1
|
Arısoy S, Bux K, Herwig R, Şalva E. Development, Evaluation, and Molecular Dynamics Study of Ampicillin-Loaded Chitosan-Hyaluronic Acid Films as a Drug Delivery System. ACS OMEGA 2024; 9:19805-19815. [PMID: 38737032 PMCID: PMC11079874 DOI: 10.1021/acsomega.3c08076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
Periodontitis is an inflammatory periodontal disease defined by the progressive loss of tissues surrounding the tooth. Ampicillin is an antibiotic for managing and treating specific bacterial infections, including periodontitis. Periodontal pockets occur due to periodontal disease progression and act as a natural reservoir that is easily reachable for the insertion of a delivery system, and the amount of drug to be released has a major role in the efficiency of treatment of the disease. Polyelectrolyte complexes (PECs), particularly those based on chitosan and hyaluronic acid combinations, offer a promising avenue to overcome the challenges associated with drug delivery. These complexes are both biodegradable and biocompatible, making them an optimal choice for enabling targeted drug delivery. This study centers on developing and assessing the structure and dynamic attributes of a drug-PEC system encompassing ampicillin and chitosan-hyaluronic acid components, which represents a targeted drug delivery system to better alleviate the periodontitis. To achieve this goal, we conducted experiments including weight and drug content uniformity, swelling ındex, drug release %, FT-IR and SEM analyses, and atomistic molecular dynamics simulations on the drug PECs loaded with ampicillin with varying amounts of hyaluronic acid. All simulations and the experimental analysis suggested that increased HA amount resulted in an increase in drug release % and swelling index. The simulation outcomes provide insights into the nature of the drug and PEC interactions alongside transport properties such as drug diffusion coefficients. These coefficients offer valuable insights into the molecular behavior of ampicillin-PEC drug delivery systems, particularly in the context of their application in periodontitis treatment.
Collapse
Affiliation(s)
- Sema Arısoy
- Faculty
of Pharmacy, Department of Pharmaceutical Technology, Selcuk University, Selcuklu, Konya 42250, Turkey
| | - Khair Bux
- Faculty
of Life Sciences, Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Clifton, Karachi 75600 Pakistan
| | - Ralf Herwig
- Laboratories
PD Dr. R. Herwig, 80337Munich ,Germany
- Heimerer-College, Pristina 10000, Kosovo
| | - Emine Şalva
- Faculty
of Pharmacy, Department of Pharmaceutical Biotechnology, Inonu University, Battalgazi, Malatya 44210, Turkey
| |
Collapse
|
2
|
Chen X, Yu S, Wang P, Zhao X, Sang G. Development and Evaluation of a Novel Hyaluronic Acid and Chitosan-modified Phytosome for Co-delivery of Oxymatrine and Glycyrrhizin for Combination Therapy. Recent Pat Anticancer Drug Discov 2024; 19:154-164. [PMID: 38214355 DOI: 10.2174/1574892818666230215112942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/20/2022] [Accepted: 12/16/2022] [Indexed: 02/17/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) of cancer cells is a major obstacle to efficient cancer chemotherapy. Combination therapy is expected to enhance the anticancer effect and reverse MDR. Numerous patents involve different kinds of nanoparticles for the co-delivery of multiple chemotherapeutics, but the FDA has approved none. OBJECTIVE In this study, oxymatrine (OMT) and glycyrrhizin (GL) were co-loaded into phytosomes as the core of nanocarriers, and the shell was cross-linked with chitosan (CS) and hyaluronic acid (HA) with the capability for the controlled, sequential release and the targeted drug uptake. METHODS Phospholipid complexes of OMT and GL (OGPs) were prepared by a solvent evaporation technique and could self-assemble in an aqueous solution to form phytosomes. CS and HA were sequentially coated on the surface of OGPs via electrostatic interactions to obtain CS coated OGPs (CS-OGPs) and HA modified CS-OGPs (HA-CS-OGPs), respectively. The particle size and zeta potential were measured to optimize the formulations. In vitro cytotoxicity and cellular uptake experiments on HepG2 cells were performed to evaluate the anticancer activity. RESULTS OGPs were obtained with nano-size around 100 nm, and CS and HA coating on phytosomes could change the particle size and surface potential. The drug loading of OMT and GL showed that the nanocarriers could maintain a fixed ratio of 1:1. The in vitro release experiments indicated the release of OMT and GL was pH-dependent and sequential: the release of OMT from CS-OGPs and HA-CS-OGPs was significantly increased at pH 5.0 compared to the release at pH 7.4, while GL exhibited sustained released from CS-OGPs and HA-CS-OGPs at pH 5.0. Furthermore, in vitro cytotoxicity and cellular uptake experiments on HepG2 cells demonstrated that the co-delivery system based on phytosomes had significant synergistic anti-tumor activities, and the effects were enhanced by CS and HA modification. CONCLUSION The delivery of OMT and GL via HA-CS-OGPs might be a promising treatment to reverse MDR in cancer therapy.
Collapse
Affiliation(s)
- Xiaojin Chen
- Department of Pharmacy, Hangzhou Children's Hospital, Hangzhou 310014, Zhejiang, China
| | - Shuying Yu
- Department of Pharmacy, Hangzhou Children's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Pingping Wang
- Department of Pharmacy, Hangzhou Children's Hospital, Hangzhou, Zhejiang, 310014, China
| | - XinFeng Zhao
- Department of Clinical Laboratory, Hangzhou Children's Hospital, Hangzhou, Zhejiang, 310014, China
| | - Gao Sang
- Department of Traditional Medicine, Hangzhou Children's Hospital, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
3
|
Arısoy S, Şalva E. Preparation and in vitro characterization of curcumin loaded Chitosan-Hyaluronic acid polyelectrolyte complex based hydrogels. Drug Dev Ind Pharm 2023; 49:637-647. [PMID: 37781745 DOI: 10.1080/03639045.2023.2265477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE The manuscript aims to prepare and comprehensively characterize curcumin-loaded chitosan-hyaluronic acid polyelectrolyte complex (PEC) hydrogels through in vitro assessments. By elucidating the formulation process, physicochemical attributes, and drug release kinetics, the study contributes to the producing of curcumin loaded new drug delivery system. SIGNIFICANCE This approach shows the unique synergy of the chosen polymers with curcumin. The meticulous in vitro analysis of the hydrogels cements their novel attributes, underlining their potential as efficacious and biocompatible curcumin carriers. METHODS To configure the optimum formulation variables, viscosity, swelling ratio, porosity, in vitro release, cell viability, and migration rate were determined. In addition, FTIR and SEM analyses were also carried out to define the characteristic of formulations. RESULTS Release kinetic determination is essential in estimating the release behavior of formulation in the body. All formulations showed Higuchi release kinetics, indicating that drug release from the semi-solid matrix was diffusion controlled. CONCLUSION As a result, in this study, a new formulation was produced based on a simple concept with acceptable quality parameter results promising to be conducted in the industry.
