1
|
Zhang S, Feng X, Yang S, Shi X, Chen J, Zhu R, Li T, Su W, Wang Y, Cao X. Acid-triggered rattan ball-like β-glucan carrier embedding doxorubicin to synergistically alleviate precancerous lesions of gastric cancer via p53 and PI3K pathways. Int J Biol Macromol 2024; 281:136540. [PMID: 39396598 DOI: 10.1016/j.ijbiomac.2024.136540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The early intervention of precancerous lesions of gastric cancer (PLGC) is crucial for improving the survival of patients with gastric cancer. Traditional pharmaceuticals for the treatment of PLGC are limited by side effects, thus developing innovative drug carrier that are more efficient but without the undesirable side effects is required. Here, we proposed an acid-triggered mushroom-derived β-glucan carrier embedding doxorubicin (DOX) to circumvent drug cytotoxicity and synergistically alleviate PLGC based on the controlled conformational transformation. The triple helix β-glucan extracted from Dictyophora rubrovolvata (DRP) loaded doxorubicin driven by pH and DMSO regulation, forming two rattan ball-like nanoparticles (DRP-DOX(pH) and DRP-DOX(DMSO)) via its collapse and recombination of triple-helix conformation. The findings revealed that DRP-DOXs achieved acid-triggerable and sustained drug delivery with an average particle size of 500 nm and 550 nm. In vitro evaluation of GES-1 cells showed DRP-DOXs reduced reactive oxygen species (ROS) production and altered mitochondrial membrane potential. Compared to DRP-DOX(DMSO) and DRP, DRP-DOX(pH) could more effectively downregulate cellular oxidative stress and inflammation to eventually alleviate PLGC, by regulating the p53 and PI3K pathways to mitigate gastric mucosa damage. Consequently, the nature-derived β-glucan delivery nanovesicle holds great promising applications in reducing drug toxicity and suppressing the development of PLGC.
Collapse
Affiliation(s)
- Shuchen Zhang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning province, China
| | - Xin Feng
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning province, China
| | - Shuanglong Yang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning province, China
| | - Xueying Shi
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning province, China
| | - Junliang Chen
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang 110031, Liaoning province, China
| | - Rugang Zhu
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning province, China
| | - Tiejing Li
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning province, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning province, China
| | - Yuxiao Wang
- Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning province, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning province, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi province, China.
| | - Xiangyu Cao
- Department of Biological Sciences, School of life Science, Liaoning University, Shenyang 110031, Liaoning province, China
| |
Collapse
|
2
|
Polez RT, Ajiboye MA, Österberg M, Horn MM. Chitosan hydrogels enriched with bioactive phloroglucinol for controlled drug diffusion and potential wound healing. Int J Biol Macromol 2024; 265:130808. [PMID: 38490386 DOI: 10.1016/j.ijbiomac.2024.130808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
We report a facile strategy to prepare chitosan (CS) hydrogels that eliminates the need for chemical crosslinking for advanced biomedical therapies. This approach gives controlled properties to the hydrogels by incorporating a natural bioactive phenolic compound, phloroglucinol (PG), into their microstructure. The adsorption of PG onto CS chains enhanced the hydrogels' antioxidant activity by up to 25 % and resulted in a denser, more entangled structure, reducing the pore size by 59 μm while maintaining porosity above 94 %. This allowed us to finely adjust pore size and swelling capacity. These structural properties make these hydrogels well-suited for wound healing dressings, promoting fibroblast proliferation and exhibiting excellent hemocompatibility. Furthermore, to ensure the versatility of these hydrogels, herein, we demonstrate their potential as drug delivery systems, particularly for dermal infections. The drug release can be controlled by a combination of drug diffusion through the swollen hydrogel and relaxation of the CS chains. In summary, our hydrogels leverage the synergistic effects of CS's antibacterial and antifungal properties with PG's antimicrobial and anti-inflammatory attributes, positioning them as promising candidates for biomedical and pharmaceutical applications, more specifically in advanced wound healing therapies with local drug delivery.
Collapse
Affiliation(s)
- Roberta Teixeira Polez
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Margaret A Ajiboye
- Physical Chemistry of Nanomaterials, Institute of Chemistry, University of Kassel, 34109 Kassel, Germany
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FIN-00076 Aalto, Espoo, Finland
| | - Marilia M Horn
- Physical Chemistry of Nanomaterials, Institute of Chemistry, University of Kassel, 34109 Kassel, Germany.
