1
|
Alharbi HY, Alnoman RB, Aljohani MS, Al-Anazia M, Monier M. Synthesis and characterization of gellan gum-based hydrogels for drug delivery applications. Int J Biol Macromol 2024; 258:128828. [PMID: 38141700 DOI: 10.1016/j.ijbiomac.2023.128828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
In this study, gellan gum (Gel) derivatives were allowed to interact via aqueous Diels-Alder chemistry without the need for initiators, producing a crosslinked hydrogel network that exhibited good potential as a drug carrier using tramadol as a drug model. Hydrogel conjugation was achieved by the synthesis of a maleimide and furan-functionalized Gel, and the pre- and post-gelation chemical structure of the resulting hydrogel precursors was fully investigated. Potential uses of the developed hydrogel in the pharmaceutical industry were also evaluated by looking at its gelation duration, temperature, morphologies, swelling, biodegradation, and mechanical characteristics. The Gel-FM hydrogels were safe, showed good antimicrobial activity, and had a low storage modulus, which meant that they could be used in many biochemical fields. The encapsulation and release of tramadol from the hydrogel system in phosphate-buffered saline (PBS) at 37 °C were investigated under acidic and slightly alkaline conditions, replicating the stomach and intestinal tracts, respectively. The in-vitro release profile showed promising results for drug encapsulation, revealing that the drug could safely be well-encapsulated in acidic stomach environments and released more quickly in slightly alkaline intestinal environments. This implies that the hydrogels produced could work well as polymers for specifically delivering medication to the colon.
Collapse
Affiliation(s)
- Hussam Y Alharbi
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia.
| | - Rua B Alnoman
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Majed S Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Menier Al-Anazia
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - M Monier
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
2
|
Farrag Y, Ait Eldjoudi D, Farrag M, González-Rodríguez M, Ruiz-Fernández C, Cordero A, Varela-García M, Torrijos Pulpón C, Bouza R, Lago F, Pino J, Alvarez-Lorenzo C, Gualillo O. Poly(ethylene Glycol) Methyl Ether Methacrylate-Based Injectable Hydrogels: Swelling, Rheological, and In Vitro Biocompatibility Properties with ATDC5 Chondrogenic Lineage. Polymers (Basel) 2023; 15:4635. [PMID: 38139888 PMCID: PMC10747511 DOI: 10.3390/polym15244635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Here, we present the synthesis of a series of chemical homopolymeric and copolymeric injectable hydrogels based on polyethylene glycol methyl ether methacrylate (PEGMEM) alone or with 2-dimethylamino ethyl methacrylate (DMAEM). The objective of this study was to investigate how the modification of hydrogel components influences the swelling, rheological attributes, and in vitro biocompatibility of the hydrogels. The hydrogels' networks were formed via free radical polymerization, as assured by 1H nuclear magnetic resonance spectroscopy (1H NMR). The swelling of the hydrogels directly correlated with the monomer and the catalyst amounts, in addition to the molecular weight of the monomer. Rheological analysis revealed that most of the synthesized hydrogels had viscoelastic and shear-thinning properties. The storage modulus and the viscosity increased by increasing the monomer and the crosslinker fraction but decreased by increasing the catalyst. MTT analysis showed no potential toxicity of the homopolymeric hydrogels, whereas the copolymeric hydrogels were toxic only at high DMEAM concentrations. The crosslinker polyethylene glycol dimethacrylate (PEGDMA) induced inflammation in ATDC5 cells, as detected by the significant increase in nitric oxide synthase type II activity. The results suggest a range of highly tunable homopolymeric and copolymeric hydrogels as candidates for cartilage regeneration.
Collapse
Affiliation(s)
- Yousof Farrag
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Djedjiga Ait Eldjoudi
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Mariam Farrag
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - María González-Rodríguez
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Clara Ruiz-Fernández
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Alfonso Cordero
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - María Varela-García
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Carlos Torrijos Pulpón
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Rebeca Bouza
- Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Universidade da Coruña, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain;
| | - Francisca Lago
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Molecular and Cellular Cardiology Lab, Research Laboratory 7, Santiago University Clinical Hospital, C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain;
| | - Jesus Pino
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| | - Carmen Alvarez-Lorenzo
- I+D Farma Group (GI-1645), Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Instituto de Materiales (iMATUS), Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Oreste Gualillo
- Servizo Galego de Saude (SERGAS) and Instituto de Investigación Sanitaria de Santiago (IDIS), Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases (NEIRID Group), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain; (D.A.E.); (M.F.); (M.G.-R.); (C.R.-F.); (A.C.); (M.V.-G.); (C.T.P.); (O.G.)
| |
Collapse
|
3
|
Shrestha R, Thenissery A, Khupse R, Rajashekara G. Strategies for the Preparation of Chitosan Derivatives for Antimicrobial, Drug Delivery, and Agricultural Applications: A Review. Molecules 2023; 28:7659. [PMID: 38005381 PMCID: PMC10674490 DOI: 10.3390/molecules28227659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Chitosan has received much attention for its role in designing and developing novel derivatives as well as its applications across a broad spectrum of biological and physiological activities, owing to its desirable characteristics such as being biodegradable, being a biopolymer, and its overall eco-friendliness. The main objective of this review is to explore the recent chemical modifications of chitosan that have been achieved through various synthetic methods. These chitosan derivatives are categorized based on their synthetic pathways or the presence of common functional groups, which include alkylated, acylated, Schiff base, quaternary ammonia, guanidine, and heterocyclic rings. We have also described the recent applications of chitosan and its derivatives, along with nanomaterials, their mechanisms, and prospective challenges, especially in areas such as antimicrobial activities, targeted drug delivery for various diseases, and plant agricultural domains. The accumulation of these recent findings has the potential to offer insight not only into innovative approaches for the preparation of chitosan derivatives but also into their diverse applications. These insights may spark novel ideas for drug development or drug carriers, particularly in the antimicrobial, medicinal, and plant agricultural fields.
Collapse
Affiliation(s)
- Rajeev Shrestha
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Anusree Thenissery
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Rahul Khupse
- College of Pharmacy, University of Findlay, Findlay, OH 45840, USA;
| | - Gireesh Rajashekara
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| |
Collapse
|
4
|
Gong TY, Hsu SH, Chang SW, Chou CC. Effects of the Degree of Phenol Substitution on Molecular Structures and Properties of Chitosan-Phenol-Based Self-Healing Hydrogels. ACS Biomater Sci Eng 2023; 9:6146-6155. [PMID: 37857334 DOI: 10.1021/acsbiomaterials.3c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Click chemistry is commonly used to prepare hydrogels, and chitosan-phenol prepared by using a Schiff base has been widely employed in the field of biomaterials. Chitosan-phenol is a derivative of chitosan; the phenol groups can disrupt both the inter- and intramolecular hydrogen bonds in chitosan, thereby reducing its crystallinity and improving its water solubility. In addition, chitosan-phenol exhibits various beneficial physiological functions. However, it is still unclear whether the degree of phenol substitution in the chitosan main chain affects the molecular interactions and structural properties of the self-healing hydrogels. To explore this issue, we investigated the molecular structure and network of self-healing hydrogels composed of chitosan-phenol with varying degrees of phenol substitution and dibenzaldehyde poly(ethylene oxide) (DB-PEO) using molecular dynamics simulations. We observed that when the degree of phenol substitution in the self-healing hydrogel was less than 15%, an increase in the degree of phenol substitution led to an increase in the interactions between chitosan-phenol and DB-PEO, and it enhanced the dynamic covalent bond cross-linking generated through the Schiff base reaction. However, when the degree of phenol substitution exceeded 15%, excessive phenol groups caused excessive intramolecular interactions within chitosan-phenol molecules, which reduced the binding between chitosan-phenol and DB-PEO. Our results revealed the influence of the degree of phenol substitution on the molecular structure of the self-healing hydrogels and showed an optimal degree of phenol substitution. These findings provide important insights for the future design of self-healing hydrogels based on chitosan and should help in enhancing the applicability of hydrogels in the field of biomedicine.