Collapse
Affiliation(s)
- Sema Arısoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Selcuk University, Konya, Turkey
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Inonu University, Malatya, Turkey
| | - Emine Şalva
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Inonu University, Malatya, Turkey
| |
Collapse
|
4
|
Le HV, Le Cerf D. Colloidal Polyelectrolyte Complexes from Hyaluronic Acid: Preparation and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204283. [PMID: 36260830 DOI: 10.1002/smll.202204283] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Hyaluronic acid (HA) is a naturally occurring polysaccharide which has been extensively exploited in biomedical fields owing to its outstanding biocompatibility. Self-assembly of HA and polycations through electrostatic interactions can generate colloidal polyelectrolyte complexes (PECs), which can offer a wide range of applications while being relatively simple to prepare with rapid and "green" processes. The advantages of colloidal HA-based PECs stem from the combined benefits of nanomedicine, green chemistry, and the inherent properties of HA, namely high biocompatibility, biodegradability, and biological targeting capability. Accordingly, colloidal PECs from HA have received increasing attention in the recent years as high-performance materials for biomedical applications. Considering their potential, this review is aimed to provide a comprehensive understanding of colloidal PECs from HA in complex with polycations, from the most fundamental aspects of the preparation process to their various biomedical applications, notably as nanocarriers for delivering small molecule drugs, nucleic acids, peptides, proteins, and bioimaging agents or the construction of multifunctional platforms.
Collapse
Affiliation(s)
- Huu Van Le
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, Rouen, 76000, France
| | - Didier Le Cerf
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, Rouen, 76000, France
| |
Collapse
|
5
|
Bagheri M, van Nostrum CF, Kok RJ, Storm G, Hennink WE, Heger M. Utility of Intravenous Curcumin Nanodelivery Systems for Improving In Vivo Pharmacokinetics and Anticancer Pharmacodynamics. Mol Pharm 2022; 19:3057-3074. [PMID: 35973068 PMCID: PMC9450039 DOI: 10.1021/acs.molpharmaceut.2c00455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
Curcumin nanoformulations for intravenous injection have been developed to offset poor absorption, biotransformation, degradation, and excessive clearance associated with parenteral delivery. This review investigates (1) whether intravenous nanoformulations improve curcumin pharmacokinetics (PK) and (2) whether improved PK yields greater therapeutic efficacy. Standard PK parameters (measured maximum concentration [Cmax], area under the curve [AUC], distribution volume [Vd], and clearance [CL]) of intravenously administered free curcumin in mice and rats were sourced from literature and compared to curcumin formulated in nanoparticles, micelles, and liposomes. The studies that also featured analysis of pharmacodynamics (PD) in murine cancer models were used to determine whether improved PK of nanoencapsulated curcumin resulted in improved PD. The distribution and clearance of free and nanoformulated curcumin were very fast, typically accounting for >80% curcumin elimination from plasma within 60 min. Case-matched analysis demonstrated that curcumin nanoencapsulation generally improved curcumin PK in terms of measured Cmax (n = 27) and AUC (n = 33), and to a lesser extent Vd and CL. However, when the data were unpaired and clustered for comparative analysis, only 5 out of the 12 analyzed nanoformulations maintained a higher relative curcumin concentration in plasma over time compared to free curcumin. Quantitative analysis of the mean plasma concentration of free curcumin versus nanoformulated curcumin did not reveal an overall marked improvement in curcumin PK. No correlation was found between PK and PD, suggesting that augmentation of the systemic presence of curcumin does not necessarily lead to greater therapeutic efficacy.
Collapse
Affiliation(s)
- Mahsa Bagheri
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Cornelus F. van Nostrum
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Robbert Jan Kok
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Gert Storm
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Michal Heger
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Jiaxing
Key Laboratory for Photonanomedicine and Experimental Therapeutics,
Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| |
Collapse
|
6
|
Development and Evaluation of Letrozole-Loaded Hyaluronic Acid/Chitosan-Coated Poly(d,l-lactide-co-glycolide) Nanoparticles. J Pharm Innov 2022. [DOI: 10.1007/s12247-021-09538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Wang J, Zhang L, Zhu J, Gu J, Wang X, Tao H. Hyaluronic Acid Modified Curcumin-Loaded Chitosan Nanoparticles Inhibit Chondrocyte Apoptosis to Attenuate Osteoarthritis via Upregulation of Activator Protein 1 and RUNX Family Transcription Factor 2. J Biomed Nanotechnol 2022; 18:144-157. [PMID: 35180907 DOI: 10.1166/jbn.2022.3193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hyaluronic acid (HA) and curcumin (CUR) have been previously utilized for osteoarthritis (OA) treatment. CUR-loaded chitosan nanoparticles (CUR@CS NPs) and HA CUR@CS NPs were synthesized in our research to ascertain the synergistic impacts of HA and CUR-loaded NPs on OA treatment. CUR@CS NPs and HA CUR@CS NPs were synthesized with evaluation of their particle size, potential, PDI, encapsulation efficiency, drug loading and surface coating as well as HA binding rate. The in vitro CUR release curve and stability of HA-CUR@CS NPs were measured. Chondrocytes were isolated from the cartilages of OA patients, followed by cell uptake assay. The chondrocyte viability and apoptosis were determined. Subsequently, the knee OA model was established, followed by H&E, Safranin O/Fast green staining and micro-CT. HA CUR@CS NPs improved CUR stability and bioavailability. CUR@CS NPs and HA-CUR@CS NPs were successfully characterized and could further be internalized by chondrocytes. CUR@CS NPs promoted tBHP-induced chondrocyte viability and inhibited chondrocyte apoptosis. HA-CUR@CS NPs upregulated the AP-1 and RUNX2 transcription levels to activate Hedgehog pathway, which subsequently blocked the Notch pathway. Mechanically, HA-CUR@CS NPs sustained release and long-lasting effect and long-term retention in the joint cavity and downregulated the expression of several pro-inflammatory cytokines in vivo. HA-CUR@CS NPs exhibited superior effects in the preceding experiments than CUR@CS NPs. Altogether, HA-CUR@CS NPs may restrict inflammation and chondrocyte apoptosis in OA through upregulation of AP-1 and RUNX2.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopedics, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200940, P. R. China