| |
Collapse
|
3
|
Akbar MU, Khattak S, Khan MI, Saddozai UAK, Ali N, AlAsmari AF, Zaheer M, Badar M. A pH-responsive bi-MIL-88B MOF coated with folic acid-conjugated chitosan as a promising nanocarrier for targeted drug delivery of 5-Fluorouracil. Front Pharmacol 2023; 14:1265440. [PMID: 37745070 PMCID: PMC10517339 DOI: 10.3389/fphar.2023.1265440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Cancer has remained one of the leading causes of death worldwide, with a lack of effective treatment. The intrinsic shortcomings of conventional therapeutics regarding tumor specificity and non-specific toxicity prompt us to look for alternative therapeutics to mitigate these limitations. In this regard, we developed multifunctional bimetallic (FeCo) bi-MIL-88B-FC MOFs modified with folic acid-conjugated chitosan (FC) as drug delivery systems (DDS) for targeted delivery of 5-Fluorouracil (5-FU). The bi-MIL-88B nanocarriers were characterized through various techniques, including powder X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray, thermogravimetric analysis, and Fourier transform infrared spectroscopy. Interestingly, 5-FU@bi-MIL-88B-FC showed slower release of 5-FU due to a gated effect phenomenon endowed by FC surface coating compared to un-modified 5-FU@bi-MIL-88B. The pH-responsive drug release was observed, with 58% of the loaded 5-FU released in cancer cells mimicking pH (5.2) compared to only 24.9% released under physiological pH (5.4). The in vitro cytotoxicity and cellular internalization experiments revealed the superiority of 5-FU@bi-MIL-88B-FC as a highly potent targeted DDS against folate receptor (FR) positive SW480 cancer cells. Moreover, due to the presence of Fe and Co in the structure, bi-MIL-88B exhibited peroxidase-like activity for chemodynamic therapy. Based on the results, 5-FU@bi-MIL-88B-FC could serve as promising candidate for smart DDS by sustained drug release and selective targeting.
Collapse
Affiliation(s)
- Muhammad Usman Akbar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | - Saadullah Khattak
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Malik Ihsanullah Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Umair Ali Khan Saddozai
- Department of Preventive Medicine, Institute of Bioinformatics, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Zaheer
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Muhammad Badar
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| |
Collapse
|
4
|
Zhang H, Cui M, Zhang T, Qin X. Eco-friendly composite nanofibrous membranes loaded with chitosan microcapsules for enhanced antibacterial and deodorant application. POLYMER 2023; 283:126249. [DOI: 10.1016/j.polymer.2023.126249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Podophyllotoxin and its derivatives: Potential anticancer agents of natural origin in cancer chemotherapy. Biomed Pharmacother 2023; 158:114145. [PMID: 36586242 DOI: 10.1016/j.biopha.2022.114145] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
The use of plant secondary metabolites has gained considerable attention among clinicians in the prevention and treatment of cancer. A secondary metabolite isolated mainly from the roots and rhizomes of Podophyllum species (Berberidaceae) is aryltetralin lignan - podophyllotoxin (PTOX). The purpose of this review is to discuss the therapeutic properties of PTOX as an important anticancer compound of natural origin. The relevant information regarding the antitumor mechanisms of podophyllotoxin and its derivatives were collected and analyzed from scientific databases. The results of the analysis showed PTOX exhibits potent cytotoxic activity; however, it cannot be used in its pure form due to its toxicity and generation of many side effects. Therefore, it practically remains clinically unusable. Currently, high effort is focused on attempts to synthesize analogs of PTOX that have better properties for therapeutic use e.g. etoposide (VP-16), teniposide, etopophos. PTOX derivatives are used as anticancer drugs which are showing additional immunosuppressive, antiviral, antioxidant, hypolipemic, and anti-inflammatory effects. In this review, attention is paid to the high potential of the usefulness of in vitro cultures of P. peltatum which can be a valuable source of lignans, including PTOX. In conclusion, the preclinical pharmacological studies in vitro and in vivo confirm the anticancer and chemotherapeutic potential of PTOX and its derivatives. In the future, clinical studies on human subjects are needed to certify the antitumor effects and the anticancer mechanisms to be certified and analyzed in more detail and to validate the experimental pharmacological preclinical studies.
Collapse
|
6
|
Zamanvaziri A, Meshkat M, Alazmani S, Khaleghi S, Hashemi M. Targeted PEGylated Chitosan Nano-complex for Delivery of Sodium Butyrate to Prostate Cancer: An In Vitro Study. Technol Cancer Res Treat 2023; 22:15330338231159223. [PMID: 36855824 PMCID: PMC9983112 DOI: 10.1177/15330338231159223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Introduction: Cancer remains a challenging issue against human health throughout the world; As a result, introducing novel approaches would be beneficial for cancer treatment. In this research, sodium butyrate (Sb) is one of the effective anti-cancer therapeutics (also a potent survival factor for normal cells) that was used for prostate cancer suppression in the platform of modified chitosan (CS) nano-complex (polyethylene glycol (PEG)-folic acid (FA)-Sb-CS). Methods: Different analytical devices including Fourier transform infrared, dynamic light scattering, high-performance liquid chromatography, scanning electron microscopy, and transmission electron microscopy were applied for the characterization of synthetics. On the other hand, biomedical tests including cell viability assay, molecular and functional assay of apoptosis/autophagy pathways, and cell cycle arrest analysis were potentially implemented on human PC3 (folate receptor-negative prostate cancer) and DU145 (folate receptor-positive prostate cancer) and HFF-1 normal cell lines. Results: The quality of the syntheses was effectively verified, and the size range from 140 to 170 nm was determined for the PEG-CS-FA-Sb sample. Also, 75 ± 5% of drug entrapment efficiency with controlled drug release manner (Sb release of 54.21% and 74.04% for pHs 7.4 and 5.0) were determined for nano-complex. Based on MTT results, PEG-CS-FA-Sb has indicated 72.07% and 33.53% cell viability after 24 h of treatment with 9 mM on PC3 and DU145 cell lines, respectively, which is desirable anti-cancer performance. The apoptotic and autophagy genes overexpression was 15-fold (caspase9), 2.5-fold (BAX), 11-fold (ATG5), 2-fold (BECLIN1), and 3-fold (mTORC1) genes in DU145 cancer cells. More than 50% of cell cycle arrest and 45.05% of apoptosis were obtained for DU145 cancer cells after treatment with nano-complex. Conclusion: Hence, the synthesized Sb-loaded nano-complex could specifically suppress prostate cancer cell growth and induce apoptosis and autophagy in the molecular and cellular phases.
