1
|
Liu JJ, Hou YK, Wang X, Zhou XT, Yin JY, Nie SP. Recent advances in the biosynthesis of fungal glucan structural diversity. Carbohydr Polym 2024; 329:121782. [PMID: 38286552 DOI: 10.1016/j.carbpol.2024.121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
Glucans are the most abundant class of macromolecule polymers in fungi, which are commonly found in Ascomycota and Basidiomycota. Fungal glucans are not only essential for cell integrity and function but also crucial for the immense industrial interest in high value applications. They present a variety of structural characteristics at the nanoscale due to the high regulation of genes and the involvement of stochastic processes in synthesis. However, although recent findings have demonstrated the genes of glucans synthesis are relatively conserved across diverse fungi, the formation and organization of diverse glucan structures is still unclear in fungi. Here, we summarize the structural features of fungal glucans and the recent developments in the mechanisms of glucans biosynthesis. Furthermore, we propose the engineering strategies of targeted glucan synthesis and point out the remaining challenges in the synthetic process. Understanding the synthesis process of diverse glucans is necessary for tailoring high value glucan towards specific applications. This engineering strategy contributes to enable the sustainable and efficient production of glucan diversity.
Collapse
Affiliation(s)
- Jin-Jin Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Yu-Ke Hou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Xing-Tao Zhou
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China; Food Laboratory of Zhongyuan, Luo he 462300, Henan, China.
| |
Collapse
|
2
|
Li J, Wang BX, Zhang J, Han N, Liu ST, Geng WJ, Jia SR, Li YR, Gan Q, Han PP. A newly discovered glycosyltransferase gene UGT88A1 affects growth and polysaccharide synthesis of Grifola frondosa. Appl Microbiol Biotechnol 2024; 108:246. [PMID: 38421403 PMCID: PMC10904514 DOI: 10.1007/s00253-024-13062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Grifola frodosa polysaccharides, especially β-D-glucans, possess significant anti-tumor, antioxidant and immunostimulatory activities. However, the synthesis mechanism remains to be elucidated. A newly discovered glycosyltransferase UGT88A1 was found to extend glucan chains in vitro. However, the role of UGT88A1 in the growth and polysaccharide synthesis of G. frondosa in vivo remains unclear. In this study, the overexpression of UGT88A1 improved mycelial growth, increased polysaccharide production, and decreased cell wall pressure sensitivity. Biomass and polysaccharide production decreased in the silenced strain, and the pressure sensitivity of the cell wall increased. Overexpression and silencing of UGT88A1 both affected the monosaccharide composition and surface morphology of G. frondosa polysaccharides and influenced the antioxidant activity of polysaccharides from different strains. The messenger RNA expression of glucan synthase (GLS), UTP-glucose-1-phosphate uridylyltransferase (UGP), and UDP-xylose-4-epimerase (UXE) related to polysaccharide synthesis, and genes related to cell wall integrity increased in the overexpression strain. Overall, our study indicates that UGT88A1 plays an important role in the growth, stress, and polysaccharide synthesis of G. frondosa, providing a reference for exploring the pathway of polysaccharide synthesis and metabolic regulation. KEY POINTS: •UGT88A1 plays an important role in the growth, stress response, and polysaccharide synthesis in G. frondosa. •UGT88A1 affected the monosaccharide composition, surface morphology and antioxidant activity of G. frondosa polysaccharides. •UGT88A1 regulated the mRNA expression of genes related to polysaccharide synthesis and cell wall integrity.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Bao-Xin Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Na Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Shu-Ting Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Wen-Ji Geng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Shi-Ru Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yan-Ru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Quan Gan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Pei-Pei Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
3
|
Zeng N, Zhang N, Wang D, Long J, Wang Y, Zhang Y, Pu F, Li Z, Baloch FB, Li B. Regulation of cell differentiation to promote pullulan synthesis in Aureobasidium pullulans NG. Appl Microbiol Biotechnol 2023; 107:6761-6773. [PMID: 37698607 DOI: 10.1007/s00253-023-12758-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
Pullulan is a polymer produced by Aureobasidium spp. The yield of pullulan production can be impacted by the cellular differentiation of Aureobasidium spp., which changes with alterations in the growth environment. To improve pullulan yield, identifying key factors that regulate cellular differentiation is crucial. In this study, the main form of pullulan synthesis in Aureobasidium pullulans NG was through swollen cells (SC). The results showed that citric acid (CA) can regulate the cellular differentiation of Aureobasidium pullulans NG by accumulating higher levels of CA in the cells to maintain growth in SC form and increase pullulan production. The addition of 1.0% CA to Aureobasidium pullulans NG for 96 h resulted in a significant increase in pullulan production, producing 18.32 g/l compared to the control group which produced 10.23 g/l. Our findings suggest that controlling cellular differentiation using CA is a promising approach for enhancing pullulan production in Aureobasidium pullulans. KEY POINTS: • The regulation of cell differentiation in Aureobasidium pullulans NG is demonstrated to be influenced by citric acid. • Intracellular citric acid levels in Aureobasidium pullulans NG have been shown to support the growth of swollen cells. • Citric acid has been found to increase pullulan production in Aureobasidium pullulans NG.