| | - Liaoran Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Jiaxue Zhu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Jianhua Gu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Xiang Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| | - Hairong Tao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China
| |
Collapse
|
8
|
The Effects of Curcumin Nanoparticles Incorporated into Collagen-Alginate Scaffold on Wound Healing of Skin Tissue in Trauma Patients. Polymers (Basel) 2021; 13:polym13244291. [PMID: 34960842 PMCID: PMC8707913 DOI: 10.3390/polym13244291] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Wound healing is a biological process that is mainly crucial for the rehabilitation of injured tissue. The incorporation of curcumin (Cur) into a hydrogel system is used to treat skin wounds in different diseases due to its hydrophobic character. In this study, sodium alginate and collagen, which possess hydrophilic, low toxic, and biocompatible properties, were utilized. Collagen/alginate scaffolds were synthesized, and nanocurcumin was incorporated inside them; their interaction was evaluated by FTIR spectroscopy. Morphological studies investigated structures of the samples studied by FE-SEM. The release profile of curcumin was detected, and the cytotoxic test was determined on the L929 cell line using an MTT assay. Analysis of tissue wound healing was performed by H&E staining. Nanocurcumin was spherical, its average particle size was 45 nm, and the structure of COL/ALG scaffold was visible. The cell viability of samples was recorded in cells after 24 h incubation. Results of in vivo wound healing remarkably showed CUR-COL/ALG scaffold at about 90% (p < 0.001), which is better than that of COL/ALG, 80% (p < 0.001), and the control 73.4% (p < 0.01) groups at 14 days/ The results of the samples’ FTIR indicated that nanocurcumin was well-entrapped into the scaffold, which led to improving the wound-healing process. Our results revealed the potential of nanocurcumin incorporated in COL/ALG scaffolds for the wound healing of skin tissue in trauma patients.
Collapse
|
9
|
Pereira FM, Melo MN, Santos ÁKM, Oliveira KV, Diz FM, Ligabue RA, Morrone FB, Severino P, Fricks AT. Hyaluronic acid-coated chitosan nanoparticles as carrier for the enzyme/prodrug complex based on horseradish peroxidase/indole-3-acetic acid: Characterization and potential therapeutic for bladder cancer cells. Enzyme Microb Technol 2021; 150:109889. [PMID: 34489042 DOI: 10.1016/j.enzmictec.2021.109889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023]
Abstract
Hybrid nanoparticles composed of different biopolymers for delivery of enzyme/prodrug systems are of interest for cancer therapy. Hyaluronic acid-coated chitosan nanoparticles (CS/HA NP) were prepared to encapsulate individually an enzyme/pro-drug complex based on horseradish peroxidase (HRP) and indole-3-acetic acid (IAA). CS/HA NP showed size around 158 nm and increase to 170 and 200 nm after IAA and HRP encapsulation, respectively. Nanoparticles showed positive zeta potential values (between +20.36 mV and +24.40 mV) and higher encapsulation efficiencies for both nanoparticles (up to 90 %) were obtained. Electron microscopy indicated the formation of spherical particles with smooth surface characteristic. Physicochemical and thermal characterizations suggest the encapsulation of HRP and IAA. Kinetic parameters for encapsulated HRP were similar to those of the free enzyme. IAA-CS/HA NP showed a bimodal release profile of IAA with a high initial release (72 %) followed by a slow-release pattern. The combination of HRP-CS/HA NP and IAA- CS/HA NP reduced by 88 % the cell viability of human bladder carcinoma cell line (T24) in the concentrations 0.5 mM of pro-drug and 1.2 μg/mL of the enzyme after 24 h.
Collapse
Affiliation(s)
- Fernanda Menezes Pereira
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Micael Nunes Melo
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Átali Kayane Mendes Santos
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Karony Vieira Oliveira
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Fernando Mendonça Diz
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Rosane Angélica Ligabue
- School of Technology, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Fernanda Bueno Morrone
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga 6681, 90619-900, Porto Alegre, RS, Brazil
| | - Patrícia Severino
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil
| | - Alini Tinoco Fricks
- Tiradentes University, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas 300, 49032-490, Aracaju, SE, Brazil.
| |
Collapse
|
10
|
Dubashynskaya NV, Raik SV, Dubrovskii YA, Shcherbakova ES, Demyanova EV, Shasherina AY, Anufrikov YA, Poshina DN, Dobrodumov AV, Skorik YA. Hyaluronan/colistin polyelectrolyte complexes: Promising antiinfective drug delivery systems. Int J Biol Macromol 2021; 187:157-165. [PMID: 34298050 DOI: 10.1016/j.ijbiomac.2021.07.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Nanotechnology-based modification of known antimicrobial agents is a rational and straightforward way to improve their safety and effectiveness. The aim of this study was to develop colistin (CT)-loaded polymeric carriers based on hyaluronic acid (HA) for potential application as antimicrobial agents against multi-resistant gram-negative microorganisms (including ESKAPE pathogens). CT-containing particles were obtained via a polyelectrolyte interaction between protonated CT amino groups and HA carboxyl groups (the CT-HA complex formation constant [logKCT-HA] was about 5.0). The resulting polyelectrolyte complexes had a size of 210-250 nm and a negative charge (ζ-potential -19 mV), with encapsulation and loading efficiencies of 100% and 20%, respectively. The developed CT delivery systems were characterized by modified release (45% and 85% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro tests showed that the encapsulation of CT in polymer particles did not reduce its pharmacological activity; the minimum inhibitory concentrations of both encapsulated CT and pure CT were 1 μg/mL (against Pseudomonas aeruginosa).