Collapse
Affiliation(s)
- Ali Zamanvaziri
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Science, 68106Islamic Azad University, Tehran, Iran
| | - Mahboobeh Meshkat
- Department of Biology, Division of Cellular and Molecular Biology, Nourdanesh University of Meymeh, Meymeh, Isfahan, Iran
| | - Soroush Alazmani
- Student research committee, School of Medicine, 440827Iran University of Medical Science, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, 68106Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Science, 68106Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Science Research Center, Farhikhtegan Hospital Tehran Medical Sciences, 68106Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Recent advances in targeted gene silencing and cancer therapy by nanoparticle-based delivery systems. Biomed Pharmacother 2023; 157:114065. [PMID: 36481408 DOI: 10.1016/j.biopha.2022.114065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Nanomedicine has emerged as a promising platform for disease treatment and much progress has been achieved in the clinical translation for cancer treatment. Several types of nanomedicines have been approved for therapeutic application. However, many nanoparticles still suffer from challenges in the translation from bench to bedside. Currently, nanoparticle-based delivery systems have been developed to explore their functions in targeted gene silencing and cancer therapy. This review describes the research progress of different nano-carriers in targeted gene editing, and the recent progress in co-delivery of anticancer drugs and small ribonucleic acid. We also summarize the strategies for improving the specificity of carrier systems. Finally, we discuss the functions of targeted nano-carriers in overcoming chemotherapeutic drug resistance in cancer therapy. As research continues to advance, a better understanding of the safety including long-term toxicity, immunogenicity, and body metabolism may impel nanoparticle translation.
Collapse
|
8
|
Shi RJ, Fan HY, Yu XH, Tang YL, Jiang J, Liang XH. Advances of podophyllotoxin and its derivatives: patterns and mechanisms. Biochem Pharmacol 2022; 200:115039. [DOI: 10.1016/j.bcp.2022.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
|
9
|
Karpov TE, Muslimov AR, Antuganov DO, Postovalova AS, Pavlov DA, Usov YV, Shatik SV, Zyuzin MV, Timin AS. Impact of metallic coating on the retention of 225Ac and its daugthers within core-shell nanocarriers. J Colloid Interface Sci 2022; 608:2571-2583. [PMID: 34801240 DOI: 10.1016/j.jcis.2021.10.187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 01/11/2023]
Abstract
Currently, alpha-emitting radionuclide 225Ac is one of the most promising isotopes in alpha therapy due to its high linear energy transfer during four sequential alpha decays. However, the main obstacle preventing the full introduction of 225Ac into clinical practice is the lack of stable retention of radionuclides, leading to free circulation of toxic isotopes in the body. In this work, the surface of silica nanoparticles (SiO2 NPs) has been modified with metallic shells composed of titanium dioxide (TiO2) and gold (Au) nanostructures to improve the retention of 225Ac and its decay products within the developed nanocarriers. In vitro and in vivo studies in healthy mice show that the metallic surface coating of SiO2 NPs promotes an enhanced sequestering of radionuclides (225Ac and its daughter isotopes) compared to non-modified SiO2 NPs for a prolonged period of time. Histological analysis reveals that for the period of 3-10 d after the injections, the developed nanocarriers have no significant toxic effects in mice. At the same time, almost no accumulation of leaked radionuclides can be detected in non-target organs (e.g., in the kidneys). In contrast, non-modified carriers (SiO2 NPs) demonstrate the release of free radionuclides, which are distributed over the whole animal body with the consequent morphological changes in the lung, liver and kidney tissues. These results highlight the potential of the developed nanocarriers to be utilized as radionuclide delivery systems and offer an insight into design rules for the fabrication of new nanotherapeutic agents.
Collapse
Affiliation(s)
- Timofey E Karpov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Albert R Muslimov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; St. Petersburg Academic University, Khlopin St. 8/3, St. Petersburg 194021, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Dmitrii O Antuganov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
| | - Alisa S Postovalova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Dmitri A Pavlov
- Lobachevsky University, 23/3 Gagarin prospect, Nizhny Novgorod 603950, Russian Federation
| | - Yuri V Usov
- Lobachevsky University, 23/3 Gagarin prospect, Nizhny Novgorod 603950, Russian Federation
| | - Sergey V Shatik
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
| | - Mikhail V Zyuzin
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Alexander S Timin
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation; Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russian Federation.