Collapse
Affiliation(s)
- Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| | - Dandan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Jiajia Long
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yunjiao Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yating Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Fangxiong Pu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Zijing Li
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Faryal Babar Baloch
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
4
|
UDP-Glycosyltransferases in Edible Fungi: Function, Structure, and Catalytic Mechanism. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
UDP-glycosyltransferases (UGTs) are the most studied glycosyltransferases, and belong to large GT1 family performing the key roles in antibiotic synthesis, the development of bacterial glycosyltransferase inhibitors, and in animal inflammation. They transfer the glycosyl groups from nucleotide UDP-sugars (UDP-glucose, UDP-galactose, UDP-xylose, and UDP-rhamnose) to the acceptors including saccharides, proteins, lipids, and secondary metabolites. The present review summarized the recent of UDP-glycosyltransferases, including their structures, functions, and catalytic mechanism, especially in edible fungi. The future perspectives and new challenges were also summarized to understand of their structure–function relationships in the future. The outputs in this field could provide a reference to recognize function, structure, and catalytic mechanism of UDP-glycosyltransferases for understanding the biosynthesis pathways of secondary metabolites, such as hydrocarbons, monoterpenes, sesquiterpene, and polysaccharides in edible fungi.
Collapse
|
5
|
He C, Zhang X, Zhang Z, Wang C, Wang D, Wei G. Whole-crop biorefinery of corn biomass for pullulan production by Aureobasidium pullulans. BIORESOURCE TECHNOLOGY 2023; 370:128517. [PMID: 36565822 DOI: 10.1016/j.biortech.2022.128517] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
In the present study, corn starch, cob, and straw were biorefined and used as feedstocks for the production of pullulan. The titer and molecular weight (Mw) of pullulan significantly decreased when corn cob and straw hydrolysates were utilized by the parental strain Aureobasidium pullulans CCTCC M 2012259 (PS). Based on adaptive laboratory evolution of PS, an evolved strain A. pullulans EV6 with strong adaptability to the whole corn biomass hydrolysate and high capability of pullulan biosynthesis was screened. Batch pullulan fermentation results indicated that EV6 produced an increased titer of pullulan with a higher Mw than PS. The underlying reasons for these increases were revealed by assaying key enzymes activities and measuring intracellular uridine diphosphate glucose levels. Subsequently, whole-crop biorefinery of corn biomass was conducted, and the results confirmed that whole corn crop has immense potential for efficient pullulan production.