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Sergei V Raik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yaroslav A Dubrovskii
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, St. Petersburg 198504, Russian Federation; Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russian Federation; St. Petersburg State Chemical Pharmaceutical University, Prof. Popova 14, St. Petersburg 197376, Russian Federation
| | - Elena S Shcherbakova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Elena V Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Anna Y Shasherina
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, St. Petersburg 198504, Russian Federation
| | - Yuri A Anufrikov
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, St. Petersburg 198504, Russian Federation
| | - Daria N Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Anatoliy V Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
11
|
Novel redox-sensitive thiolated TPGS based nanoparticles for EGFR targeted lung cancer therapy. Int J Pharm 2021; 602:120652. [PMID: 33915187 DOI: 10.1016/j.ijpharm.2021.120652] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022]
Abstract
Novel glutathione (GSH) redox-sensitive thiolated vitaminE-PEG1000-succinate (TPGH-SH) was synthesized by conjugating TPGS with 4-amino thiophenol (4-ATP) and confirmed by FTIR and NMR studies. Following, docetaxel (DTX) loaded, cetuximab (CTB) conjugated redox sensitive TPGS-SH nanoparticles (TPGS-SH NP) were prepared by dialysis method and screened for size, charge, DTX entrapment, which revealed that size, surface charge and percent entrapment are in the range of 183-227 nm, +18 to +26 mV and 68-71%. SEM, TEM, AFM have reflected the spherical and uniform size of NP with a smooth surface. In-vitro release studies were performed in media containing different concentrations of GSH to study their effect on drug release and drug release of up to 94.5%, at pH 5.5, GSH 20 mM, is observed within 24 h. The pH/redox sensitivity studies revealed the better stability of NP at higher pH and lower GSH concentrations. In-vitro cytotoxicity, cellular uptake, migration and apoptotic assays, performed on A549 cells, have proved that targeted formulation produced higher cytotoxicity (significantly less IC50 value) and uptake and also prevented cell migration. Pharmacokinetic and histopathological screening were performed on CF rats, which demonstrated promising results. The in-vivo efficacy studies on benzo(a)pyrene induced mice lung cancer model showed that targeted TPGS-SH NP has significantly reduced the cell number than the model control.
Collapse
|
12
|
Mostafavi E, Medina-Cruz D, Vernet-Crua A, Chen J, Cholula-Díaz JL, Guisbiers G, Webster TJ. Green nanomedicine: the path to the next generation of nanomaterials for diagnosing brain tumors and therapeutics? Expert Opin Drug Deliv 2021; 18:715-736. [PMID: 33332168 DOI: 10.1080/17425247.2021.1865306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Current brain cancer treatments, based on radiotherapy and chemotherapy, are sometimes successful, but they are not free of drawbacks.Areas covered: Traditional methods for the treatment of brain tumors are discussed here with new solutions presented, among which the application of nanotechnology has demonstrated promising results over the past decade. The traditional synthesis of nanostructures, which relies on the use of physicochemical methodologies are discussed, and their associated concerns in terms of environmental and health impact due to the production of toxic by-products, need for toxic catalysts, and their lack of biocompatibility are presented. An overview of the current situation for treating brain tumors using nanotechnological-based approaches is introduced, and some of the latest advances in the application of green nanomaterials (NMs) for the effective targeting of brain tumors are presented.Expert opinion: Green nanotechnology is introduced as a potential solution to toxic NMs through the application of environmentally friendly and cost-effective protocols using living organisms and biomolecules. The current status of this field, such as those involving clinical trials, is included, and the possible limitations of green-NMs and potential ways to avoid those limitations are discussed so that the field can potentially evolve.
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ada Vernet-Crua
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Junjiang Chen
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Gregory Guisbiers
- Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
13
|
Mushtaq A, Li L, A A, Grøndahl L. Chitosan Nanomedicine in Cancer Therapy: Targeted Delivery and Cellular Uptake. Macromol Biosci 2021; 21:e2100005. [PMID: 33738977 DOI: 10.1002/mabi.202100005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Nanomedicine has gained much attention for the management and treatment of cancers due to the distinctive physicochemical properties of the drug-loaded particles. Chitosan's cationic nature is attractive for the development of such particles for drug delivery, transfection, and controlled release. The particle properties can be improved by modification of the polymer or the particle themselves. The physicochemical properties of chitosan particles are analyzed in 126 recent studies, which allows to highlight their impact on passive and active targeted drug delivery, cellular uptake, and tumor growth inhibition (TGI). From 2012 to 2019, out of 40 in vivo studies, only 4 studies are found reporting a reduction in tumor size by using chitosan particles while all other studies reported tumor growth inhibition relative to controls. A total of 23 studies are analyzed for cellular uptake including 12 studies reporting cellular uptake mechanisms. Understanding and exploiting the processes involved in targeted delivery, endocytosis, and exocytosis by controlling the physicochemical properties of chitosan particles are important for the development of safe and efficient nanomedicine. It is concluded based on the recent literature available on chitosan particles that combination therapies can play a pivotal role in transformation of chitosan nanomedicine from bench to bedside.
Collapse
Affiliation(s)
- Asim Mushtaq
- School of Chemistry and Molecular Biosciences, The University of Queensland, Building 68, Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Corner of College and Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Anitha A
- School of Chemistry and Molecular Biosciences, The University of Queensland, Building 68, Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Lisbeth Grøndahl
- School of Chemistry and Molecular Biosciences, The University of Queensland, Building 68, Cooper Road, Brisbane, Queensland, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Corner of College and Cooper Road, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
14
|
Xu Y, Zhang Z, Wang H, Zhong W, Sun C, Sun W, Wu H. Zoledronic Acid-Loaded Hybrid Hyaluronic Acid/Polyethylene Glycol/Nano-Hydroxyapatite Nanoparticle: Novel Fabrication and Safety Verification. Front Bioeng Biotechnol 2021; 9:629928. [PMID: 33659241 PMCID: PMC7917242 DOI: 10.3389/fbioe.2021.629928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/11/2021] [Indexed: 01/11/2023] Open
Abstract
Osteosarcoma is a malignant tumor that often occurs in adolescents and children. Zoledronic acid, a new-generation bisphosphonate, has been widely used as an antitumor drug to inhibit bone metastasis. However, the rapid renal elimination results in low effective concentrations. Meanwhile, high-dose intravenous zoledronic acid administration leads to severe side effects. The present study fabricated an organic-inorganic hybrid nanoparticle as the carrier of zoledronic acid. The rod-like nanoparticle, which had 150-nm length and 40-nm cross-sectional diameter, consisted of a hyaluronic acid/polyethylene glycol (HA-PEG) polymer shell and a nano-hydroxyapatite (nHA) core, with zoledronic acid molecules loading on the surface of nHA and clearance of HA-PEG shell. The nanoparticle was characterized by microscopic analysis, in vitro release study, cytotoxicity analysis, and in vivo immune response examination. Results showed that the compact and stable structure could achieve high drug loading efficiency, sustained drug release, and great biocompatibility. In vitro and in vivo experiments revealed the low cytotoxicity and acceptable immune response under low-dose nanoparticle treatment, indicating its potential application for future osteosarcoma therapeutic strategies.