Collapse
Affiliation(s)
- Tian-Yu Gong
- Institute of Polymer Science and Engineering, National Taiwan University, Roosevelt Road No. 1, Sec. 4, 10617 Taipei, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Roosevelt Road No. 1, Sec. 4, 10617 Taipei, Taiwan
| | - Shu-Wei Chang
- Department of Civil Engineering, College of Engineering, National Taiwan University, Roosevelt Road No. 1, Sec. 4, 10617 Taipei, Taiwan
- Department of Biomedical Engineering, College of Engineering, National Taiwan University, Roosevelt Road No. 1, Sec. 4, 10617 Taipei, Taiwan
| | - Chia-Ching Chou
- Institute of Applied Mechanics, College of Engineering, National Taiwan University, Roosevelt Road No. 1, Sec. 4, 10617 Taipei, Taiwan
| |
Collapse
|
5
|
Greene C, Beaman HT, Stinfort D, Ramezani M, Monroe MBB. Antimicrobial PVA Hydrogels with Tunable Mechanical Properties and Antimicrobial Release Profiles. J Funct Biomater 2023; 14:jfb14040234. [PMID: 37103324 PMCID: PMC10146720 DOI: 10.3390/jfb14040234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Hydrogels are broadly employed in wound healing applications due to their high water content and tissue-mimicking mechanical properties. Healing is hindered by infection in many types of wound, including Crohn's fistulas, tunneling wounds that form between different portions of the digestive system in Crohn's disease patients. Owing to the rise of drug-resistant infections, alternate approaches are required to treat wound infections beyond traditional antibiotics. To address this clinical need, we designed a water-responsive shape memory polymer (SMP) hydrogel, with natural antimicrobials in the form of phenolic acids (PAs), for potential use in wound filling and healing. The shape memory properties could allow for implantation in a low-profile shape, followed by expansion and would filling, while the PAs provide localized delivery of antimicrobials. Here, we developed a urethane-crosslinked poly(vinyl alcohol) hydrogel with cinnamic (CA), p-coumaric (PCA), and caffeic (Ca-A) acid chemically or physically incorporated at varied concentrations. We examined the effects of incorporated PAs on antimicrobial, mechanical, and shape memory properties, and on cell viability. Materials with physically incorporated PAs showed improved antibacterial properties with lower biofilm formation on hydrogel surfaces. Both modulus and elongation at break could be increased simultaneously in hydrogels after both forms of PA incorporation. Cellular response in terms of initial viability and growth over time varied based on PA structure and concentration. Shape memory properties were not negatively affected by PA incorporation. These PA-containing hydrogels with antimicrobial properties could provide a new option for wound filling, infection control, and healing. Furthermore, PA content and structure provide novel tools for tuning material properties independently of network chemistry, which could be harnessed in a range of materials systems and biomedical applications.
Collapse
Affiliation(s)
- Caitlyn Greene
- Department of Biomedical and Chemical Engineering, BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Henry T Beaman
- Department of Biomedical and Chemical Engineering, BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Darnelle Stinfort
- Department of Biomedical and Chemical Engineering, BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Maryam Ramezani
- Department of Biomedical and Chemical Engineering, BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Mary Beth B Monroe
- Department of Biomedical and Chemical Engineering, BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
6
|
Tang Y, Lu Y, Li L, Shi C, Zhang X, Li X, Niu Y, Liu F, Wang L, Xu W. Electrostatic Induced Peptide Hydrogels for pH‐Controllable Doxorubicin Release and Antitumor Activity. ChemistrySelect 2022. [DOI: 10.1002/slct.202202284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuanhan Tang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Yingying Lu
- Department of Cell Biology Key Laboratory of Cell Biology Ministry of Public Health and Key Laboratory of Medical Cell Biology Ministry of Education China Medical University Shenyang 110122 China
| | - Lingyi Li
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Changxin Shi
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Xin Zhang
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Xinyue Li
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Yuzhong Niu
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| | - Fangjie Liu
- School of Food Engineering Ludong University Yantai 264025 China
| | - Linlin Wang
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System Shandong Luye Pharmaceutical Co. Ltd Yantai 264000 China
| | - Wenlong Xu
- School of Chemistry and Materials Science Ludong University Yantai 264025 China
| |
Collapse
|
7
|
Xiong Y, Wang L, Xu W, Li L, Tang Y, Shi C, Li X, Niu Y, Sun C, Ren C. Electrostatic induced peptide hydrogel containing PHMB for sustained antibacterial activity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Mhiri S, Abid M, Abid S, Prochazka F, Pillon C, Mignard N. Green synthesis of covalent hybrid hydrogels containing PEG/PLA-based thermoreversible networks. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03153-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Arrizabalaga JH, Smallcomb M, Abu-Laban M, Liu Y, Yeingst TJ, Dhawan A, Simon JC, Hayes DJ. Ultrasound-Responsive Hydrogels for On-Demand Protein Release. ACS APPLIED BIO MATERIALS 2022; 5:3212-3218. [PMID: 35700312 PMCID: PMC10496416 DOI: 10.1021/acsabm.2c00192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of tunable, ultrasound-responsive hydrogels that can deliver protein payload on-demand when exposed to focused ultrasound is described in this study. Reversible Diels-Alder linkers, which undergo a retro reaction when stimulated with ultrasound, were used to cross-link chitosan hydrogels with entrapped FITC-BSA as a model protein therapeutic payload. Two Diels-Alder linkage compositions with large differences in the reverse reaction energy barriers were compared to explore the influence of linker composition on ultrasound response. Selected physicochemical properties of the hydrogel construct, its basic degradation kinetics, and its cytocompatibility were measured with respect to Diels-Alder linkage composition. Focused ultrasound initiated the retro Diels-Alder reaction, controlling the release of the entrapped payload while also allowing for real-time visualization of the ongoing process. Additionally, increasing the focused ultrasound amplitude and time correlated with an increased rate of protein release, indicating stimuli responsive control.
Collapse
Affiliation(s)
- Julien H Arrizabalaga
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Molly Smallcomb
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mohammad Abu-Laban
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yiming Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tyus J Yeingst
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Aman Dhawan
- Department of Orthopaedics and Rehabilitation, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Julianna C Simon
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Daniel J Hayes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Millennium Science Complex, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- The Huck Institute of the Life Sciences, Millennium Science Complex, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
10
|
Alavarse AC, Frachini ECG, da Silva RLCG, Lima VH, Shavandi A, Petri DFS. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. Int J Biol Macromol 2022; 202:558-596. [PMID: 35038469 DOI: 10.1016/j.ijbiomac.2022.01.029] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/20/2021] [Accepted: 01/06/2022] [Indexed: 01/16/2023]
Abstract
Polysaccharides and proteins are important macromolecules for developing hydrogels devoted to biomedical applications. Chemical hydrogels offer chemical, mechanical, and dimensional stability than physical hydrogels due to the chemical bonds among the chains mediated by crosslinkers. There are many crosslinkers to synthesize polysaccharides and proteins based on hydrogels. In this review, we revisited the crosslinking reaction mechanisms between synthetic or natural crosslinkers and polysaccharides or proteins. The selected synthetic crosslinkers were glutaraldehyde, carbodiimide, boric acid, sodium trimetaphosphate, N,N'-methylene bisacrylamide, and polycarboxylic acid, whereas the selected natural crosslinkers included transglutaminase, tyrosinase, horseradish peroxidase, laccase, sortase A, genipin, vanillin, tannic acid, and phytic acid. No less important are the reactions involving click chemistry and the macromolecular crosslinkers for polysaccharides and proteins. Literature examples of polysaccharides or proteins crosslinked by the different strategies were presented along with the corresponding highlights. The general mechanism involved in chemical crosslinking mediated by gamma and UV radiation was discussed, with particular attention to materials commonly used in digital light processing. The evaluation of crosslinking efficiency by gravimetric measurements, rheology, and spectroscopic techniques was presented. Finally, we presented the challenges and opportunities to create safe chemical hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Alex Carvalho Alavarse
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Emilli Caroline Garcia Frachini
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | | | - Vitoria Hashimoto Lima
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Denise Freitas Siqueira Petri
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
11
|
Chitosan Hydrogels Based on the Diels-Alder Click Reaction: Rheological and Kinetic Study. Polymers (Basel) 2022; 14:polym14061202. [PMID: 35335533 PMCID: PMC8955920 DOI: 10.3390/polym14061202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The Diels–Alder reaction is recognized to generate highly selective and regiospecific cycloadducts. In this study, we carried out a rheological and kinetic study of N-furfuryl chitosan hydrogels based on the Diels–Alder click reaction with different poly(ethylene)glycol-maleimide derivatives in dilute aqueous acidic solutions. It was possible to prepare clear and transparent hydrogels with excellent mechanical properties. Applying the Winter and Chambon criterion the gel times were estimated at different temperatures, and the activation energy was calculated. The higher the temperature of gelation, the higher the reaction rate. The crosslinking density and the elastic properties seem to be controlled by the diffusion of the polymer segments, rather than by the kinetics of the reaction. An increase in the concentration of any of the two functional groups is accompanied by a higher crosslinking density regardless maleimide:furan molar ratio. The hydrogel showed an improvement in their mechanical properties as the temperature increases up to 70 °C. Above that, there is a drop in G’ values indicating that there is a process opposing to the Diels–Alder reaction, most likely the retro-Diels–Alder.