Collapse
Affiliation(s)
- Chaoyong He
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Xuehan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Zhen Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Dahui Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
6
|
Chen X, Wang Y, Zhang XT, Wu YN, Zhang XL, Zhang GC, Wang CL, Zou X, Wang DH, Wei GY. MAL31, a sugar transporter involved in pullulan biosynthesis in Aureobasidium pullulans. J Biotechnol 2022; 359:176-184. [DOI: 10.1016/j.jbiotec.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/23/2022] [Accepted: 10/08/2022] [Indexed: 10/31/2022]
|
7
|
Rai M, Wypij M, Ingle AP, Trzcińska-Wencel J, Golińska P. Emerging Trends in Pullulan-Based Antimicrobial Systems for Various Applications. Int J Mol Sci 2021; 22:13596. [PMID: 34948392 PMCID: PMC8704206 DOI: 10.3390/ijms222413596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/21/2023] Open
Abstract
Global reports on multidrug resistance (MDR) and life-threatening pathogens such as SARS-CoV-2 and Candida cruris have stimulated researchers to explore new antimicrobials that are eco-friendly and economically viable. In this context, biodegradable polymers such as nisin, chitin, and pullulan play an important role in solving the problem. Pullulan is an important edible, biocompatible, water-soluble polymer secreted by Aureobasidium pullulans that occurs ubiquitously. It consists of maltotriose units linked with α-1,6 glycosidic bonds and is classed as Generally Regarded as Safe (GRAS) by the Food and Drug Administration (FDA) in the USA. Pullulan is known for its antibacterial, antifungal, antiviral, and antitumor activities when incorporated with other additives such as antibiotics, drugs, nanoparticles, and so on. Considering the importance of its antimicrobial activities, this polymer can be used as a potential antimicrobial agent against various pathogenic microorganisms including the multidrug-resistant (MDR) pathogens. Moreover, pullulan has ability to synthesize biogenic silver nanoparticles (AgNPs), which are remarkably efficacious against pathogenic microbes. The pullulan-based nanocomposites can be applied for wound healing, food packaging, and also enhancing the shelf-life of fruits and vegetables. In this review, we have discussed biosynthesis of pullulan and its role as antibacterial, antiviral, and antifungal agent. Pullulan-based films impregnated with different antimicrobials such as AgNPs, chitosan, essential oils, and so on, forming nanocomposites have also been discussed as natural alternatives to combat the problems posed by pathogens.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra, India
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.W.); (J.T.-W.)
| | - Magdalena Wypij
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.W.); (J.T.-W.)
| | - Avinash P. Ingle
- Biotechnology Centre, Department of Agricultural Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola 444104, Maharashtra, India;
| | - Joanna Trzcińska-Wencel
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.W.); (J.T.-W.)
| | - Patrycja Golińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland; (M.W.); (J.T.-W.)
| |
Collapse
|
8
|
He C, Zhang Z, Zhang Y, Wang G, Wang C, Wang D, Wei G. Efficient pullulan production by Aureobasidium pullulans using cost-effective substrates. Int J Biol Macromol 2021; 186:544-553. [PMID: 34273338 DOI: 10.1016/j.ijbiomac.2021.07.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
In this study, cost-effective substrates such as cassava starch, corn steep liquor (CSL) and soybean meal hydrolysate (SMH) were used for pullulan production by Aureobasidium pullulans CCTCC M 2012259. The medium was optimized using response surface methodology (RSM) and artificial neural network (ANN) approaches, and analysis of variance indicated that the ANN model achieved higher prediction accuracy. The optimal medium predicted by ANN was used to produce high molecular weight pullulan in high yield. SMH substrates increased both biomass and pullulan titer, while CSL substrates maintained higher pullulan molecular weight. Results of kinetic parameters, key enzyme activities and intracellular uridine diphosphate glucose contents revealed the physiological mechanism of changes in pullulan titer and molecular weight using different substrates. Economic analysis of batch pullulan production using different substrates was performed, and the cost of nutrimental materials for CSL and SMH substrates was decreased by 46.1% and 49.9%, respectively, compared to the control using glucose and yeast extract as substrates, which could improve the competitiveness of pullulan against other polysaccharides in industrial applications.
Collapse
Affiliation(s)
- Chaoyong He
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Zhen Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Youdan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Guoliang Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China
| | - Dahui Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China.
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
9
|
Chen X, Wang Y, He CY, Wang GL, Zhang GC, Wang CL, Wang DH, Zou X, Wei GY. Improved production of β-glucan by a T-DNA-based mutant of Aureobasidium pullulans. Appl Microbiol Biotechnol 2021; 105:6887-6898. [PMID: 34448899 DOI: 10.1007/s00253-021-11538-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 11/26/2022]
Abstract
To improve β-1,3-1,6-D-glucan (β-glucan) production by Aureobasidium pullulans, an Agrobacterium tumefaciens-mediated transformation method was developed to screen a mutant A. pullulans CGMCC 19650. Based on thermal asymmetric-interlaced PCR detection, DNA sequencing, BLAST analysis, and quantitative real-time PCR assay, the T-DNA was identified to be inserted in the coding region of mal31 gene, which encodes a sugar transporter involved in pullulan biosynthesis in the mutant. The maximal biomass and β-glucan production under batch fermentation were significantly increased by 47.6% and 78.6%, respectively, while pullulan production was decreased by 41.7% in the mutant, as compared to the parental strain A. pullulans CCTCC M 2012259. Analysis of the physiological mechanism of these changes revealed that mal31 gene disruption increased the transcriptional levels of pgm2, ugp, fks1, and kre6 genes; increased the amounts of key enzymes associated with UDPG and β-glucan biosynthesis; and improved intracellular UDPG contents and energy supply, all of which favored β-glucan production. However, the T-DNA insertion decreased the transcriptional levels of ags2 genes, and reduced the biosynthetic capability to form pullulan, resulting in the decrease in pullulan production. This study not only provides an effective approach for improved β-glucan production by A. pullulans, but also presents an accurate and useful gene for metabolic engineering of the producer for efficient polysaccharide production. KEY POINTS: • A mutant A. pullulans CGMCC 19650 was screened by using the ATMT method. • The mal31 gene encoding a sugar transporter was disrupted in the mutant. • β-Glucan produced by the mutant was significantly improved.