Collapse
Affiliation(s)
- Yan Xu
- Department of Thoracic Medicine Oncolog, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zheng Zhang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China
| | - Hehui Wang
- Department of Orthopedics, Ningbo Yinzhou Second Hospital, Ningbo, China
| | - Wu Zhong
- Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chengmei Sun
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China
| | - Wei Sun
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China
| | - Hongwei Wu
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China.,Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
15
|
Afzali E, Eslaminejad T, Yazdi Rouholamini SE, Shahrokhi-Farjah M, Ansari M. Cytotoxicity Effects of Curcumin Loaded on Chitosan Alginate Nanospheres on the KMBC-10 Spheroids Cell Line. Int J Nanomedicine 2021; 16:579-589. [PMID: 33531802 PMCID: PMC7846832 DOI: 10.2147/ijn.s251056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Breast cancer is one of the most lethal types of cancer in women. Curcumin showed therapeutic potential against breast cancer, but applying that by itself does not lead to the associated health benefits due to its poor bioavailability, which appears to be primarily due to poor absorption, rapid metabolism, and rapid elimination. Moreover, poor water solubility of curcumin causes accumulation of a high concentration of curcumin and so decrease its permeability to the cell. Many strategies are employed to reduce curcumin metabolism such as adjuvants and designing novel delivery systems. Therefore, in this study sodium alginate and chitosan were used to synthesize the hydrogels that are known as biocompatible, hydrophilic and low toxic drug delivery systems. Also, folic acid was used to link to chitosan in order to actively targetfolate receptors on the cells. Methods Chitosan-β-cyclodextrin-TPP-Folic acid/alginate nanoparticles were synthesized and then curcumin was loaded on them. Interaction between the constituents of the particles was characterized by FTIR spectroscopy. Morphological structures of samples were studied by FE-SEM. Release profile of curcumin was determined by dialysis membrane. The cytotoxic test was done on the Kerman male breast cancer (KMBC-10) cell line by using MTT assay. The viability of cells was detected by fluorescent staining. Gene expression was investigated by real-time PCR. Results The encapsulation of curcumin into nano-particles showed an almost spherical shape and an average particle size of 155 nm. In vitro cytotoxicity investigation was indicated as dose-respond reaction against cancer breast cells after 24 h incubation. On the other hand, in vitro cell uptake study revealed active targeting of CUR-NPs into spheroids. Besides, CXCR4 expression was detected about 30-fold less than curcumin alone. The CUR-NPs inhibited proliferation and increased apoptosis in spheroid human breast cancer cells. Conclusion Our results showed the potential of NPs as an effective candidate for curcumin delivery to the target tumor spheroids that confirmed the creatable role of folate receptors.
Collapse
Affiliation(s)
- Elham Afzali
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Touba Eslaminejad
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyede Elmira Yazdi Rouholamini
- Physiology Research Centre, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mariam Shahrokhi-Farjah
- Physiology Research Centre, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari
- Department of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Curcio M, Cirillo G, Rouaen JRC, Saletta F, Nicoletta FP, Vittorio O, Iemma F. Natural Polysaccharide Carriers in Brain Delivery: Challenge and Perspective. Pharmaceutics 2020; 12:E1183. [PMID: 33291284 PMCID: PMC7762150 DOI: 10.3390/pharmaceutics12121183] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
Targeted drug delivery systems represent valuable tools to enhance the accumulation of therapeutics in the brain. Here, the presence of the blood brain barrier strongly hinders the passage of foreign substances, often limiting the effectiveness of pharmacological therapies. Among the plethora of materials used for the development of these systems, natural polysaccharides are attracting growing interest because of their biocompatibility, muco-adhesion, and chemical versatility which allow a wide range of carriers with tailored physico-chemical features to be synthetized. This review describes the state of the art in the field of targeted carriers based on natural polysaccharides over the last five years, focusing on the main targeting strategies, namely passive and active transport, stimuli-responsive materials and the administration route. In addition, in the last section, the efficacy of the reviewed carriers in each specific brain diseases is summarized and commented on in terms of enhancement of either blood brain barrier (BBB) permeation ability or drug bioavailability in the brain.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| | - Jourdin R. C. Rouaen
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, Sydney 2031, NSW, Australia; (J.R.C.R.); (F.S.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Federica Saletta
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, Sydney 2031, NSW, Australia; (J.R.C.R.); (F.S.)
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| | - Orazio Vittorio
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, Sydney 2031, NSW, Australia; (J.R.C.R.); (F.S.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, Sydney 2052, NSW, Australia
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| |
Collapse
|
17
|
Rao N, Rho JG, Um W, EK PK, Nguyen VQ, Oh BH, Kim W, Park JH. Hyaluronic Acid Nanoparticles as Nanomedicine for Treatment of Inflammatory Diseases. Pharmaceutics 2020; 12:E931. [PMID: 33003609 PMCID: PMC7600604 DOI: 10.3390/pharmaceutics12100931] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Owing to their unique biological functions, hyaluronic acid (HA) and its derivatives have been explored extensively for biomedical applications such as tissue engineering, drug delivery, and molecular imaging. In particular, self-assembled HA nanoparticles (HA-NPs) have been used widely as target-specific and long-acting nanocarriers for the delivery of a wide range of therapeutic or diagnostic agents. Recently, it has been demonstrated that empty HA-NPs without bearing any therapeutic agent can be used therapeutically for the treatment of inflammatory diseases via modulating inflammatory responses. In this review, we aim to provide an overview of the significant achievements in this field and highlight the potential of HA-NPs for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- N.Vijayakameswara Rao
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
| | - Jun Gi Rho
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Korea;
| | - Wooram Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
| | - Pramod Kumar EK
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
| | - Van Quy Nguyen
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
| | - Byeong Hoon Oh
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Korea;
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (N.V.R.); (W.U.); (P.K.E.); (V.Q.N.); (B.H.O.)
- Department Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
18
|
Sabourian P, Ji J, Lotocki V, Moquin A, Hanna R, Frounchi M, Maysinger D, Kakkar A. Facile design of autogenous stimuli-responsive chitosan/hyaluronic acid nanoparticles for efficient small molecules to protein delivery. J Mater Chem B 2020; 8:7275-7287. [DOI: 10.1039/d0tb00772b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chitosan is functionalized with oxidative stress-sensitive thioketal entities in a one-pot methodology, and self-assembled into drugs or protein loaded dual stimuli responsive nanoparticles, which kill glioblastoma cells and increase nerve outgrowth.