Collapse
|
12
|
Polysaccharide hydrogels: Functionalization, construction and served as scaffold for tissue engineering. Carbohydr Polym 2022; 278:118952. [PMID: 34973769 DOI: 10.1016/j.carbpol.2021.118952] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/07/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023]
Abstract
Polysaccharide hydrogels have been widely utilized in tissue engineering. They interact with the organismal environments, modulating the cargos release and realizing of long-term survival and activations of living cells. In this review, the potential strategies for modification of polysaccharides were introduced firstly. It is not only used to functionalize the polysaccharides for the consequent formation of hydrogels, but also used to introduce versatile side groups for the regulation of cell behavior. Then, techniques and underlying mechanisms in inducing the formation of hydrogels by polysaccharides or their derivatives are briefly summarized. Finally, the applications of polysaccharide hydrogels in vivo, mainly focus on the performance for alleviation of foreign-body response (FBR) and as cell scaffolds for tissue regeneration, are exemplified. In addition, the perspectives and challenges for further research are addressed. It aims to provide a comprehensive framework about the potentials and challenges that the polysaccharide hydrogels confronting in tissue engineering.
Collapse
|
13
|
|
14
|
Sonker M, Bajpai S, Khan MA, Yu X, Tiwary SK, Shreyash N. Review of Recent Advances and Their Improvement in the Effectiveness of Hydrogel-Based Targeted Drug Delivery: A Hope for Treating Cancer. ACS APPLIED BIO MATERIALS 2021; 4:8080-8109. [PMID: 35005919 DOI: 10.1021/acsabm.1c00857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Using hydrogels for delivering cancer therapeutics is advantageous in pharmaceutical usage as they have an edge over traditional delivery, which is tainted due to the risk of toxicity that it imbues. Hydrogel usage leads to the development of a more controlled drug release system owing to its amenability for structural metamorphosis, its higher porosity to seat the drug molecules, and its ability to shield the drug from denaturation. The thing that makes its utility even more enhanced is that they make themselves more recognizable to the body tissues and hence can stay inside the body for a longer time, enhancing the efficiency of the delivery, which otherwise is negatively affected since the drug is identified by the human immunity as a foreign substance, and thus, an attack of the immunity begins on the drug injected. A variety of hydrogels such as thermosensitive, pH-sensitive, and magnetism-responsive hydrogels have been included and their potential usage in drug delivery has been discussed in this review that aims to present recent studies on hydrogels that respond to alterations under a variety of circumstances in "reducing" situations that mimic the microenvironment of cancerous cells.
Collapse
Affiliation(s)
- Muskan Sonker
- Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, United States
| | - Sushant Bajpai
- Department of Petroleum Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| | - Mohd Ashhar Khan
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| | - Xiaojun Yu
- Department of Biomedical Engineering Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Saurabh Kr Tiwary
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| | - Nehil Shreyash
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi 229304, India
| |
Collapse
|
15
|
Olmos-Juste R, Guaresti O, Calvo-Correas T, Gabilondo N, Eceiza A. Design of drug-loaded 3D printing biomaterial inks and tailor-made pharmaceutical forms for controlled release. Int J Pharm 2021; 609:121124. [PMID: 34597726 DOI: 10.1016/j.ijpharm.2021.121124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/20/2022]
Abstract
Curcumin and chloramphenicol are drugs with different solubility properties in physiological conditions due to their hydrophobic and hydrophilic structure, respectively. In this work, sodium alginate-cellulose nanofibers (SA-CNF) based inks loaded with curcumin and/or chloramphenicol have been developed for syringe extrusion 3D printing technology. Printability and shape fidelity of the drug-loaded inks were analyzed through rheological characterization. Suitable drug-loaded inks were 3D printed showing shape fidelity, and samples were either freeze-dried or crosslinked with Ca2+ and air-dried to achieve functional pharmaceutical forms with different morphological characteristics. In vitro drug delivery tests were carried out from the resulted forms and it was observed that the release performed faster in freeze-dried than in Ca2+ crosslinked/air-dried ones for all cases, resulting in two different methods for controlling drug delivery over time. The differences in aqueous solubility of the drugs, the different CNF content of the inks and the surface area of the samples also played an important role during drug delivery, involving strategies to control the release over an extended duration.
Collapse
Affiliation(s)
- R Olmos-Juste
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Plaza Europa 1, Donostia-San Sebastian 20018, Spain
| | - O Guaresti
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Plaza Europa 1, Donostia-San Sebastian 20018, Spain
| | - T Calvo-Correas
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Plaza Europa 1, Donostia-San Sebastian 20018, Spain
| | - N Gabilondo
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Plaza Europa 1, Donostia-San Sebastian 20018, Spain.
| | - A Eceiza
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Plaza Europa 1, Donostia-San Sebastian 20018, Spain.
| |
Collapse
|
16
|
Abstract
Biopolymers are natural polymers sourced from plants and animals, which include a variety of polysaccharides and polypeptides. The inclusion of biopolymers into biomedical hydrogels is of great interest because of their inherent biochemical and biophysical properties, such as cellular adhesion, degradation, and viscoelasticity. The objective of this Review is to provide a detailed overview of the design and development of biopolymer hydrogels for biomedical applications, with an emphasis on biopolymer chemical modifications and cross-linking methods. First, the fundamentals of biopolymers and chemical conjugation methods to introduce cross-linking groups are described. Cross-linking methods to form biopolymer networks are then discussed in detail, including (i) covalent cross-linking (e.g., free radical chain polymerization, click cross-linking, cross-linking due to oxidation of phenolic groups), (ii) dynamic covalent cross-linking (e.g., Schiff base formation, disulfide formation, reversible Diels-Alder reactions), and (iii) physical cross-linking (e.g., guest-host interactions, hydrogen bonding, metal-ligand coordination, grafted biopolymers). Finally, recent advances in the use of chemically modified biopolymer hydrogels for the biofabrication of tissue scaffolds, therapeutic delivery, tissue adhesives and sealants, as well as the formation of interpenetrating network biopolymer hydrogels, are highlighted.
Collapse
Affiliation(s)
- Victoria G. Muir
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Lori MS, Ohadi M, Estabragh MAR, Afsharipour S, Banat IM, Dehghannoudeh G. pH-sensitive polymer-based carriers as a useful approach for oral delivery of therapeutic protein: A review. Protein Pept Lett 2021; 28:1230-1237. [PMID: 34303327 DOI: 10.2174/0929866528666210720142841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 11/22/2022]
Abstract
There are many proteins and enzymes in the human body, and their dysfunction can lead to disease. The use of proteins as a drug is common in various diseases such as diabetes. Proteins are hydrophilic molecules whose spatial structure is critical to their correct function. There are different ways to the administration of proteins. Protein structures are degraded by gastric acid and enzymes in the gastrointestinal tract and have a slight ability to permeation from the gastrointestinal epithelium due to their large hydrophilic nature. Therefore, their oral use has limitations. Since the oral use of drugs is one of the best and easiest routes for patients, many studies have been done to increase the stability, penetration and ultimately increase the bioavailability of proteins through oral administration. One of the studied strategies for oral delivery of protein is the use of pH-sensitive polymer-based carriers. These carriers use different pH-sensitive polymers such as eudragit®, chitosan, dextran, and alginate. The use of pH-sensitive polymer-based carriers by protecting the protein from stomach acid (low pH) and degrading enzymes, increasing permeability, and maintaining the spatial structure of the protein leads to increased bioavailability. In this review, we focus on the various polymers used to prepare pH-sensitive polymer-based carriers for the oral delivery of proteins.