Collapse
Affiliation(s)
- Xing Chen
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Ying Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Chao-Yong He
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Guo-Liang Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Gao-Chuan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Chong-Long Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Da-Hui Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - Xiang Zou
- College of Pharmaceutical Sciences, Southwest University, 2# TianSheng Road, Beibei, Chongqing, 400715, People's Republic of China.
| | - Gong-Yuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
10
|
Pullulan biosynthesis and its regulation in Aureobasidium spp. Carbohydr Polym 2021; 251:117076. [DOI: 10.1016/j.carbpol.2020.117076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
|
11
|
Metabolic flux and transcriptome analyses provide insights into the mechanism underlying zinc sulfate improved β-1,3-D-glucan production by Aureobasidium pullulans. Int J Biol Macromol 2020; 164:140-148. [PMID: 32682036 DOI: 10.1016/j.ijbiomac.2020.07.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/12/2020] [Indexed: 11/20/2022]
Abstract
The effects of zinc sulfate at various concentrations on β-1,3-D-glucan (β-glucan) and pullulan production were investigated in flasks, and 0.1 g/L zinc sulfate was found to be the optimum concentration favoring increased β-glucan production. When batch culture of Aureobasidium pullulans CCTCC M 2012259 with 0.1 g/L zinc sulfate was carried out, the maximum dry biomass decreased by 16.9% while β-glucan production significantly increased by 120.5%, compared to results obtained from the control without zinc sulfate addition. To reveal the mechanism underlying zinc sulfate improved β-glucan production, both metabolic flux analysis and RNA-seq analysis were performed. The results indicated that zinc sulfate decreased carbon flux towards biomass formation and ATP supply, down-regulated genes associated with membrane part and cellular components organization, leading to a decrease in dry cell weight. However, zinc sulfate increased metabolic flux towards β-glucan biosynthesis, up-regulated genes related to glycan biosynthesis and nucleotide metabolism, resulting in improved β-glucan production. This study provides insights into the changes in the metabolism of A. pullulans in response to zinc sulfate, and can serve as a valuable reference of genetic information for improving the production of polysaccharides through metabolic engineering.
Collapse
|
12
|
Triton X-100 improves co-production of β-1,3-D-glucan and pullulan by Aureobasidium pullulans. Appl Microbiol Biotechnol 2020; 104:10685-10696. [PMID: 33170326 DOI: 10.1007/s00253-020-10992-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/21/2020] [Accepted: 10/31/2020] [Indexed: 10/23/2022]
Abstract
The effects of several surfactants on the biosynthesis of β-1,3-D-glucan (β-glucan) and pullulan by Aureobasidium pullulans CCTCC M 2012259 were investigated, and Triton X-100 was found to decrease biomass formation but increase β-glucan and pullulan production. The addition of 5 g/L Triton X-100 to the fermentation medium and bioconversion broth significantly increased β-glucan production by 76.6% and 69.9%, respectively, when compared to the control without surfactant addition. To reveal the physiological mechanism underlying the effect of Triton X-100 on polysaccharides production, the cell morphology and viability, membrane permeability, key enzyme activities, and intracellular levels of UDPG, NADH, and ATP were determined. The results indicated that Triton X-100 increased the activities of key enzymes involved in β-glucan and pullulan biosynthesis, improved intracellular UDPG and energy supply, and accelerated the transportation rate of precursors across the cell membrane, all of which contributed to the enhanced production of β-glucan and pullulan. Moreover, a two-stage culture strategy with combined processes of batch fermentation and bioconversion was applied, and co-production of β-glucan and pullulan in the presence of 5 g/L Triton X-100 additions was further improved. The present study not only provides insights into the effect of surfactant on β-glucan and pullulan production but also presents a feasible approach for efficient production of analogue exopolysaccharides. KEY POINTS: • Triton X-100 increased β-glucan and pullulan production under either batch fermentation or bioconversion. • Triton X-100 increased the permeability of cell membrane and accelerated the transportation rate of precursors across cell membrane. • Activities of key enzymes involved in β-glucan and pullulan biosynthesis were increased in the presence of Triton X-100. • Intracellular UDPG levels and energy supply were improved by Triton X-100 addition.