| |
Collapse
|
10
|
Jaiswal S, Dutta PK, Kumar S, Koh J, Lee MC, Lim JW, Pandey S, Garg P. Synthesis, characterization and application of chitosan-N-(4-hydroxyphenyl)-methacrylamide derivative as a drug and gene carrier. Int J Biol Macromol 2022; 195:75-85. [PMID: 34883163 DOI: 10.1016/j.ijbiomac.2021.11.204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 01/16/2023]
Abstract
The aim of this study was to develop a green method to fabricate a novel CS modified N-(4-hydroxyphenyl)- methacrylamide conjugate (CSNHMA) and to evaluate its biomedical potential. CSNHMA has been prepared by a simple method via aza Michael addition reaction between CS and N- (4-hydroxyphenyl)-methacrylamide (NHMA) in ethanol. Its structural and morphological properties were characterized by various analysis techniques. The obtained results confirmed that a highly porous network structure of CSNHMA was successfully synthesized via aza Michael addition reaction. Consequently, it was analyzed as a drug and gene carrier. CSNHMA/pGL3 showed an enhanced buffering capacity due to the presence of NHMA moiety leading to higher transfection efficiency in all cancer cells (A549, HeLa and HepG2) as compared to native CS and Lipofectamine®. Therefore, these findings clearly support the possibility of using CSNHMA as a good transfection agent. For in vitro drug release study, we prepared CSNHMA nanoparticles (NPs) and curcumin loaded CSNHMA NPs of size <230 nm respectively via the non-toxic ionic gelation route and the encapsulation efficiency of drug was found to be 77.03%. In vitro drug release studies demonstrated a faster and sustained release of curcumin loaded CSNHMA NPs at pH 5.0 compared to physiological pH.
Collapse
Affiliation(s)
- Shefali Jaiswal
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology, Allahabad 211004, India.
| | - Pradip Kumar Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology, Allahabad 211004, India.
| | - Santosh Kumar
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Joonseok Koh
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Myung Chul Lee
- Department of Biosystems & Biomaterial Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jae Woon Lim
- Department of Biosystems & Biomaterial Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Shambhavi Pandey
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Pankaj Garg
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
11
|
Di Santo MC, D' Antoni CL, Domínguez Rubio AP, Alaimo A, Pérez OE. Chitosan-tripolyphosphate nanoparticles designed to encapsulate polyphenolic compounds for biomedical and pharmaceutical applications - A review. Biomed Pharmacother 2021; 142:111970. [PMID: 34333289 DOI: 10.1016/j.biopha.2021.111970] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/18/2022] Open
Abstract
Plant-based polyphenols are natural compounds, present in fruits and vegetables. During recent years, polyphenols have gained special attention due to their nutraceutical and pharmacological activities for the prevention and treatment of human diseases. Nevertheless, their photosensitivity and low bioavailability, rapid metabolism and short biological half-life represent the major limitations for their use, which could be overcome by polyphenols encapsulation (flavonoids and non-flavonoids) into chitosan (CS)-tripolyphosphate (TPP) based nanoparticles (NP). In this review, we particularly focused on the ionic gelation method for the NP design. This contribution exhaustively discusses and compares results of scientific reports published in the last decade referring to ionic gelation applied for the protection, controlled and site-directed delivery of polyphenols. As a consequence, CS-TPP NP would constitute true platforms to transport polyphenols, or a combination of them, to be used for the designing of a new generation of drugs or nutraceuticals.
Collapse
Affiliation(s)
- Mariana Carolina Di Santo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Cecilia Luciana D' Antoni
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Ana Paula Domínguez Rubio
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Agustina Alaimo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Oscar Edgardo Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Li C, Wang Y, Zhang S, Zhang J, Wang F, Sun Y, Huang L, Bian W. pH and ROS sequentially responsive podophyllotoxin prodrug micelles with surface charge-switchable and self-amplification drug release for combating multidrug resistance cancer. Drug Deliv 2021; 28:680-691. [PMID: 33818237 PMCID: PMC8023596 DOI: 10.1080/10717544.2021.1905750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Multidrug resistance (MDR) is one of the main reasons for tumor chemotherapy failure. Podophyllotoxin (PPT) has been reported that can suppress MDR cancer cell growth; however, effective delivery of PPT to MDR cancer cells is challenged by cascaded bio-barriers. To effectively deliver PPT to MDR cancer cells, a PPT polymeric prodrug micelle (PCDMA) with the charge-conversion capability and self-acceleration drug release function are fabricated, which is composed of a pH and reactive oxygen species (ROS) sequentially responsive PPT-polymeric prodrug and an ROS generation agent, cucurbitacin B (CuB). After reach to tumor tissue, the surface charge of PCDMA could rapidly reverse to positive in the tumor extracellular environment to promote cellular uptake. Subsequently, the PCDMA could be degraded to release PPT and CuB in response to an intracellular high ROS condition. The released CuB is competent for generating ROS, which in turn accelerates the release of PPT and CuB. Eventually, the released PPT could kill MDR cancer cells. The in vitro and in vivo studies demonstrated that PCDMA was effectively internalized by cancer cells and produces massive ROS intracellular, rapid release drug, and effectively overcame MDR compared with the control cells, due to the tumor-specific weakly acidic and ROS-rich environment. Our results suggest that the pH/ROS dual-responsive PCDMA micelles with surface charge-reversal and self-amplifying ROS-response drug release provide an excellent platform for potential MDR cancer treatment.