Collapse
Affiliation(s)
- Maryam Shamseddini Lori
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Sepehr Afsharipour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, United Kingdom
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
18
|
Olmos-Juste R, Alonso-Lerma B, Pérez-Jiménez R, Gabilondo N, Eceiza A. 3D printed alginate-cellulose nanofibers based patches for local curcumin administration. Carbohydr Polym 2021; 264:118026. [PMID: 33910718 DOI: 10.1016/j.carbpol.2021.118026] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 01/15/2023]
Abstract
Alginate and nanocellulose are potential biomaterials to be employed as bioinks for three-dimensional (3D) printing. Alginate-cellulose nanofibers (A-CNF) formulations with CNF amounts up to 5 wt% were developed and rheologically characterized to evaluate their printability. Results showed that formulations with less than 3 wt% CNF did not present suitable characteristics to ensure shape fidelity after printing. Selected A-CNF bioinks were 3D printed and freeze-dried to obtain porous scaffolds. Morphological and mechanical analysis were performed, showing that CNF contributed to the reinforcement of the scaffolds and modulated their porosity. The applicability for drug delivery was evaluated by the addition of curcumin to printable A-CNF formulations. The curcumin loaded bioinks were successfully 3D printed in patches and the in vitro release tests showed that alginate and CNF played an important role in curcumin stabilization, whereas the CNF content and the disintegration of the scaffold were essential in the release kinetics.
Collapse
Affiliation(s)
- R Olmos-Juste
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Plaza Europa 1, Donostia-San Sebastian, 20018, Spain
| | | | | | - N Gabilondo
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Plaza Europa 1, Donostia-San Sebastian, 20018, Spain.
| | - A Eceiza
- 'Materials + Technologies' Research Group (GMT), Department of Chemical and Environmental Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country, Plaza Europa 1, Donostia-San Sebastian, 20018, Spain.
| |
Collapse
|
19
|
Elhag M, Abdelwahab HE, Mostafa MA, Yacout GA, Nasr AZ, Dambruoso P, El Sadek MM. One pot synthesis of new cross-linked chitosan-Schiff' base: Characterization, and anti-proliferative activities. Int J Biol Macromol 2021; 184:558-565. [PMID: 34174299 DOI: 10.1016/j.ijbiomac.2021.06.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022]
Abstract
Four novel chitosan hydrogels were successfully synthesized through the cross-linking reaction of chitosan with different concentrations of ethyl 5-(3,5-dihydroxy-1,4-dioxan-2-yl)-2-methylfuran-3-carboxylate. Their structures were confirmed by Fourier transform infrared spectroscopy (FT-IR), 13C Cross polarization magic angle spinning nuclear magnetic resonance spectroscopy (CP/MAS 13C NMR), ultraviolet-visible spectroscopy, thermogravimetric analysis (TGA, DTA), and X-ray diffraction (XRD). Cytotoxicity on hepatocellular carcinoma (HepG-2) cell line and a normal African green monkey kidney (Vero) cell line were studied using the MTT assay. The resultant hydrogels showed a good inhibitory effect comparing to the un-modified parent; the hydrogels with the lowest degree cross-linking (0.125 and 0.25 mol cross-linker per one chitosan residue) showed potent anticancer activity in the HepG2 cells with IC50 of 57.9 and 80.9 μg/ml, respectively. These results show that the newly synthesized cross-linked chitosan derivatives demonstrated more selectivity to the HepG2 than the Vero cells, indicating its potential for Investigation in the cure of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mohammed Elhag
- Chemistry Department, Faculty of Science, Damnhour University, 22511 Damnhour, Egypt
| | - Huda E Abdelwahab
- Chemistry Department, Faculty of Science, Alexandria University, 21231 Alexandria, Egypt; Institute of Graduate Studies and Research (IGSR), Alexandria University, 21526 Alexandria, Egypt
| | - Mohamed A Mostafa
- Chemistry Department, Faculty of Science, Alexandria University, 21231 Alexandria, Egypt
| | - Galila A Yacout
- Biochemistry Department, Faculty of Science, Alexandria University, 21231 Alexandria, Egypt
| | - Adel Z Nasr
- Chemistry Department, Faculty of Science, Damnhour University, 22511 Damnhour, Egypt
| | - Paolo Dambruoso
- Institute of Organic Synthesis and Photoreactivity, National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Mohamed M El Sadek
- Chemistry Department, Faculty of Science, Alexandria University, 21231 Alexandria, Egypt.
| |
Collapse
|
20
|
Gevrek TN, Sanyal A. Furan-containing polymeric Materials: Harnessing the Diels-Alder chemistry for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110514] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Li DQ, Wang SY, Meng YJ, Guo ZW, Cheng MM, Li J. Fabrication of self-healing pectin/chitosan hybrid hydrogel via Diels-Alder reactions for drug delivery with high swelling property, pH-responsiveness, and cytocompatibility. Carbohydr Polym 2021; 268:118244. [PMID: 34127224 DOI: 10.1016/j.carbpol.2021.118244] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/27/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
Self-healing hydrogels with pH-responsiveness could protect loaded drugs from being destroyed till it arrives to the target. The pectin-based hydrogel is a candidate due to the health benefit, anti-inflammation, antineoplastic activity, nontoxicity, and biospecific degradation, et al. However, the abundant existence of water-soluble branched heteropolysaccharide chains influenced its performance resulting in limitation of the potential. In the present study, we prepared a series of self-healing pectin/chitosan hydrogels via the Diels-Alder reaction. Moreover, pectin/chitosan composite hydrogel was prepared as a contrast. By comparison, it can be seen that the Diels-Alder reaction greatly improved the cross-linking density of hydrogels. The self-healing experiments showed excellent self-healing performance. In different swelling mediums, significant transformation in the swelling ratio was shown, indicating well-swelling property, pH- and thermo-responsiveness. The drug loading and release studies presented high loading efficiency and sustained release performance. The cytotoxicity assay that showed a high cell proliferation ratio manifested great cytocompatibility.
Collapse
Affiliation(s)
- De-Qiang Li
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Shu-Ya Wang
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China
| | - Yu-Jie Meng
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China
| | - Zong-Wei Guo
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Mei-Mei Cheng
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China
| | - Jun Li
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China.
| |
Collapse
|
22
|
Manouras T, Koufakis E, Vasilaki E, Peraki I, Vamvakaki M. Antimicrobial Hybrid Coatings Combining Enhanced Biocidal Activity under Visible-Light Irradiation with Stimuli-Renewable Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17183-17195. [PMID: 33734694 DOI: 10.1021/acsami.0c21230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybrid, organic-inorganic, biocidal films exhibiting polishing properties were developed as effective long-lasting antimicrobial surface coatings. The films were prepared using cationically modified chitosan, synthesized by the reaction with 3-bromo-N,N,N-trimethylpropan-1-aminium bromide, to introduce permanent biocidal quaternary ammonium salt (QAS) groups along the polymer backbone and were cross-linked by a novel, pH-cleavable acetal cross-linker, which allowed polishing the hybrid coatings with the solution pH. TiO2 nanoparticles, modified with reduced graphene oxide (rGO) sheets, to narrow their band gap energy value and shift their photocatalytic activity in the visible light regime, were introduced within the polymer film to enhance its antibacterial activity. The hybrid coatings exhibited an effective biocidal activity in the dark (∼2 Log and ∼3 Log reduction for Gram-negative and Gram-positive bacteria, respectively), when only the QAS sites interacted with the bacteria membrane, and an excellent biocidal action upon visible-light irradiation (∼5 Log and ∼6 Log reduction for Gram-negative and Gram-positive bacteria, respectively) due to the synergistic antimicrobial effect of the QAS moieties and the rGO-modified TiO2 nanoparticles. The gradual decrease in the film thickness, upon immersion of the coatings in mildly basic (pH 8), neutral (pH 7), and acidic (pH 6) media, reaching 10, 20, and 70% reduction, respectively, after 60 days of immersion time, confirmed the polishing behavior of the films, whereas their effective antimicrobial action was retained. The biocompatibility of the hybrid films was verified in human cell culture studies. The proposed approach enables the facile development of highly functional coatings, combining biocompatibility and bactericidal action with a "kill and self-clean" mechanism that allows the regeneration of the outer surface of the coating leading to a strong and prolonged antimicrobial action.