Collapse
Affiliation(s)
- Parinaz Sabourian
- Department of Chemistry
- McGill University
- Montréal
- Canada
- Department of Chemical and Petroleum Engineering
| | - Jeff Ji
- Department of Pharmacology and Therapeutics
- McGill University
- Montréal
- Canada
| | | | - Alexandre Moquin
- Department of Chemistry
- McGill University
- Montréal
- Canada
- Department of Pharmacology and Therapeutics
| | - Ramez Hanna
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Masoud Frounchi
- Department of Chemical and Petroleum Engineering
- Sharif University of Technology
- Tehran
- Iran
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics
- McGill University
- Montréal
- Canada
| | - Ashok Kakkar
- Department of Chemistry
- McGill University
- Montréal
- Canada
| |
Collapse
|
19
|
Langlois A, Mason GT, Nguyen MHL, Rezapour M, Karsenti PL, Marquardt D, Rondeau-Gagné S. Photophysical and Optical Properties of Semiconducting Polymer Nanoparticles Prepared from Hyaluronic Acid and Polysorbate 80. ACS OMEGA 2019; 4:22591-22600. [PMID: 31909343 PMCID: PMC6941380 DOI: 10.1021/acsomega.9b03402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
A nanoprecipitation procedure was utilized to prepare novel diketopyrrolopyrrole-based semiconducting polymer nanoparticles (SPNs) with hyaluronic acid (HA) and polysorbate 80. The nanoprecipitation led to the formation of spherical nanoparticles with average diameters ranging from 100 to 200 nm, and a careful control over the structure of the parent conjugated polymers was performed to probe the influence of π-conjugation on the final photophysical and thermal stability of the resulting SPNs. Upon generation of a series of novel SPNs, the optical and photophysical properties of the new nanomaterials were probed in solution using various techniques including transmission electron microscopy, dynamic light scattering, small-angle neutron scattering, transient absorption, and UV-vis spectroscopy. A careful comparison was performed between the different SPNs to evaluate their excited-state dynamics and photophysical properties, both before and after nanoprecipitation. Interestingly, although soluble in organic solution, the nanoparticles were found to exhibit aggregative behavior, resulting in SPNs that exhibit excited-state behaviors that are very similar to aggregated polymer solutions. Based on these findings, the formation of HA- and polysorbate 80-based nanoparticles does not influence the photophysical properties of the conjugated polymers, thus opening new opportunities for the design of bioimaging agents and nanomaterials for health-related applications.
Collapse
Affiliation(s)
- Adam Langlois
- Department
of Chemistry and Biochemistry, Advanced Materials Centre
of Research (AMCORe) and Department of Physics, University
of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Gage T. Mason
- Department
of Chemistry and Biochemistry, Advanced Materials Centre
of Research (AMCORe) and Department of Physics, University
of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Michael H. L. Nguyen
- Department
of Chemistry and Biochemistry, Advanced Materials Centre
of Research (AMCORe) and Department of Physics, University
of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Mehdi Rezapour
- Department
of Chemistry and Biochemistry, Advanced Materials Centre
of Research (AMCORe) and Department of Physics, University
of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | | | - Drew Marquardt
- Department
of Chemistry and Biochemistry, Advanced Materials Centre
of Research (AMCORe) and Department of Physics, University
of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Simon Rondeau-Gagné
- Department
of Chemistry and Biochemistry, Advanced Materials Centre
of Research (AMCORe) and Department of Physics, University
of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
20
|
Xu W, Wang J, Qian J, Hou G, Wang Y, Ji L, Suo A. NIR/pH dual-responsive polysaccharide-encapsulated gold nanorods for enhanced chemo-photothermal therapy of breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109854. [DOI: 10.1016/j.msec.2019.109854] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/16/2019] [Accepted: 06/01/2019] [Indexed: 12/25/2022]
|
21
|
Sakurai Y, Harashima H. Hyaluronan-modified nanoparticles for tumor-targeting. Expert Opin Drug Deliv 2019; 16:915-936. [DOI: 10.1080/17425247.2019.1645115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Sakurai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | |
Collapse
|
22
|
Allylated chitosan-poly(N-isopropylacrylamide) hydrogel based on a functionalized double network for controlled drug release. Carbohydr Polym 2019; 214:8-14. [PMID: 30926010 DOI: 10.1016/j.carbpol.2019.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/06/2019] [Accepted: 03/03/2019] [Indexed: 01/13/2023]
Abstract
Smart hydrogels with dual network were presented since a new allylated chitosan was conceived. As a double network hydrogel, its first network consisted of poly(N-isopropylacrylamide) worked as the gel matrix, and its second network with Schiff base bond enabled itself function as a molecular switch through the formation and break of the bond. When only the intestinal fluid was used, the second network could provide efficient protection for the loaded drug, and the drug release mechanism conformed to the non-Fickian type diffusion. While pre-treated with simulated gastric fluid, the switch would be opened and the mechanism was the Fickian type, which increased the cumulative percentage of drug release by about 25% and the release time by about 300 min. Besides, the hydrogel was characterized by 1H NMR, FT-IR and SEM. The effects of allylated chitosan, pH and crosslinker on the swelling ratio and morphology of hydrogel were also studied.