Collapse
Affiliation(s)
- Chao Li
- Department of Infectious Disease, Wuhu No. 1 People's Hospital, Wuhu, China
| | - Yifan Wang
- Department of Oncology, Yancheng No. 1 People's Hospital, Yancheng First Hospital Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Shuo Zhang
- Department of Infectious Disease, Wuhu No. 1 People's Hospital, Wuhu, China
| | - Jiaojiao Zhang
- Department of Infectious Disease, Wuhu No. 1 People's Hospital, Wuhu, China
| | - Fang Wang
- Department of Infectious Disease, Wuhu No. 1 People's Hospital, Wuhu, China
| | - Yunhao Sun
- Department of Cardiothoracic Surgery, Yancheng No. 1 People's Hospital, Yancheng First Hospital Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Lirong Huang
- Department of Cardiothoracic Surgery, Yancheng No. 1 People's Hospital, Yancheng First Hospital Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Wen Bian
- Department of Cardiothoracic Surgery, Yancheng No. 1 People's Hospital, Yancheng First Hospital Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| |
Collapse
|
13
|
Suh SH, Mathew AP, Choi HS, Vasukutty A, Kim CS, Kim IJ, Ma SK, Kim SW, Park IK, Bae EH. Kidney-accumulating olmesartan-loaded nanomicelles ameliorate the organ damage in a murine model of Alport syndrome. Int J Pharm 2021; 600:120497. [PMID: 33753165 DOI: 10.1016/j.ijpharm.2021.120497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
ACE inhibitors or angiotensin II receptor blockers (ACEi/ARBs) have been a cornerstone of the management in kidney disease, but their use is often limited by undesired systemic effects, such as symptomatic hypotension. To minimize the extra-renal effects of ACEi/ARBs, we formulated hydrophobically modified glycol chitosan (HGC) nanomicelles releasing olmesartan (HGC-Olm) that specifically accumulated in the kidney, and investigated whether kidney-specific delivery of olmesartan by HGC nanomicelles could ameliorate organ damage in Col4a3-/- mouse, a murine model of progressive chronic kidney disease mimicking human Alport syndrome. Ex vivo tracing demonstrated that intravenously injected HGC-Olm nanomicelles were specifically delivered to the kidney, with sustained release of olmesartan for more than 48 h. Contrary to the conventional delivery of olmesartan via oral route, injection of HGC-Olm nanomicelles did not alter blood pressure in Col4a3-/- mice. Immunohistochemistry revealed that HGC nanomicelles were diffusely distributed from the cortex and glomeruli to the outer medulla, sparing the inner medulla. Phenotypic analysis showed that the attenuation of kidney fibrosis in the kidney of Col4a3-/- mice by HGC-Olm nanomicelles was comparable to that noted with conventionally delivered olmesartan. Therefore, our results suggest that HGC-Olm nanomicelles could be a safe and effective alternative drug delivery system for kidney diseases.
Collapse
Affiliation(s)
- Sang Heon Suh
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ansuja Pulickal Mathew
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Arathy Vasukutty
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - In Jin Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
14
|
Lu TY, Chiang CY, Fan YJ, Jheng PR, Quiñones ED, Liu KT, Kuo SH, Hsieh HY, Tseng CL, Yu J, Chuang EY. Dual-Targeting Glycol Chitosan/Heparin-Decorated Polypyrrole Nanoparticle for Augmented Photothermal Thrombolytic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10287-10300. [PMID: 33615773 DOI: 10.1021/acsami.0c20940] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Near-infrared (NIR)-light-modulated photothermal thrombolysis has been investigated to overcome the hemorrhage danger posed by clinical clot-busting substances. A long-standing issue in thrombosis fibrinolytics is the lack of lesion-specific therapy, which should not be ignored. Herein, a novel thrombolysis therapy using photothermal disintegration of a fibrin clot was explored through dual-targeting glycol chitosan/heparin-decorated polypyrrole nanoparticles (GCS-PPY-H NPs) to enhance thrombus delivery and thrombolytic therapeutic efficacy. GCS-PPY-H NPs can target acidic/P-selectin high-expression inflammatory endothelial cells/thrombus sites for initiating lesion-site-specific thrombolysis by hyperthermia using NIR irradiation. A significant fibrin clot-clearance rate was achieved with thrombolysis using dual-targeting/modality photothermal clot disintegration in vivo. The molecular level mechanisms of the developed nanoformulations and interface properties were determined using multiple surface specific analytical techniques, such as particle size distribution, zeta potential, electron microscopy, Fourier-transform infrared spectroscopy (FTIR), wavelength absorbance, photothermal, immunofluorescence, and histology. Owing to the augmented thrombus delivery of GCS-PPY-H NPs and swift treatment time, dual-targeting photothermal clot disintegration as a systematic treatment using GCS-PPY-H NPs can be effectively applied in thrombolysis. This novel approach possesses a promising future for thrombolytic treatment.