Collapse
Affiliation(s)
- Theodore Manouras
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 700 13, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| | - Eleftherios Koufakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 700 13, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| | - Evangelia Vasilaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 700 13, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| | - Ioanna Peraki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 700 13 Heraklion, Crete, Greece
| | - Maria Vamvakaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 700 13, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| |
Collapse
|
23
|
Li Y, Wang X, Han Y, Sun HY, Hilborn J, Shi L. Click chemistry-based biopolymeric hydrogels for regenerative medicine. Biomed Mater 2021; 16:022003. [PMID: 33049725 DOI: 10.1088/1748-605x/abc0b3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Click chemistry is not a single specific reaction, but describes ways of generating products which emulate examples in nature. Click reactions occur in one pot, are not disturbed by water, generate minimal and inoffensive byproducts, and are characterized by a high thermodynamic driving force, driving the reaction quickly and irreversibly towards a high yield of a single reaction product. As a result, over the past 15 years it has become a very useful bio-orthogonal method for the preparation of chemical cross-linked biopolymer-based hydrogel, in the presence of e.g. growth factors and live cells, or in-vivo. Biopolymers are renewable and non-toxic, providing a myriad of potential backbone toolboxes for hydrogel design. The goal of this review is to summarize recent advances in the development of click chemistry-based biopolymeric hydrogels, and their applications in regenerative medicine. In particular, various click chemistry approaches, including copper-catalyzed azide-alkyne cycloaddition reactions, copper-free click reactions (e.g. the Diels-Alder reactions, the strain-promoted azide-alkyne cycloaddition reactions, the radical mediated thiol-ene reactions, and the oxime-forming reactions), and pseudo-click reactions (e.g. the thiol-Michael addition reactions and the Schiff base reactions) are highlighted in the first section. In addition, numerous biopolymers, including proteins (e.g. collagen, gelatin, silk, and mucin), polysaccharides (e.g. hyaluronic acid, alginate, dextran, and chitosan) and polynucleotides (e.g. deoxyribonucleic acid), are discussed. Finally, we discuss biopolymeric hydrogels, cross-linked by click chemistry, intended for the regeneration of skin, bone, spinal cord, cartilage, and cornea. This article provides new insights for readers in terms of the design of regenerative medicine, and the use of biopolymeric hydrogels based on click chemistry reactions.
Collapse
Affiliation(s)
- Ya Li
- College of Biology, Hunan University, Changsha 410082, People's Republic of China
| | | | | | | | | | | |
Collapse
|
24
|
Chapelle C, Quienne B, Bonneaud C, David G, Caillol S. Diels-Alder-Chitosan based dissociative covalent adaptable networks. Carbohydr Polym 2021; 253:117222. [DOI: 10.1016/j.carbpol.2020.117222] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022]
|
25
|
Urbina L, Eceiza A, Gabilondo N, Corcuera MÁ, Retegi A. Tailoring the in situ conformation of bacterial cellulose-graphene oxide spherical nanocarriers. Int J Biol Macromol 2020; 163:1249-1260. [PMID: 32673723 DOI: 10.1016/j.ijbiomac.2020.07.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
Bacterial cellulose (BC)/graphene oxide (GO) sphere-like hydrogels have been biosynthesized by in situ route in dynamic cultivation. The GO concentration during BC biosynthesis (0.01 and 0.05 mg mL-1) was the determining factor for the conformation of the final hydrogels: encapsulation (BC/GO 0.01) or distribution through all the body of the spheres (BC/GO 0.05). The as-prepared sphere hydrogels were characterized in terms of physico-chemical properties, thermal stability, microstructure, and swelling capacity in different media. In addition, a chemical treatment with ascorbic acid was performed in order to obtain reduced graphene oxide (rGO) into the spheres (BC/rGO). After the chemical treatment, electrostatic force microscopy (EFM) revealed electrical interactions due to the presence of rGO inside the spheres and resistivity values in the range of semiconductive materials were obtained (106 Ω·cm), making BC/rGO spheres promising for the development of electro-stimulated systems. The in vitro release study of ibuprofen (IB), showed that the reduction process led to an increase of 73 and 92% of drug release with respect to BC/GO 0.05 and BC/GO 0.01 spheres, respectively. Moreover, the encapsulation conformation showed more homogeneous porous structure and thus, a cumulative drug release of 63% was reached after 6 h.
Collapse
Affiliation(s)
- Leire Urbina
- 'Materials + Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Arantxa Eceiza
- 'Materials + Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Nagore Gabilondo
- 'Materials + Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - María Ángeles Corcuera
- 'Materials + Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Aloña Retegi
- 'Materials + Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018 Donostia-San Sebastián, Spain.
| |
Collapse
|
26
|
Cadamuro F, Russo L, Nicotra F. Biomedical Hydrogels Fabricated Using Diels–Alder Crosslinking. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Francesca Cadamuro
- Department of Biotechnology and Biosciences University of Milano Bicocca Piazza della Scienza 2 20126 Milano Italy
| | - Laura Russo
- Department of Biotechnology and Biosciences University of Milano Bicocca Piazza della Scienza 2 20126 Milano Italy
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences University of Milano Bicocca Piazza della Scienza 2 20126 Milano Italy
| |
Collapse
|
27
|
Zhang S, Li J, Li J, Du N, Li D, Li F, Man J. Application status and technical analysis of chitosan-based medical dressings: a review. RSC Adv 2020; 10:34308-34322. [PMID: 35519038 PMCID: PMC9056765 DOI: 10.1039/d0ra05692h] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Chitosan has wide applications in the field of medical dressings due to its good biomedical properties. This review provides the application status and technical analysis of chitosan medical dressings. First, we introduce the source and chemical structure of chitosan. Then, we investigate the mechanism of chitosan showing different medical properties. We also show the application of supramolecular chitosan-based hydrogels in the dressing field and the formulation optimization and the preparation technology of chitosan dressings for fabricating chitosan-based dressings with various morphologies and medical functions. After that, we introduce the research process of the modification method of chitosan dressings including single modification, blending modification, crosslinking modification, etc. Finally, based on the study of the medical effects of chitosan dressings, we analyze the existing problems in the preparation process and propose corresponding solutions from the aspects of the morphology, clinical feedback effect, and future development trends. This paper can provide a reference for further studies of skin tissue engineering and the development of new chitosan medical dressings. Chitosan has wide applications in the field of medical dressings due to its good biomedical properties.![]()
Collapse
Affiliation(s)
- Shanguo Zhang
- School of Mechanical Engineering, Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education) Shandong University Jinan 250061 China .,National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University) Jinan 250061 China
| | - Jianyong Li
- School of Mechanical Engineering, Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education) Shandong University Jinan 250061 China .,National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University) Jinan 250061 China
| | - Jianfeng Li
- School of Mechanical Engineering, Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education) Shandong University Jinan 250061 China .,National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University) Jinan 250061 China
| | - Na Du
- Department of Geriatrics, Second Affiliated Hospital of Shandong University Jinan 250033 China
| | - Donghai Li
- Advanced Medical Research Institute, Shandong University Jinan 250012 China
| | - Fangyi Li
- School of Mechanical Engineering, Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education) Shandong University Jinan 250061 China .,National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University) Jinan 250061 China
| | - Jia Man
- School of Mechanical Engineering, Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education) Shandong University Jinan 250061 China .,National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University) Jinan 250061 China
| |
Collapse
|
28
|
Chimisso V, Aleman Garcia MA, Yorulmaz Avsar S, Dinu IA, Palivan CG. Design of Bio-Conjugated Hydrogels for Regenerative Medicine Applications: From Polymer Scaffold to Biomolecule Choice. Molecules 2020; 25:E4090. [PMID: 32906772 PMCID: PMC7571016 DOI: 10.3390/molecules25184090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
Bio-conjugated hydrogels merge the functionality of a synthetic network with the activity of a biomolecule, becoming thus an interesting class of materials for a variety of biomedical applications. This combination allows the fine tuning of their functionality and activity, whilst retaining biocompatibility, responsivity and displaying tunable chemical and mechanical properties. A complex scenario of molecular factors and conditions have to be taken into account to ensure the correct functionality of the bio-hydrogel as a scaffold or a delivery system, including the polymer backbone and biomolecule choice, polymerization conditions, architecture and biocompatibility. In this review, we present these key factors and conditions that have to match together to ensure the correct functionality of the bio-conjugated hydrogel. We then present recent examples of bio-conjugated hydrogel systems paving the way for regenerative medicine applications.