Collapse
|
23
|
Su T, Wu QX, Chen Y, Zhao J, Cheng XD, Chen J. Fabrication of the polyphosphates patched cellulose sulfate-chitosan hydrochloride microcapsules and as vehicles for sustained drug release. Int J Pharm 2019; 555:291-302. [DOI: 10.1016/j.ijpharm.2018.11.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023]
|
24
|
Chen J, Yang X, Huang L, Lai H, Gan C, Luo X. Development of dual-drug-loaded stealth nanocarriers for targeted and synergistic anti-lung cancer efficacy. Drug Deliv 2018; 25:1932-1942. [PMID: 30472899 PMCID: PMC6263111 DOI: 10.1080/10717544.2018.1477856] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023] Open
Abstract
Combination chemotherapy is widely exploited for suppressing drug resistance and achieving synergistic anticancer efficacy in the clinic. In this paper, the nanostructured targeting methotrexate (MTX) plus pemetrexed (PMX) chitosan nanoparticles (CNPs) were developed by modifying methoxy polye (thylene glycol) (mPEG), in which PEGylation CNPs was used as stealth nanocarriers (PCNPs) and MTX was employed as a targeting ligand and chemotherapeutic agent as well. Studies were undertaken on human lung adenocarcinoma epithelial (A549) and Lewis lung carcinoma (LLC) cell lines, revealing the anti-tumor efficacy of nanoparticle drug delivery system. The co-delivery nanoparticles (MTX-PMX-PCNPs) had well-dispersed with sustained release behavior. Cell counting kit-8 (CCK8) has been used to measure A549 cell viability and the research showed that MTX-PMX-PCNPs were much more effective than free drugs when it came to the inhibition of growth and proliferation. Cell cycle assay by flow cytometry manifested that the MTX-PMX-PCNPs exhibited stronger intracellular taken up ability than free drugs at the same concentration. In vivo anticancer effect results indicated that MTX-PMX-PCNPs exhibited a significantly prolong blood circulation, more tumoral location accumulation, and resulted in a robust synergistic anticancer efficacy in lung cancer in mice. The results clearly demonstrated that such unique synergistic anticancer efficacy of co-delivery of MTX and PMX via stealth nanocarriers, providing a prospective strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Juan Chen
- Department of Pharmacy, Zhongshan Hospital Xiamen University, Xiamen, P. R. China
| | - Xiaobing Yang
- College of Ecology and Resource Engineering, Wuyi University, Wuyishan, P. R. China
| | - Liuqing Huang
- Department of Materials Science and Engineering College of Materials, Xiamen University, Xiamen, P. R. China
| | - Huixian Lai
- Department of Materials Science and Engineering College of Materials, Xiamen University, Xiamen, P. R. China
| | - Chuanhai Gan
- Department of Materials Science and Engineering College of Materials, Xiamen University, Xiamen, P. R. China
| | - Xuetao Luo
- Department of Materials Science and Engineering College of Materials, Xiamen University, Xiamen, P. R. China
| |
Collapse
|
25
|
Wang J, Asghar S, Jin X, Chen Z, Huang L, Ping Q, Zong L, Xiao Y. Mitoxantrone-loaded chitosan/hyaluronate polyelectrolyte nanoparticles decorated with amphiphilic PEG derivates for long-circulating effect. Colloids Surf B Biointerfaces 2018; 171:468-477. [DOI: 10.1016/j.colsurfb.2018.07.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/12/2018] [Accepted: 07/25/2018] [Indexed: 11/29/2022]
|
26
|
Agarwal S, Muniyandi P, Maekawa T, Kumar DS. Vesicular systems employing natural substances as promising drug candidates for MMP inhibition in glioblastoma: A nanotechnological approach. Int J Pharm 2018; 551:339-361. [PMID: 30236647 DOI: 10.1016/j.ijpharm.2018.09.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/16/2022]
Abstract
Glioblastoma multiforme (GBM), one of the most lethal Brain tumors, characterized by its high invasive nature and increased mortality rates forms a major bottleneck in transport of therapeutics across the Blood Brain Barrier (BBB). Matrix metalloproteinases (MMPs) are classified as enzymes, which are found to be up regulated in the Glioma tumor microenvironment and thus can be considered as a target for inhibition for curbing GBM. Many chemotherapeutics and techniques have been employed for inhibiting MMPs till now but all of them failed miserably and were withdrawn in clinical trials due to their inability in restricting the tumor growth or increasing the overall survival rates. Thus, the quest for finding the suitable MMP inhibitor is still on and there is a critical need for identification of novel compounds which can alter the BBB permeability, restrain tumor growth and prevent tumor recurrence. Currently, naturally derived substances are gaining widespread attention as tumor inhibitors and many studies have been reported by far highlighting their importance in restricting MMP expression thus serving as chemotherapeutics for cancer due to their minimal toxicity. These substances may serve as probable candidates for inhibiting MMP expression in GBM. However, targeting and delivering the inhibitor to its target site is an issue that needs to be overcome in order to attain maximum specificity and sustained release. The birth of nanotechnology served as a boon in delivering drugs to the most complicated areas thus paving way for Nano drug delivery. An efficient Nano carrier with ability to cross the BBB and competently kill the Glioma cells forms the prerequisite for GBM chemotherapy. Vesicular drug delivery systems are one such class of carriers, which have the capacity to release the drug at a predetermined rate at the target site thus minimizing any undesirable side effects. Exploiting vesicular systems as promising Nano drug carriers to formulate naturally derived substances, that can bypass the BBB and act as an inhibitor against MMPs in GBM is the main theme of this review.
Collapse
Affiliation(s)
- Srishti Agarwal
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan
| | - Priyadharshni Muniyandi
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan
| | - Toru Maekawa
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan
| | - D Sakthi Kumar
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan.
| |
Collapse
|
27
|
Gholami L, Tafaghodi M, Abbasi B, Daroudi M, Kazemi Oskuee R. Preparation of superparamagnetic iron oxide/doxorubicin loaded chitosan nanoparticles as a promising glioblastoma theranostic tool. J Cell Physiol 2018; 234:1547-1559. [DOI: 10.1002/jcp.27019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Leila Gholami
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences Mashhad Iran
- Department of Modern Sciences and Technologies Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| | - Bita Abbasi
- Department of Radiology Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Daroudi
- Department of Modern Sciences and Technologies Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
- Nuclear Medicine Research Center (NMRC), Mashhad University of Medical Sciences Mashhad Iran
| | - Reza Kazemi Oskuee
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biotechnology Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
28
|
Wang J, Wang X, Cao Y, Huang T, Song DX, Tao HR. Therapeutic potential of hyaluronic acid/chitosan nanoparticles for the delivery of curcuminoid in knee osteoarthritis and an in vitro evaluation in chondrocytes. Int J Mol Med 2018; 42:2604-2614. [PMID: 30106112 PMCID: PMC6192775 DOI: 10.3892/ijmm.2018.3817] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023] Open
Abstract
Knee osteoarthritis (OA) is the main cause of leg pain in middle-aged and elderly individuals. Hyaluronic acid (HA), as well as curcuminoid, has been used in the treatment of knee OA. In the present study, HA/chitosan nanoparticles (CNPs) were prepared for the delivery of curcuminoid, in order to investigate whether HA and curcuminoid can act synergistically as a better treatment option. The knee OA model was established by the Hulth method, and a knee OA chondrocyte model was constructed by the co-induction of interleukin-1β and tumor necrosis factor (TNF)-α. The drug loading capacity of HA/CNP for the delivery of curcuminoid was measured by an ultraviolet assay, and the cytotoxicity to chondrocytes was measured by an MTT assay. Collagen II was detected by immunofluorescence, and the expression levels of nuclear factor (NF)-κB and inflammation-related genes in cartilage tissue and chondrocytes were detected. Chondrocyte proliferation was determined by an EdU assay, and chondrocyte apoptosis was determined by flow cytometry. The Mankin pathological score of the Outerbridge classification was obtained. The results demonstrated that the optimum drug loading capacity of HA/CNP for the delivery of curcuminoid was 38.44%, with a good sustained release function. HA/CNP treatment resulted in inhibition of the NF-κB pathway, as well as the expression of matrix metalloproteinase (MMP)-1 and MMP-13, but it increased collagen II expression. HA/CNP for the delivery of curcuminoid significantly decreased the Outerbridge classification and Mankin pathological scores to close to normal until the 4th week. Furthermore, it was also observed that all the effects of HA/CNP on the delivery of curcuminoid were more prominent compared with the effects of HA or curcuminoid treatment individually. Taken together, these findings demonstrated that HA/CNP for the delivery of curcuminoid may suppress inflammation and chondrocyte apoptosis in knee OA via repression of the NF-κB pathway.