Collapse
|
13
|
Singh RS, Kaur N, Hassan M, Kennedy JF. Pullulan in biomedical research and development - A review. Int J Biol Macromol 2020; 166:694-706. [PMID: 33137388 DOI: 10.1016/j.ijbiomac.2020.10.227] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Pullulan is an imperative microbial exo-polymer commercially produced by yeast like fungus Aureobasidium pullulans. Its structure contains maltosyl repeating units which comprises two α-(1 → 4) linked glucopyranose rings attached to one glucopyranose ring through α-(1 → 6) glycosidic bond. The co-existence of α-(1 → 6) and α-(1 → 4) glycosidic linkages endows distinctive physico-chemical properties to pullulan. It is highly biocompatible, non-toxic and non-carcinogenic in nature. It is extremely resistant to any mutagenicity or immunogenicity. The unique properties of pullulan make it a potent candidate for biomedical applications viz. drug delivery, gene delivery, tissue engineering, molecular chaperon, plasma expander, vaccination, etc. This review highlights the potential of pullulan in biomedical research and development.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India.
| | - Navpreet Kaur
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | - Muhammad Hassan
- US-Pakistan Center for Advanced Studies in Energy, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 The Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcs B60 4JE, UK
| |
Collapse
|
14
|
A Health-Friendly Strategy for Covalent-Bonded Immobilization of Pectinase on the Functionalized Glass Beads. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02524-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
A multidomain α-glucan synthetase 2 (AmAgs2) is the key enzyme for pullulan biosynthesis in Aureobasidium melanogenum P16. Int J Biol Macromol 2020; 150:1037-1045. [DOI: 10.1016/j.ijbiomac.2019.10.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022]
|
16
|
Chen TJ, Liu GL, Chen L, Yang G, Hu Z, Chi ZM, Chi Z. Alternative primers are required for pullulan biosynthesis in Aureobasidium melanogenum P16. Int J Biol Macromol 2020; 147:10-17. [DOI: 10.1016/j.ijbiomac.2020.01.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 01/22/2023]
|
17
|
Wang D, Zhu C, Zhang G, Wang C, Wei G. Enhanced β-glucan and pullulan production by Aureobasidium pullulans with zinc sulfate supplementation. Appl Microbiol Biotechnol 2019; 104:1751-1760. [PMID: 31867695 DOI: 10.1007/s00253-019-10326-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 01/20/2023]
Abstract
The effects of mineral salts on the production of exopolysaccharides, including β-glucan and pullulan, by Aureobasidium pullulans CCTCC M 2012259 were investigated. Zinc sulfate at certain concentrations decreased dry biomass but favored to the biosynthesis of both exopolysaccharides. When 100 mg/L zinc sulfate was added to the fermentation medium, production of β-glucan and pullulan increased by 141.7 and 10.2%, respectively, when compared with that noted in the control without zinc sulfate addition. To reveal the physiological mechanism underlying improved β-glucan and pullulan production, key enzymes activities, energy metabolism substances, intracellular uridine diphosphate glucose (UDPG) levels, and gene expression were determined. The results indicated that zinc sulfate up-regulated the transcriptional levels of pgm1, ugp, fks, and kre6 genes, increased activities of key enzymes involved in the biosynthesis of UDPG, β-glucan and pullulan, enhanced intracellular UDPG content, and improved energy supply, all of which contributed to the increment in β-glucan and pullulan production. The present study not only provides a feasible approach to improve the production of exopolysaccharides but also contributes to better understanding of the physiological characteristics of A. pullulans.