Collapse
Affiliation(s)
| | | | | | | | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR-1096, 4058 Basel, Switzerland; (V.C.); (M.A.A.G.); (S.Y.A.); (I.A.D.)
| |
Collapse
|
29
|
Ma J, Zhong L, Peng X, Xu Y, Sun R. Functional Chitosan-based Materials for Biological Applications. Curr Med Chem 2020; 27:4660-4672. [DOI: 10.2174/0929867327666200420091312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/24/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
Background:
Bio-based materials, as the plentiful and renewable resources for
natural constituents which are essential for biomedical and pharmaceutical applications, have
not been exploited adequately yet. Chitosan is a naturally occurring polysaccharide obtained
from chitin, which has recently attracted widespread attention owing to its excellent activity.
This review shows the methods of extraction and modification of chitosan and provides recent
progress of synthesis and use of chitosan-based materials in biological applications.
Methods:
By consulting the research literature of the last decade, the recent progresses of
functional chitosan-based materials for biological applications were summarized and divided
into the methods of extraction chitosan, the chemical modification of chitosan, chitosan-based
materials for biological applications were described and discussed.
Results:
Chemical modification of chitosan broadens its applications, leading to developing
numerous forms of chitosan-based materials with excellent properties. The excellent bioactivity
of chitosan-based material enables it serves potential applications in biomedical fields.
Conclusion:
Chitosan-based materials not only exhibit the excellent activities of chitosan but
also show other appealing performance of combined materials, even give the good synergistic
properties of chitosan and its composite materials. Further studies are needed to define the
ideal physicochemical properties of chitosan for each type of biomedical applications. The
development of various functional chitosan-based materials for biological applications will be
an important field of research, and this kind of material has important commercial value.
Collapse
Affiliation(s)
- Jiliang Ma
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yongkang Xu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Runcang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
30
|
Ding H, Li B, Liu Z, Liu G, Pu S, Feng Y, Jia D, Zhou Y. Decoupled pH- and Thermo-Responsive Injectable Chitosan/PNIPAM Hydrogel via Thiol-Ene Click Chemistry for Potential Applications in Tissue Engineering. Adv Healthc Mater 2020; 9:e2000454. [PMID: 32548983 DOI: 10.1002/adhm.202000454] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Stimuli-responsive chitosan (CS) hydrogels exhibit great potential for drug delivery and tissue engineering; however, the structure of these stimuli-responsive CS hydrogels, such as dual pH- and thermo-responsive hydrogels, is difficult to control or needs additional crosslinking agents. Here, a new dual pH- and thermo-responsive hydrogel system is developed by combining pH-responsive C6 -OH allyl-modified CS (OAL-CS) with thermo-responsive poly(N-isopropylacrylamide) (PNIPAM). The thiol groups in PNIPAM and the allyl groups in OAL-CS can rapidly form crosslinking hydrogel network by "thiol-ene" click chemistry under UV irradiation. As expected, the swelling ratio of the OAL-CS/PNIPAM hydrogel can be controlled by changing pH and temperature. Moreover, the hydrogel displays non-cytotoxic nature toward human bone marrow mesenchymal stem cells, and the histological analyses reveal the subcutaneous tissue with no signs of inflammation after 5 days of injection in vivo. The results indicate that the new OAL-CS/PNIPAM hydrogel has potential to serve as a smart injectable platform for application in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Haichang Ding
- Institute for Advanced CeramicsState Key Laboratory of Urban Water Resource and EnvironmentKey Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing TechnologyHarbin Institute of Technology Harbin 150001 P. R. China
| | - Baoqiang Li
- Institute for Advanced CeramicsState Key Laboratory of Urban Water Resource and EnvironmentKey Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing TechnologyHarbin Institute of Technology Harbin 150001 P. R. China
| | - Zonglin Liu
- Institute for Advanced CeramicsState Key Laboratory of Urban Water Resource and EnvironmentKey Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing TechnologyHarbin Institute of Technology Harbin 150001 P. R. China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic ChemistryJiangxi Science and Technology Normal University Nanchang 330013 P. R. China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic ChemistryJiangxi Science and Technology Normal University Nanchang 330013 P. R. China
| | - Yujie Feng
- Institute for Advanced CeramicsState Key Laboratory of Urban Water Resource and EnvironmentKey Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing TechnologyHarbin Institute of Technology Harbin 150001 P. R. China
| | - Dechang Jia
- Institute for Advanced CeramicsState Key Laboratory of Urban Water Resource and EnvironmentKey Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing TechnologyHarbin Institute of Technology Harbin 150001 P. R. China
| | - Yu Zhou
- Institute for Advanced CeramicsState Key Laboratory of Urban Water Resource and EnvironmentKey Laboratory of Advanced Structural‐Functional Integration Materials & Green Manufacturing TechnologyHarbin Institute of Technology Harbin 150001 P. R. China
| |
Collapse
|
31
|
Guaresti O, Maiz–Fernández S, Palomares T, Alonso–Varona A, Eceiza A, Pérez–Álvarez L, Gabilondo N. Dual charged folate labelled chitosan nanogels with enhanced mucoadhesion capacity for targeted drug delivery. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Pelegrino MT, Paganotti A, Seabra AB, Weller RB. Photochemistry of nitric oxide and S-nitrosothiols in human skin. Histochem Cell Biol 2020; 153:431-441. [PMID: 32162135 PMCID: PMC7300104 DOI: 10.1007/s00418-020-01858-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) is related to a wide range of physiological processes such as vasodilation, macrophages cytotoxicity and wound healing. The human skin contains NO precursors (NOx). Those are mainly composed of nitrite (NO2-), nitrate (NO3-), and S-nitrosothiols (RSNOs) which forms a large NO store. These NOx stores in human skin can mobilize NO to blood stream upon ultraviolet (UV) light exposure. The main purpose of this study was to evaluate the most effective UV light wavelength to generate NO and compare it to each NO precursor in aqueous solution. In addition, the UV light might change the RSNO content on human skin. First, we irradiated pure aqueous solutions of NO2- and NO3- and mixtures of NO2- and glutathione and NO3- and S-nitrosoglutathione (GSNO) to identify the NO release profile from those species alone. In sequence, we evaluated the NO generation profile on human skin slices. Human skin was acquired from redundant plastic surgical samples and the NO and RSNO measurements were performed using a selective NO electrochemical sensor. The data showed that UV light could trigger the NO generation in skin with a peak at 280-285 nm (UVB range). We also observed a significant RSNO formation in irradiated human skin, with a peak at 320 nm (UV region) and at 700 nm (visible region). Pre-treatment of the human skin slice using NO2- and thiol (RSHs) scavengers confirmed the important role of these molecules in RSNO formation. These findings have important implications for clinical trials with potential for new therapies.
Collapse
Affiliation(s)
- Milena T Pelegrino
- Center for Natural and Human Sciences, Universidade Federal Do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil
| | - André Paganotti
- Laboratory of Materials and Mechanical Manufacture, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal Do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil
| | - Richard B Weller
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
33
|
Cengiz N, Gevrek TN, Sanyal R, Sanyal A. Fabrication of Patterned Hydrogel Interfaces: Exploiting the Maleimide Group as a Dual Purpose Handle for Cross-Linking and Bioconjugation. Bioconjug Chem 2020; 31:1382-1391. [PMID: 32259431 DOI: 10.1021/acs.bioconjchem.0c00108] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Functional hydrogels that can be obtained through facile fabrication procedures and subsequently modified using straightforward reagent-free methods are indispensable materials for biomedical applications such as sensing and diagnostics. Herein a novel hydrogel platform is obtained using polymeric precursors containing the maleimide functional group as a side chain. The maleimide groups play a dual role in fabrication of functional hydrogels. They enable photochemical cross-linking of the polymers to yield bulk and patterned hydrogels. Moreover, the maleimide group can be used as a handle for efficient functionalization using the thiol-maleimide conjugation and Diels-Alder cycloaddition click reactions. Obtained hydrogels are characterized in terms of their morphology, water uptake capacity, and functionalization. Micropatterned hydrogels are obtained under UV-irradiation using a photomask to obtain reactive micropatterns, which undergo facile functionalization upon treatment with thiol-containing functional molecules such as fluorescent dyes and bioactive ligands. The maleimide group also undergoes conjugation through the Diels-Alder reaction, where the attached molecule can be released through thermal treatment via the retro Diels-Alder reaction. The antibiofouling nature of these hydrogel micropatterns enables efficient ligand-directed biomolecular immobilization, as demonstrated by attachment of streptavidin-coated quantum dots.