Collapse
Affiliation(s)
- Ting-Yu Lu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Yu Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering; and International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering; and International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Edgar Daniel Quiñones
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kuan-Ting Liu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shuo-Hsiu Kuo
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Han Yun Hsieh
- School of Biomedical Engineering; and International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering; and International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering; and International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
15
|
Zhao M, Zhu T, Chen J, Cui Y, Zhang X, Lee RJ, Sun F, Li Y, Teng L. PLGA/PCADK composite microspheres containing hyaluronic acid-chitosan siRNA nanoparticles: A rational design for rheumatoid arthritis therapy. Int J Pharm 2021; 596:120204. [PMID: 33493604 DOI: 10.1016/j.ijpharm.2021.120204] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/14/2020] [Accepted: 01/01/2021] [Indexed: 12/27/2022]
Abstract
Myeloid cell leukemia-1 (Mcl-1), a member of the Bcl-2 anti-apoptotic family, is overexpressed in the synovial macrophages of patients with rheumatoid arthritis (RA). Small interfering RNA (siRNA) Mcl-1 can induce macrophage apoptosis in the joints and is a potential therapeutic target of RA. Nevertheless, the application of siRNA is limited owing to its instability and susceptibility to degradation in vivo. To address these shortcomings, we developed composite microspheres (MPs) loaded with hyaluronic acid (HA)-chitosan (CS) nanoparticles (NPs). First, we synthesized HA-CS/siRNA NPs (HCNPs) using ionotropic gelation process. Then, HCNPs, as an internal aqueous phase, were loaded into poly (D, L-lactide-co-glycolide) (PLGA) and poly (cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) MPs using the double emulsion method. The NPs-in-MPs (NiMPs) composite system provided sustained release of NPs, protected siRNA against nuclease degradation in the serum, and could readily cross the cellular membrane. In addition, we evaluated the advantages of NiMPs in an adjuvant-induced arthritis rat model. Our experimental results demonstrate that NiMPs have greater pharmacodynamic effects than common MPs. Meanwhile, compared with HCNPs, NiMPs reduced the frequency of drug administration. Therefore, NiMPs are a promising and novel siRNA delivery vehicle for RA therapy.
Collapse
Affiliation(s)
- Menghui Zhao
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Tianyu Zhu
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Jicong Chen
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yaxin Cui
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xueyan Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, Jilin, China; College of Pharmacy, the Ohio State University, Columbus, OH, USA
| | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Youxin Li
- School of Life Sciences, Jilin University, Changchun, Jilin, China.
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
16
|
Kumbhar PS, Sakate AM, Patil OB, Manjappa AS, Disouza JI. Podophyllotoxin-polyacrylic acid conjugate micelles: improved anticancer efficacy against multidrug-resistant breast cancer. J Egypt Natl Canc Inst 2020; 32:42. [PMID: 33191444 DOI: 10.1186/s43046-020-00053-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/14/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Podophyllotoxin (PPT) is a naturally occurring compound obtained from the roots of Podophyllum species, indicated for a variety of malignant tumors such as breast, lung, and liver tumors. This toxic polyphenol (PPT) exhibited significant activity against P-glycoprotein (P-gp) mediated multidrug-resistant (MDR) cancer cells. However, extremely poor water solubility, a narrow therapeutic window, and high toxicity have greatly restricted the clinical uses of PPT. Therefore, the present research was aimed to synthesize the water-soluble ester prodrug of PPT with polyacrylic acid (PAA), a water-soluble polymer by Steglich esterification reaction, and to screen it for assay, solubility, in vitro hemolysis, in vitro release, and in vitro anticancer activity. RESULTS The Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy results revealed the successful synthesis of podophyllotoxin-polyacrylic acid conjugate (PPC). The assay and saturation solubility of the prodrug is found to be 64.01 ± 4.5% and 1.39 ± 0.05 mg/mL (PPT equivalent) respectively. The PPC showed CMC (critical micelle concentration) of 0.430 mg/mL in distilled water at room temperature. The PPC micelles showed a mean particle size of 215 ± 11 nm with polydispersity index (PDI) of 0.193 ± 0.006. Further, the transmission electron microscope (TEM) results confirmed the self-assembling character of PPC into micelles. The PPC caused significantly less hemolysis (18.6 ± 2.9%) than plain PPT solution. Also, it demonstrated significantly (p < 0.01) higher in vitro cytotoxicity against both sensitive as well as resistance human breast cancer cells (MCF-7 and MDA MB-231) after 48 h of treatment. CONCLUSION The obtained study results clearly revealed the notable in vitro anticancer activity of PPT following its esterification with PAA. However, further in vivo studies are needed to ascertain its efficacy against a variety of cancers.
Collapse
Affiliation(s)
- Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Panhala, Kolhapur, Maharashtra, 416113, India
| | - Asmita M Sakate
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Panhala, Kolhapur, Maharashtra, 416113, India
| | - Onkar B Patil
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Panhala, Kolhapur, Maharashtra, 416113, India
| | - Arehalli S Manjappa
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Panhala, Kolhapur, Maharashtra, 416113, India
| | - John I Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Panhala, Kolhapur, Maharashtra, 416113, India.