Collapse
Affiliation(s)
- D Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - C Zhu
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - G Zhang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - C Wang
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China
| | - G Wei
- School of Biology and Basic Medical Sciences, Soochow University, 199# Ren'ai Road, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
18
|
Jia SL, Ma Y, Chi Z, Liu GL, Hu Z, Chi ZM. Genome sequencing of a yeast-like fungal strain P6, a novel species of Aureobasidium spp.: insights into its taxonomy, evolution, and biotechnological potentials. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01531-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Abstract
Purpose
This study aimed to look insights into taxonomy, evolution, and biotechnological potentials of a yeast-like fungal strain P6 isolated from a mangrove ecosystem.
Methods
The genome sequencing for the yeast-like fungal strain P6 was conducted on a Hiseq sequencing platform, and the genomic characteristics and annotations were analyzed. The central metabolism and gluconate biosynthesis pathway were studied through the genome sequence data by using the GO, KOG, and KEGG databases. The secondary metabolite potentials were also evaluated.
Results
The whole genome size of the P6 strain was 25.41Mb and the G + C content of its genome was 50.69%. Totally, 6098 protein-coding genes and 264 non-coding RNA genes were predicted. The annotation results showed that the yeast-like fungal strain P6 had complete metabolic pathways of TCA cycle, EMP pathway, pentose phosphate pathway, glyoxylic acid cycle, and other central metabolic pathways. Furthermore, the inulinase activity associated with β-fructofuranosidase and high glucose oxidase activity in this strain have been demonstrated. It was found that this yeast-like fungal strain was located at root of most species of Aureobasidium spp. and at a separate cluster of all the phylogenetic trees. The P6 strain was predicted to contain three NRPS gene clusters, five type-I PKS gene clusters, and one type-I NRPS/PKS gene cluster via analysis at the antiSMASH Website. It may synthesize epichloenin A, fusaric acid, elsinochromes, and fusaridione A.
Conclusions
Based on its unique DNA sequence, taxonomic position in the phylogenetic tree and evolutional position, the yeast-like fungal strain P6 was identified as a novel species Aureobasidium hainanensis sp. nov. P6 isolate and had highly potential applications.
Collapse
|
19
|
Hamidi M, Kennedy JF, Khodaiyan F, Mousavi Z, Hosseini SS. Production optimization, characterization and gene expression of pullulan from a new strain of Aureobasidium pullulans. Int J Biol Macromol 2019; 138:725-735. [DOI: 10.1016/j.ijbiomac.2019.07.123] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 01/26/2023]
|
20
|
Lu Y, Wang H, Wang Z, Cong Y, Zhang P, Liu G, Liu C, Chi Z, Chi Z. Metabolic Rewiring Improves the Production of the Fungal Active Targeting Molecule Fusarinine C. ACS Synth Biol 2019; 8:1755-1765. [PMID: 31268300 DOI: 10.1021/acssynbio.9b00026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Author: Recently, increasing research in siderophores has been dedicated to their possible medical applications in diagnostics and therapeutics for human pathogenic infections. Fusarinine C (FsC) is a natural hydroxamate siderophore that harbors three amino groups, which allow the easy chemical modification of FsC for the design of novel multifunctional conjugates. However, low production of FsC has hampered its extensive exploitation.Herein, we rewired the FsC biosynthetic pathway in the Aureobasidium melanogenum HN6.2 strain to achieve a self-supplying l-ornithine with component-simplified and enhanced production of extracellular siderophores, for which the FsC accounted for 94%, its final titer being approximately 1.7 g L-1. The convenient acquisition of FsC effectuated our exploitation for its application. We employed in vitro and in vivo assays to show that FsC is an active targeting molecule that acts on the human pathogenic fungi Trichophyton rubrum and Candida albicans; this demonstrates the potential to use FsC for the development of novel antifungal targeting reagents in the future.