Collapse
Affiliation(s)
- Nergiz Cengiz
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey
| | - Tugce Nihal Gevrek
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey.,Center for Life Sciences and Technologies, Bogazici University, 34342, Istanbul, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey.,Center for Life Sciences and Technologies, Bogazici University, 34342, Istanbul, Turkey
| |
Collapse
|
34
|
Advances in chitosan-based hydrogels: Evolution from covalently crosslinked systems to ionotropically crosslinked superabsorbents. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104517] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Development and evaluation of a rapid immunomagnetic extraction for effective detection of zearalenone in agricultural products. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Zhou L, Jiao X, Liu S, Hao M, Cheng S, Zhang P, Wen Y. Functional DNA-based hydrogel intelligent materials for biomedical applications. J Mater Chem B 2020; 8:1991-2009. [DOI: 10.1039/c9tb02716e] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multifunctional intelligent DNA hydrogels have been reviewed for many biomedical applications.
Collapse
Affiliation(s)
- Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing
- China
| | - Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing
- China
| | - Songyang Liu
- Department of Orthopaedics and Trauma
- Peking University People's Hospital
- Beijing
- China
| | - Mingda Hao
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing
- China
| | - Siyang Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing
- China
| | - Peixun Zhang
- Department of Orthopaedics and Trauma
- Peking University People's Hospital
- Beijing
- China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing
- China
| |
Collapse
|
37
|
Guaresti O, Crocker L, Palomares T, Alonso-Varona A, Eceiza A, Fruk L, Gabilondo N. Light-driven assembly of biocompatible fluorescent chitosan hydrogels with self-healing ability. J Mater Chem B 2020; 8:9804-9811. [DOI: 10.1039/d0tb01746a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrile imine-mediated tetrazole-ene cycloaddition (NITEC) was successfully used to cross-link complementary tetrazole and maleimide chitosan derivatives into hydrogel networks using irradiation.
Collapse
Affiliation(s)
- Olatz Guaresti
- ‘Materials + Technologies’ Group
- Department of Chemical and Environmental Engineering
- Engineering College of Gipuzkoa
- University of the Basque Country
- 20018 Donostia-San Sebastián
| | - Leander Crocker
- BioNano Engineering Group
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- West Cambridge Site
- Cambridge
| | - Teodoro Palomares
- Department of Cell Biology and Histology
- Faculty of Medicine and Dentistry
- University of the Basque Country
- 48940 Leioa
- Spain
| | - Ana Alonso-Varona
- Department of Cell Biology and Histology
- Faculty of Medicine and Dentistry
- University of the Basque Country
- 48940 Leioa
- Spain
| | - Arantxa Eceiza
- ‘Materials + Technologies’ Group
- Department of Chemical and Environmental Engineering
- Engineering College of Gipuzkoa
- University of the Basque Country
- 20018 Donostia-San Sebastián
| | - Ljiljana Fruk
- BioNano Engineering Group
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- West Cambridge Site
- Cambridge
| | - Nagore Gabilondo
- ‘Materials + Technologies’ Group
- Department of Chemical and Environmental Engineering
- Engineering College of Gipuzkoa
- University of the Basque Country
- 20018 Donostia-San Sebastián
| |
Collapse
|
38
|
González K, Guaresti O, Palomares T, Alonso-Varona A, Eceiza A, Gabilondo N. The role of cellulose nanocrystals in biocompatible starch-based clicked nanocomposite hydrogels. Int J Biol Macromol 2019; 143:265-272. [PMID: 31816373 DOI: 10.1016/j.ijbiomac.2019.12.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 01/06/2023]
Abstract
Starch-based nanocomposite hydrogels were successfully prepared by the Diels-Alder click cross-linking reaction between furan-functionalized starch derivative and a water-soluble tetrafunctional maleimide compound, adding cellulose nanocrystals (CNC) as nanoreinforcement. The effect of increasing the CNC content on rheological and swelling properties as well as on the morphology of the hydrogels was analyzed. Besides, in order to evaluate the applicability of the as-prepared hydrogels as delivery systems, drug release measurements and in vitro cytotoxicity assays were also performed. It was found that the prepared nanocomposite hydrogels presented higher stiffness as the CNC content increased. The incorporation of the nanocrystals modified the internal porous microstructure of the hydrogels, affecting consequently both the swelling capacity and the drug-delivery kinetics. Moreover, the prepared nanocomposite hydrogels showed non-toxic behavior, demonstrating their potential applicability in the biomedical field, especially as sustained drug delivery systems.
Collapse
Affiliation(s)
- Kizkitza González
- Department of Chemical and Environmental Engineering, 'Materials + Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, Donostia-San Sebastian 20018, Gipuzkoa, Spain.
| | - Olatz Guaresti
- Department of Chemical and Environmental Engineering, 'Materials + Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, Donostia-San Sebastian 20018, Gipuzkoa, Spain.
| | - Teodoro Palomares
- Department of Cellular Biology and Histology, Faculty of Medicine and Odontology, University of the Basque Country (UPV/EHU), B Sarriena s/n, Leioa 48940, Bizkaia, Spain.
| | - Ana Alonso-Varona
- Department of Cellular Biology and Histology, Faculty of Medicine and Odontology, University of the Basque Country (UPV/EHU), B Sarriena s/n, Leioa 48940, Bizkaia, Spain.
| | - Arantxa Eceiza
- Department of Chemical and Environmental Engineering, 'Materials + Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, Donostia-San Sebastian 20018, Gipuzkoa, Spain.
| | - Nagore Gabilondo
- Department of Chemical and Environmental Engineering, 'Materials + Technologies' Group, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza Europa 1, Donostia-San Sebastian 20018, Gipuzkoa, Spain.
| |
Collapse
|
39
|
Guaresti O, Basasoro S, González K, Eceiza A, Gabilondo N. In situ cross–linked chitosan hydrogels via Michael addition reaction based on water–soluble thiol–maleimide precursors. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Long L, Hu X, Yan J, Zeng Y, Zhang J, Xue Y. Novel chitosan-ethylene glycol hydrogel for the removal of aqueous perfluorooctanoic acid. J Environ Sci (China) 2019; 84:21-28. [PMID: 31284913 DOI: 10.1016/j.jes.2019.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
It is urgent to explore an effective removal method for perfluorooctanoic acid (PFOA) due to its recalcitrant nature. In this study, a novel chitosan-based hydrogel (CEGH) was prepared with a simple method using chitosan and ethylene glycol through a repeated freezing-thawing procedure. The adsorption of PFOA anions to CEGH agreed well to the Freundlich-Langmuir model with a maximum adsorption capacity as high as 1275.9 mg/g, which is higher than reported values of most adsorbents for PFOA. The adsorption was influenced by experimental conditions. Experimental results showed that the main removal mechanism was the ionic hydrogen bond interaction between carbonyl groups (COO-) of PFOA and protonated amine (NH+) of the CEGH adsorbent. Therefore, CEGH is a very attractive adsorbent that can be used to remove PFOA from water in the future.
Collapse
Affiliation(s)
- Li Long
- School of Civil Engineering, Wuhan University, Wuhan 430000, China
| | - Xiaolan Hu
- School of Civil Engineering, Wuhan University, Wuhan 430000, China
| | - Jinpeng Yan
- School of Civil Engineering, Wuhan University, Wuhan 430000, China
| | - Yifan Zeng
- School of Civil Engineering, Wuhan University, Wuhan 430000, China
| | - Jiaqi Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430000, China
| | - Yingwen Xue
- School of Civil Engineering, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
41
|
Pawar V, Bulbake U, Khan W, Srivastava R. Chitosan sponges as a sustained release carrier system for the prophylaxis of orthopedic implant-associated infections. Int J Biol Macromol 2019; 134:100-112. [DOI: 10.1016/j.ijbiomac.2019.04.190] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 12/31/2022]
|
42
|
García-Astrain C, Avérous L. Synthesis and behavior of click cross-linked alginate hydrogels: Effect of cross-linker length and functionality. Int J Biol Macromol 2019; 137:612-619. [PMID: 31276726 DOI: 10.1016/j.ijbiomac.2019.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
Abstract
Various bismaleimides and trismaleimides of varying molar masses, chemical architectures and functionalities were explored as cross-linkers for furan-modified alginate chains via Diels-Alder click reactions. An environmentally friendly approach is described for the preparation of hydrogels based on naturally occurring biomacromolecules, without catalysts. The behavior of the resulting polysaccharides-based hydrogels was analyzed in terms of swelling, rheological properties and drug-release efficiency, in connection with potential biomedical applications. The use of the different cross-linkers allows tuning the mechanical properties as well as the pulsatile swelling behavior of the hydrogels. When using trifunctional cross-linkers stiffer hydrogels were formed with high storage modulus whereas the chain length and the composition of the cross-linker clearly influence the swelling of the hydrogel network. In connection with drug delivery applications, release of vanillin as a traceable aromatic biobased model drug was also monitored as a function of hydrogel composition. To the best of our knowledge, for the first-time furan-modified alginates were reacted and studied with polyethylene glycol-based bis or trismaleimides with different molar masses and architectures, resulting in advanced hydrogels with different behavior.
