and conformation of β-glucosidase. In ChCl:EG = 2:1 (30%, v/v), pH 5.0 of DES buffer, reaction temperature 50 ℃, enzyme substrate mass ratio 1:1, after 36 h of reaction, the CK yield was 1.24 times that in acetate buffer, which can reach 86.2%. In this study, the process of using β-glucosidase enzymatic hydrolysis and producing rare ginsenoside CK in green solvent DES is feasible, efficient and suitable for industrial production and application.
Collapse
Affiliation(s)
- Yinan Hong
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, No. 19 Jinhua South Road, Xi'an, 710048, Shaanxi, China
| | - Yue Shi
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, No. 19 Jinhua South Road, Xi'an, 710048, Shaanxi, China
| | - Yurou Fan
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, No. 19 Jinhua South Road, Xi'an, 710048, Shaanxi, China
| | - Hong Pan
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, No. 19 Jinhua South Road, Xi'an, 710048, Shaanxi, China
| | - Xiangyu Yao
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, No. 19 Jinhua South Road, Xi'an, 710048, Shaanxi, China
| | - Yu Xie
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, No. 19 Jinhua South Road, Xi'an, 710048, Shaanxi, China
| | - Xiaojun Wang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, No. 19 Jinhua South Road, Xi'an, 710048, Shaanxi, China.
| |
Collapse
|
2
|
Han X, Li W, Duan Z, Ma X, Fan D. Biocatalytic production of compound K in a deep eutectic solvent based on choline chloride using a substrate fed-batch strategy. BIORESOURCE TECHNOLOGY 2020; 305:123039. [PMID: 32114302 DOI: 10.1016/j.biortech.2020.123039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
This study involved the development of a β-glucosidase-catalyzed hydrolysis method based on a deep eutectic solvent (DES), choline chloride-ethylene glycol 2:1, and continuous feed technique to overcome the difficulty of high-concentration ginsenoside hydrolysis. A productivity of 142 mg·L-1·h-1 was achieved with the following conditions: 30 vol% DES, pH 5.0, 55 °C, and substrate concentration of 12 mM. In the presence of DES, the affinity and catalytic efficiency of β-glucosidase to Rd increased by 49 and 64%, respectively, which promoted the continuation of hydrolysis. Moreover, conformation of β-glucosidase was mostly retained, as confirmed by spectral information. Through a combination of a substrate fed-batch technique to reduce the inhibitory effects of substrates and products, the CK conversion rate increased by 44% compared to traditional single-batch in pure buffer. This report describes a practical method for the continuous conversion of natural compounds through biological processes and solvent engineering.
Collapse
Affiliation(s)
- Xin Han
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Weina Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Xi'an Giant Biogene Co., Ltd, Xi'an, Shaanxi 710065, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
3
|
Bey H, Gtari W, Aschi A. Study of the complex coacervation mechanism between the lysing enzyme from T. harzianum and polyallylamine hydrochloride. Int J Biol Macromol 2019; 124:780-787. [PMID: 30502430 DOI: 10.1016/j.ijbiomac.2018.11.266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/20/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
Complex coacervation was achieved by mixing the lysing enzyme from T. harzianum (LYS) with polyallylamine hydrochloride (PAH). We show in this work that the study electrostatic complexes conformation can lead to the formation of dense complexes. We systematically investigated the effects of pH and the mass ratio on the structure and properties of the complex. The different transition phases (pHc, pHφ1, and pHφ2) have been determined using dynamic light scattering, zeta potential and turbidimetric measurements. The interpolymeric bonds may be ionic or physical, depending on the pH of the system. For a pH value of 4.9, the mixture system [LYS]/[PAH] gives raise the formation of coacervate droplets. The effects of temperature on the structure of coacervate droplets are studied by small angle light scattering (SALS).
Collapse
Affiliation(s)
- Houda Bey
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR99ES16 Laboratoire de Physique de la Matière Molle et de la Modélisation Électromagnétique, 2092 Tunis, Tunisia
| | - Wala Gtari
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR99ES16 Laboratoire de Physique de la Matière Molle et de la Modélisation Électromagnétique, 2092 Tunis, Tunisia
| | - Adel Aschi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR99ES16 Laboratoire de Physique de la Matière Molle et de la Modélisation Électromagnétique, 2092 Tunis, Tunisia.
| |
Collapse
|
4
|
Rosa DP, Pereira EV, Vasconcelos AVB, Cicilini MA, da Silva AR, Lacerda CD, de Oliveira JS, Santoro MM, Coitinho JB, Santos AMC. Determination of structural and thermodynamic parameters of bovine α-trypsin isoform in aqueous-organic media. Int J Biol Macromol 2017; 101:408-416. [DOI: 10.1016/j.ijbiomac.2017.03.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 11/16/2022]
|