Collapse
Affiliation(s)
- Yi Lu
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Hongying Wang
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Zhuangzhuang Wang
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Ying Cong
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Peng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, No.11 Keyuan Jingsi Road, Qingdao, 266001, China
| | - Guanglei Liu
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
| | - Zhenming Chi
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, No.5 Yushan Road, Qingdao, 266003, China
- Pilot National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Qingdao, 266237, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, No.5 Yushan Road, Qingdao, 266003, China
- Pilot National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Qingdao, 266237, China
| |
Collapse
|
21
|
Chen G, Zhu Y, Zhang G, Liu H, Wei Y, Wang P, Wang F, Xian M, Xiang H, Zhang H. Optimization and characterization of pullulan production by a newly isolated high-yielding strainAureobasidium melanogenum. Prep Biochem Biotechnol 2019; 49:557-566. [DOI: 10.1080/10826068.2019.1591988] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Guoqiang Chen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P.R. China
- College of Life Science, Qingdao University, Qingdao, P.R. China
| | - Youshuang Zhu
- School of Biological Science, Jining Medical University, Jining, P.R. China
| | - Ge Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P.R. China
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, P. R. China
| | - Haobao Liu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, P. R. China
| | - Yuxi Wei
- College of Life Science, Qingdao University, Qingdao, P.R. China
| | - Pinggui Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P.R. China
- College of Life Science, Qingdao University, Qingdao, P.R. China
| | - Fan Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P.R. China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P.R. China
| | - Haiying Xiang
- Yunnan Academy of Tobacco Sciences, Kunming, P.R. China
| | - Haibo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P.R. China
| |
Collapse
|
22
|
An C, Ma SJ, Xue WJ, Liu C, Ding H. Comparative study of different molecular weight pullulan productions by Aureobasidium pullulans CGMCC No.11602. 3 Biotech 2019; 9:156. [PMID: 30944803 PMCID: PMC6439089 DOI: 10.1007/s13205-019-1680-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/14/2019] [Indexed: 01/10/2023] Open
Abstract
Pullulan productions by Aureobasidium pullulans CGMCC No.11602 were conducted using the initial culture (IC) medium and the optimized culture (OC) medium, respectively, in which pullulan with significantly different molecular weights was obtained. Under the IC medium condition, the pullulan molecular weight (M w) reached 288,403 Da with a yield of 64.12 g/L after 96 h fermentation period. However, the pullulan molecular weight was much higher (M w, 3,715,352 Da), while the yield of pullulan was lower (40.12 g/L) using the OC medium. The FTIR spectra indicated that pullulan produced using the IC and OC medium were similar. Transcriptome analysis showed that a total of 871 differentially expressed genes (DEGs) were screened and "N-glycan biosynthesis" and "other types of O-glycan biosynthesis" were the most highly represented differential metabolic pathways (DMPs). Specifically, the genes involved in the two DMPs consistently pointed to glucosyltransferase genes (GTF), all of which were up-regulated in the OC medium when compared with those in the IC medium. Further studies showed that the activity and the relative quantity (RQ) of GTF transcription were remarkable higher, which were coincident with the slower decrease in the molecular weight of pullulan in the OC medium than those in the IC medium during the late stage of fermentation. The results indicated that GTF may be involved in the regulation of pullulan molecular weight.
Collapse
Affiliation(s)
- Chao An
- Shaanxi Provincial Institute of Microbiology, No. 76 Xiying Rd, Xi’an, 710043 Shaanxi Province People’s Republic of China
- Engineering Center of QinLing Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, 710043 People’s Republic of China
| | - Sai-jian Ma
- Shaanxi Provincial Institute of Microbiology, No. 76 Xiying Rd, Xi’an, 710043 Shaanxi Province People’s Republic of China
- Engineering Center of QinLing Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, 710043 People’s Republic of China
| | - Wen-jiao Xue
- Shaanxi Provincial Institute of Microbiology, No. 76 Xiying Rd, Xi’an, 710043 Shaanxi Province People’s Republic of China
- Engineering Center of QinLing Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, 710043 People’s Republic of China
| | - Chen Liu
- Shaanxi Provincial Institute of Microbiology, No. 76 Xiying Rd, Xi’an, 710043 Shaanxi Province People’s Republic of China
- Engineering Center of QinLing Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, 710043 People’s Republic of China
| | - Hao Ding
- Shaanxi Provincial Institute of Microbiology, No. 76 Xiying Rd, Xi’an, 710043 Shaanxi Province People’s Republic of China