Collapse
Affiliation(s)
- Clara García-Astrain
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg Cedex 2, France.
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg Cedex 2, France.
| |
Collapse
|
43
|
Antony R, Arun T, Manickam STD. A review on applications of chitosan-based Schiff bases. Int J Biol Macromol 2019; 129:615-633. [PMID: 30753877 DOI: 10.1016/j.ijbiomac.2019.02.047] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Biopolymers have become very attractive as they are degradable, biocompatible, non-toxic and renewable. Due to the intrinsic reactive amino groups, chitosan is vibrant in the midst of other biopolymers. Using the versatility of these amino groups, various structural modifications have been accomplished on chitosan through certain chemical reactions. Chemical modification of chitosan via imine functionalization (RR'CNR″; R: alkyl/aryl, R': H/alkyl/aryl and R″: chitosan ring) is significant as it recommends the resultant chitosan-based Schiff bases (CSBs) for the important applications in the fields like biology, catalysis, sensors, water treatment, etc. CSBs are usually synthesized by the Schiff condensation reaction between chitosan's amino groups and carbonyl compounds with the removal of water molecules. In this review, we first introduce the available synthetic approaches for the preparation of CSBs. Then, we discuss the biological applications of CSBs including antimicrobial activity, anticancer activity, drug carrier ability, antioxidant activity and tissue engineering capacity. Successively, the applications of CSBs in other fields such as catalysis, adsorption and sensors are demonstrated.
Collapse
Affiliation(s)
- R Antony
- Centre for Scientific and Applied Research, PSN College of Engineering and Technology (Autonomous), Tirunelveli 627152, Tamil Nadu, India.
| | - T Arun
- Department of Chemistry, Kamaraj College, Thoothukudi 628003, Tamil Nadu, India
| | - S Theodore David Manickam
- Centre for Scientific and Applied Research, PSN College of Engineering and Technology (Autonomous), Tirunelveli 627152, Tamil Nadu, India.
| |
Collapse
|
44
|
Pawar V, Dhanka M, Srivastava R. Cefuroxime conjugated chitosan hydrogel for treatment of wound infections. Colloids Surf B Biointerfaces 2019; 173:776-787. [DOI: 10.1016/j.colsurfb.2018.10.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/30/2018] [Accepted: 10/13/2018] [Indexed: 12/23/2022]
|
45
|
Starch/graphene hydrogels via click chemistry with relevant electrical and antibacterial properties. Carbohydr Polym 2018; 202:372-381. [DOI: 10.1016/j.carbpol.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
|
46
|
Pettinelli N, Rodríguez-Llamazares S, Abella V, Barral L, Bouza R, Farrag Y, Lago F. Entrapment of chitosan, pectin or κ-carrageenan within methacrylate based hydrogels: Effect on swelling and mechanical properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:583-590. [PMID: 30606569 DOI: 10.1016/j.msec.2018.11.071] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/24/2022]
Abstract
Composite hydrogels were obtained by the entrapment of chitosan, pectin or κ-carrageenan within methacrylate-based hydrogels to improve their swelling and the mechanical properties. The results indicated that the water uptake (WU) of κ-carrageenan and chitosan hydrogels were until 3.5 and 2.2 times higher than the WU of the synthetic hydrogel, respectively. The surface morphologies of the hydrogels showed that the pectin and κ-carrageenan favors the formation of larger and more defined pores. The mechanical properties indicated that the pectin increased slightly the mechanical properties and the κ-carrageenan improves the mechanical properties of the synthetic hydrogel reaching up 400 N of compression load. Therefore, the entrapment of κ-carrageenan within synthetic hydrogels improved both the swelling and the mechanical properties. The biocompatibility of the hydrogels was evaluated with in vitro cytotoxicity assays and the results indicated that they could be considered as candidates for biomedical use.
Collapse
Affiliation(s)
- Natalia Pettinelli
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
| | - Saddys Rodríguez-Llamazares
- Centro de Investigación de Polímeros Avanzados, Edificio Laboratorio CIPA, Av. Collao 1202, Concepcion, Chile
| | - Vanessa Abella
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, Santiago de Compostela, Spain; Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Luis Barral
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
| | - Rebeca Bouza
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain.
| | - Yousof Farrag
- Universidade da Coruña, Grupo de Polímeros, Departamento de Física y Ciencias de la Tierra, Escuela Universitaria Politécnica, Serantes, Avda. 19 de Febrero s/n, 15471 Ferrol, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Institute of Biomedical Research (IDIS-SERGAS), University Clinical Hospital, Santiago de Compostela, Spain; Center for Biomedical Research Network in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| |
Collapse
|
47
|
Elschner T, Obst F, Heinze T. Furfuryl‐ and Maleimido Polysaccharides: Synthetic Strategies Toward Functional Biomaterials. Macromol Biosci 2018; 18:e1800258. [DOI: 10.1002/mabi.201800258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Thomas Elschner
- Dr. T. Elschner, Prof. T. HeinzeCenter of Excellence for Polysaccharide ResearchInstitute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of Jena Humboldtstraße 10, 07743 Jena Germany
| | - Franziska Obst
- F. ObstLeibniz‐Institut für Polymerforschung Dresden e.V. Hohe Straße 6, 01069 Dresden Germany
| | - Thomas Heinze
- Dr. T. Elschner, Prof. T. HeinzeCenter of Excellence for Polysaccharide ResearchInstitute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of Jena Humboldtstraße 10, 07743 Jena Germany
| |
Collapse
|
48
|
Karimi AR, Rostaminejad B, Rahimi L, Khodadadi A, Khanmohammadi H, Shahriari A. Chitosan hydrogels cross-linked with tris(2-(2-formylphenoxy)ethyl)amine: Swelling and drug delivery. Int J Biol Macromol 2018; 118:1863-1870. [DOI: 10.1016/j.ijbiomac.2018.07.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 11/26/2022]
|
49
|
Enhanced Antibacterial Activity of Silver Doped Titanium Dioxide-Chitosan Composites under Visible Light. MATERIALS 2018; 11:ma11081403. [PMID: 30103430 PMCID: PMC6119987 DOI: 10.3390/ma11081403] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/27/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
Abstract
Nano titanium dioxide (TiO2) with photocatalytic activity was firstly modified by diethanolamine, and it was then doped with broad spectrum antibacterial silver (Ag) by in situ method. Further, both Ag doped TiO2-chitosan (STC) and TiO2-chitosan (TC) composites were prepared by the inverse emulsion cross-linking reaction. The antibacterial activities of STC composites were studied and their antibacterial mechanisms under visible light were investigated. The results show that in situ doping and inverse emulsion method led to good dispersion of Ag and TiO2 nanoparticles on the cross-linked chitosan microsphere. The STC with regular particle size of 1–10 μm exhibited excellent antibacterial activity against E. coli, P. aeruginosa and S. aureus under visible light. It is believed that STC with particle size of 1–10 μm has large specific surface area to contact with bacterial cell wall. The increased antibacterial activity was attributed to the enhancement of both electron-hole separations at the surface of nano-TiO2 by the silver ions under the visible light, and the synergetic and sustained release of strong oxidizing hydroxyl radicals of nano-TiO2, together with silver ions against bacteria. Thus, STC composites have great potential applications as antibacterial agents in the water treatment field.
Collapse
|
50
|
Zhang M, Wang J, Jin Z. Supramolecular hydrogel formation between chitosan and hydroxypropyl β-cyclodextrin via Diels-Alder reaction and its drug delivery. Int J Biol Macromol 2018; 114:381-391. [DOI: 10.1016/j.ijbiomac.2018.03.106] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/06/2018] [Accepted: 03/19/2018] [Indexed: 12/24/2022]
|