| |
Collapse
|
17
|
Zhao W, Cong Y, Li HM, Li S, Shen Y, Qi Q, Zhang Y, Li YZ, Tang YJ. Challenges and potential for improving the druggability of podophyllotoxin-derived drugs in cancer chemotherapy. Nat Prod Rep 2020; 38:470-488. [PMID: 32895676 DOI: 10.1039/d0np00041h] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2020As a main bioactive component of the Chinese, Indian, and American Podophyllum species, the herbal medicine, podophyllotoxin (PTOX) exhibits broad spectrum pharmacological activity, such as superior antitumor activity and against multiple viruses. PTOX derivatives (PTOXs) could arrest the cell cycle, block the transitorily generated DNA/RNA breaks, and blunt the growth-stimulation by targeting topoisomerase II, tubulin, or insulin-like growth factor 1 receptor. Since 1983, etoposide (VP-16) is being used in frontline cancer therapy against various cancer types, such as small cell lung cancer and testicular cancer. Surprisingly, VP-16 (ClinicalTrials NTC04356690) was also redeveloped to treat the cytokine storm in coronavirus disease 2019 (COVID-19) in phase II in April 2020. The treatment aims at dampening the cytokine storm and is based on etoposide in the case of central nervous system. However, the initial version of PTOX was far from perfect. Almost all podophyllotoxin derivatives, including the FDA-approved drugs VP-16 and teniposide, were seriously limited in clinical therapy due to systemic toxicity, drug resistance, and low bioavailability. To meet this challenge, scientists have devoted continuous efforts to discover new candidate drugs and have developed drug strategies. This review focuses on the current clinical treatment of PTOXs and the prospective analysis for improving druggability in the rational design of new generation PTOX-derived drugs.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pan C, Qian J, Zhao C, Yang H, Zhao X, Guo H. Study on the relationship between crosslinking degree and properties of TPP crosslinked chitosan nanoparticles. Carbohydr Polym 2020; 241:116349. [DOI: 10.1016/j.carbpol.2020.116349] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/08/2020] [Accepted: 04/18/2020] [Indexed: 11/29/2022]
|
19
|
Jacumazo J, de Carvalho MM, Parchen GP, Campos IM, Ballesteros Garcia MJ, Brugnari T, Maciel GM, Marques FA, de Freitas RA. Development, characterization and antimicrobial activity of sodium dodecyl sulfate-polysaccharides capsules containing eugenol. Carbohydr Polym 2020; 230:115562. [PMID: 31887918 DOI: 10.1016/j.carbpol.2019.115562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/17/2019] [Accepted: 10/31/2019] [Indexed: 11/24/2022]
|
20
|
Feng W, Zong M, Wan L, Yu X, Yu W. pH/redox sequentially responsive nanoparticles with size shrinkage properties achieve deep tumor penetration and reversal of multidrug resistance. Biomater Sci 2020; 8:4767-4778. [PMID: 32724941 DOI: 10.1039/d0bm00695e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
pH/redox sequentially responsive nanoparticles with size shrinkage properties achieve deep tumor penetration and reversal of multidrug resistance.
Collapse
Affiliation(s)
- Wanting Feng
- Department of Oncology
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University
- Huaian
- China
| | - Mingzhu Zong
- Department of Oncology
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University
- Huaian
- China
| | - Li Wan
- Department of Oncology
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University
- Huaian
- China
| | - Xiaojuan Yu
- Department of Oncology
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University
- Huaian
- China
| | - Weiyong Yu
- Department of Oncology
- The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University
- Huaian
- China
| |
Collapse
|
21
|
Li Y, Chen M, Yao B, Lu X, Zhang X, He P, Vasilatos SN, Ren X, Bian W, Yao C. Transferrin receptor-targeted redox/pH-sensitive podophyllotoxin prodrug micelles for multidrug-resistant breast cancer therapy. J Mater Chem B 2019; 7:5814-5824. [PMID: 31495855 DOI: 10.1039/c9tb00651f] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Podophyllotoxin (PPT), a toxic polyphenol extracted from the roots of Podophyllum species, showed remarkable activity against P-glycoprotein (P-gp) mediated multidrug resistant (MDR) cancer cells. Many PPT-prodrugs based on nano-technology have been developed for increasing aqueous solubility and reducing the side effects of PPT; however, the sensitive linkers in almost all PPT-prodrugs were ester bonds, resulting in slow and incomplete drug release. We developed a redox/pH double-sensitive and tumor active targeted drug delivery system for PPT delivery, in which PPT was covalently coupled to T7-peptide (Pep) modified polyethylene glycol (PEG) or methoxy-polyethylene glycol (mPEG) through a disulfide bond to obtain the final polymer (Pep-PEG-SS-PPT or PEG-SS-PPT). The mixed micelles (Pep-SS-NPs) were made by mixing Pep-PEG-SS-PPT with PEG-SS-PPT, and the mixed micelles showed good size uniformity and high stability in serum solution. The in vitro release experiment showed that about (81.7 ± 2.8)% PPT was released from Pep-SS-NPs in 10 mM glutathione (GSH) at pH 7.4, and also about (64.6 ± 1.7)% PPT was released from Pep-SS-NPs at pH 5.0. In vitro cytotoxicity analysis suggested that Pep-SS-NPs exhibited 57- to 270-fold lower resistance index (RI) values for different drug-resistant cancer cell lines than paclitaxel (PTX) or docetaxel (DTX). The cell uptake assay indicated that the Pep-SS-NPs could significantly enhance the intracellular level of coumarin-6 compared to that of the control group. The maximum tolerated dose (MTD) of Pep-SS-NPs was increased greatly compared to that of free PPT (5.3-fold). In vivo research showed that Pep-SS-NPs significantly enhanced antitumor efficacy against MCF-7/ADR xenograft tumors compared to the control groups. These findings suggest that mixed micelles could be a potentially successful nanomedicine for MDR breast cancer therapy.