| |
Collapse
|
23
|
Relationship between β-d-fructofuranosidase activity, fructooligosaccharides and pullulan biosynthesis in Aureobasidium melanogenum P16. Int J Biol Macromol 2019; 125:1103-1111. [DOI: 10.1016/j.ijbiomac.2018.12.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 12/25/2022]
|
24
|
Wang DH, Ni TF, Ju XM, Wei GY. Sodium chloride improves pullulan production by Aureobasidium pullulans but reduces the molecular weight of pullulan. Appl Microbiol Biotechnol 2018; 102:8921-8930. [DOI: 10.1007/s00253-018-9292-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/27/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
|
25
|
Jiang H, Xue SJ, Li YF, Liu GL, Chi ZM, Hu Z, Chi Z. Efficient transformation of sucrose into high pullulan concentrations by Aureobasidium melanogenum TN1-2 isolated from a natural honey. Food Chem 2018; 257:29-35. [DOI: 10.1016/j.foodchem.2018.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 01/07/2023]
|
26
|
Chen TJ, Chi Z, Jiang H, Liu GL, Hu Z, Chi ZM. Cell wall integrity is required for pullulan biosynthesis and glycogen accumulation in Aureobasidium melanogenum P16. Biochim Biophys Acta Gen Subj 2018; 1862:1516-1526. [PMID: 29550432 DOI: 10.1016/j.bbagen.2018.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pullulan and glycogen have many applications and physiological functions. However, to date, it has been unknown where and how the pullulan is synthesized in the yeast cells and if cell wall structure of the producer can affect pullulan and glycogen biosynthesis. METHODS The genes related to cell wall integrity were cloned, characterized, deleted and complemented. The cell wall integrity, pullulan biosynthesis, glycogen accumulation and gene expression were examined. RESULTS In this study, the GT6 and GT7 genes encoding different α1,2 mannosyltransferases in Aureobasidium melanogenum P16 were cloned and characterized. The proteins deduced from both the GT6 and GT7 genes contained the conserved sequences YNMCHFWSNFEI and YSTCHFWSNFEI of a Ktr mannosyltransferase family. The removal of each gene and both the two genes caused the changes in colony and cell morphology and enhanced glycogen accumulation, leading to a reduced pullulan biosynthesis and the declined expression of many genes related to pullulan biosynthesis. The swollen cells of the disruptants were due to increased accumulation of glycogen, suggesting that uridine diphosphate glucose (UDP-glucose) was channeled to glycogen biosynthesis in the disruptants, rather than pullulan biosynthesis. Complementation of the GT6 and GT7 genes in the corresponding disruptants and growth of the disruptants in the presence of 0.6 M KCl made pullulan biosynthesis, glycogen accumulation, colony and cell morphology be restored. GENERAL SIGNIFICANCE This is the first report that the two α1,2 mannosyltransferases were required for colony and cell morphology, glycogen accumulation and pullulan biosynthesis in the pullulan producing yeast.
Collapse
Affiliation(s)
- Tie-Jun Chen
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Hong Jiang
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou 515063, China
| | - Zhen-Ming Chi
- College of Marine Life Sciences, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003 Qingdao, China.
| |
Collapse
|
27
|
Guo J, Huang S, Chen Y, Guo X, Xiao D. Discovering the role of the apolipoprotein gene and the genes in the putative pullulan biosynthesis pathway on the synthesis of pullulan, heavy oil and melanin in Aureobasidium pullulans. World J Microbiol Biotechnol 2017; 34:11. [PMID: 29255943 DOI: 10.1007/s11274-017-2398-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/13/2017] [Indexed: 11/30/2022]
Abstract
Pullulan produced by Aureobasidium pullulans presents various applications in food manufacturing and pharmaceutical industry. However, the pullulan biosynthesis mechanism remains unclear. This work proposed a pathway suggesting that heavy oil and melanin may correlate with pullulan production. The effects of overexpression or deletion of genes encoding apolipoprotein, UDPG-pyrophosphorylase, glucosyltransferase, and α-phosphoglucose mutase on the production of pullulan, heavy oil, and melanin were examined. Pullulan production increased by 16.93 and 8.52% with the overexpression of UDPG-pyrophosphorylase and apolipoprotein genes, respectively. Nevertheless, the overexpression or deletion of other genes exerted little effect on pullulan biosynthesis. Heavy oil production increased by 146.30, 64.81, and 33.33% with the overexpression of UDPG-pyrophosphorylase, α-phosphoglucose mutase, and apolipoprotein genes, respectively. Furthermore, the syntheses of pullulan, heavy oil, and melanin can compete with one another. This work may provide new guidance to improve the production of pullulan, heavy oil, and melanin through genetic approach.
Collapse
Affiliation(s)
- Jian Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Siyao Huang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yefu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| |
Collapse
|