Collapse
Affiliation(s)
- Yongfei Li
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), No. 155 Hanzhong Road, Nanjing 210029, China.
| | - Mie Chen
- Department of general surgery, Pukou district central hospital, Pukou branch of jiangsu province hospital, China
| | - Bowen Yao
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Xun Lu
- Milken School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Xiaoqing Zhang
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), No. 155 Hanzhong Road, Nanjing 210029, China.
| | - Peng He
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), No. 155 Hanzhong Road, Nanjing 210029, China.
| | - Shauna N Vasilatos
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaomei Ren
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), No. 155 Hanzhong Road, Nanjing 210029, China.
| | - Weihe Bian
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), No. 155 Hanzhong Road, Nanjing 210029, China.
| | - Chang Yao
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), No. 155 Hanzhong Road, Nanjing 210029, China.
| |
Collapse
|
22
|
Wen J, Liu F, Tao B, Sun S. GSH-responsive anti-mitotic cell penetrating peptide-linked podophyllotoxin conjugate for improving water solubility and targeted synergistic drug delivery. Bioorg Med Chem Lett 2019; 29:1019-1022. [DOI: 10.1016/j.bmcl.2019.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/21/2019] [Accepted: 02/05/2019] [Indexed: 01/23/2023]
|
23
|
Nejadshafiee V, Naeimi H, Goliaei B, Bigdeli B, Sadighi A, Dehghani S, Lotfabadi A, Hosseini M, Nezamtaheri MS, Amanlou M, Sharifzadeh M, Khoobi M. Magnetic bio-metal-organic framework nanocomposites decorated with folic acid conjugated chitosan as a promising biocompatible targeted theranostic system for cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:805-815. [PMID: 30889755 DOI: 10.1016/j.msec.2019.02.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/18/2022]
Abstract
In this work, a multifunctional magnetic Bio-Metal-Organic Framework (Fe3O4@Bio-MOF) coated with folic acid-chitosan conjugate (FC) was successfully prepared for tumor-targeted delivery of curcumin (CUR) and 5-fluorouracil (5-FU) simultaneously. Bio-MOF nanocomposite based on CUR as organic linker and zinc as metal ion was prepared by hydrothermal method in the presence of amine-functionalized Fe3O4 magnetic nanoparticles (Fe3O4@NH2 MNPs). 5-FU was loaded in the magnetic Bio-MOF and the obtained nanocarrier was then coated with FC network. The prepared nanocomposite (NC) was fully characterized by high resolution-transmission electron microscope (HR-TEM), field emission scanning electron microscopy (FE-SEM), Dynamic light scattering (DLS), X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), nuclear magnetic resonance (NMR), and UV-vis analyses. In vitro release study showed controlled release of CUR and 5-FU in acidic pH confirming high selectivity and performance of the carrier in cancerous microenvironments. The selective uptake of 5-FU-loaded Fe3O4@Bio-MOF-FC by folate receptor-positive MDA-MB-231 cells was investigated and verified. The ultimate nanocarrier exhibited no significant toxicity, while drug loaded nanocarrier showed selective and higher toxicity against the cancerous cells than normal cells. SDS PAGE was also utilized to determine the protein pattern attached on the surface of the nanocarriers. In vitro and in vivo MRI studies showed negative signal enhancement in tumor confirming the ability of the nanocarrier to be applied as diagnostic agent. Owing to the selective anticancer release and cellular uptake, acceptable blood compatibility as well as suitable T2 MRI contrast performance, the target nanocarrier could be considered as favorable theranostic in breast cancer.
Collapse
Affiliation(s)
- Vajihe Nejadshafiee
- Biomaterials Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan 87317, Iran
| | - Hossein Naeimi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan 87317, Iran
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Bahareh Bigdeli
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Armin Sadighi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Sadegh Dehghani
- Biomaterials Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Alireza Lotfabadi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Hosseini
- Biomaterials Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Maryam Sadat Nezamtaheri
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176-53955, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoobi
- Biomaterials Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Safdar R, Omar AA, Arunagiri A, Regupathi I, Thanabalan M. Potential of Chitosan and its derivatives for controlled drug release applications – A review. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.10.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Chen C, Sun W, Wang X, Wang Y, Wang P. Rational design of curcumin loaded multifunctional mesoporous silica nanoparticles to enhance the cytotoxicity for targeted and controlled drug release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 85:88-96. [PMID: 29407161 DOI: 10.1016/j.msec.2017.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/15/2017] [Accepted: 12/07/2017] [Indexed: 11/15/2022]
Abstract
Curcumin has attracted increasing attentions in recent years due to its promising anticancer activities. However, the hydrophobicity of curcumin has limited greatly its efficacy in clinical trials. In this study, folate (FA)-receptor targeting mesoporous silica nanoparticles that promise high loadings of curcumin via pH-sensitive Schiff base reactions were constructed and examined for targeted delivery of curcumin. Such nano-delivery system showed significantly improved stability and biocompatibility of curcumin under physiological conditions. Further investigations demonstrated that this nanocarrier had high values of drug loading efficiency (9.5%) and pH-responsive drug release property. Moreover, the particles could be efficiently internalized by FA-receptor-rich MCF-7 cells through the receptor-mediated endocytosis, whereas FA-receptor-poor HEK-293T normal cells showed much lower endocytosis of the nanoparticles under the same conditions. The in vitro cytotoxicity assay indicated that the curcumin-loaded nanoparticles exhibited significantly enhanced cytotoxicity against MCF-7 cell than HEK-293T cells because of the higher cellular uptake efficiency of nanocarriers. More broadly, this work demonstrates a new type of mesoporous silica nanocarrier particularly useful for targeted and controlled drug release applications.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Wen Sun
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xiaoli Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yibing Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Ping Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|