Collapse
Affiliation(s)
- Jian Wang
- Department of Orthopedics, Baoshan Branch of Shanghai First People's Hospital, Shanghai 200940, P.R. China
| | - Xiang Wang
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Yun Cao
- Department of Orthopedics, Baoshan Branch of Shanghai First People's Hospital, Shanghai 200940, P.R. China
| | - Tao Huang
- Department of Orthopedics, Baoshan Branch of Shanghai First People's Hospital, Shanghai 200940, P.R. China
| | - Deng-Xin Song
- Department of Orthopedics, Baoshan Branch of Shanghai First People's Hospital, Shanghai 200940, P.R. China
| | - Hai-Rong Tao
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| |
Collapse
|
29
|
Chitosan hydrochloride/hyaluronic acid nanoparticles coated by mPEG as long-circulating nanocarriers for systemic delivery of mitoxantrone. Int J Biol Macromol 2018; 113:345-353. [DOI: 10.1016/j.ijbiomac.2018.02.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022]
|
30
|
Lollo G, Ullio-Gamboa G, Fuentes E, Matha K, Lautram N, Benoit JP. In vitro anti-cancer activity and pharmacokinetic evaluation of curcumin-loaded lipid nanocapsules. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:859-867. [PMID: 30033321 DOI: 10.1016/j.msec.2018.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 05/16/2018] [Accepted: 06/09/2018] [Indexed: 10/28/2022]
Abstract
In the present work, lipid nanocapsules (LNC) for curcumin (CCM) encapsulation have been developed and optimized. The objective was to increase drug cytotoxicity on 9L glioma cells and drug bioavailability following intravenous administration (IV). Using the phase inversion technique, we obtained 50 nm LNC loaded with CCM (4 and 6 mg/mL) and, due to the hydrophobic nature of the drug, the encapsulation efficiency was very high, being around 90%. Following 48 h of incubation with 9L cells, CCM-loaded LNC were able to reduce the viability of glioma cells resulting in significant twofold lower IC50 in comparison with the free drug solution. Moreover, CCM-loaded LNC induced both the apoptosis of 9L cells and a strong release of ATP. This suggests a cellular uptake of the LNC and an enhanced anti-proliferative effect. In order to evaluate any alteration in the pharmacokinetic behavior of the encapsulated drug, CCM-loaded LNC were injected IV into healthy rats, at a dose of 10 mg/kg. CCM pharmacokinetic studies were carried out quantifying the CCM concentration from the blood of rats, receiving either CCM-loaded LNC or free CCM solution as a control. The results demonstrated that loaded LNC exhibited a significantly higher AUC, Cmax and t1/2 in comparison with the control, while the clearance was strongly reduced. Globally, these results encouraged the use of CCM-loaded LNC to enhance the in vivo therapeutic activity of the drug after systemic administration.
Collapse
Affiliation(s)
- Giovanna Lollo
- MINT, Université d'Angers, INSERM U1066, CNRS UMR 6021, Angers F-49933, France; Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | | | - Edmundo Fuentes
- MINT, Université d'Angers, INSERM U1066, CNRS UMR 6021, Angers F-49933, France
| | - Kevin Matha
- MINT, Université d'Angers, INSERM U1066, CNRS UMR 6021, Angers F-49933, France
| | - Nolwenn Lautram
- MINT, Université d'Angers, INSERM U1066, CNRS UMR 6021, Angers F-49933, France
| | - Jean-Pierre Benoit
- MINT, Université d'Angers, INSERM U1066, CNRS UMR 6021, Angers F-49933, France.
| |
Collapse
|
31
|
Shevtsov M, Nikolaev B, Marchenko Y, Yakovleva L, Skvortsov N, Mazur A, Tolstoy P, Ryzhov V, Multhoff G. Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs). Int J Nanomedicine 2018; 13:1471-1482. [PMID: 29559776 PMCID: PMC5856030 DOI: 10.2147/ijn.s152461] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Glioblastoma is the most devastating primary brain tumor of the central nervous system in adults. Magnetic nanocarriers may help not only for a targeted delivery of chemotherapeutic agents into the tumor site but also provide contrast enhancing properties for diagnostics using magnetic resonance imaging (MRI). Methods Synthesized hybrid chitosan-dextran superparamagnetic nanoparticles (CS-DX-SPIONs) were characterized using transmission electron microscopy (TEM) and relaxometry studies. Nonlinear magnetic response measurements were employed for confirming the superparamagnetic state of particles. Following in vitro analysis of nanoparticles cellular uptake tumor targeting was assessed in the model of the orthotopic glioma in rodents. Results CS-DX-SPIONs nanoparticles showed a uniform diameter of 55 nm under TEM and superparamagentic characteristics as determined by T1 (spin-lattice relaxation time) and T2 (spin-spin relaxation time) proton relaxation times. Application of the chitosan increased the charge from +8.9 to +19.3 mV of the dextran-based SPIONs. The nonlinear magnetic response at second harmonic of CS-DX-SPIONs following the slow change of stationary magnetic fields with very low hysteresis evidenced superparamagnetic state of particles at ambient temperatures. Confocal microscopy and flow cytometry studies showed an enhanced internalization of the chitosan-based nanoparticles in U87, C6 glioma and HeLa cells as compared to dextran-coated particles. Cytotoxicity assay demonstrated acceptable toxicity profile of the synthesized nanoparticles up to a concentration of 10 μg/ml. Intravenously administered CS-DX-SPIONs in orthotopic C6 gliomas in rats accumulated in the tumor site as shown by high-resolution MRI (11.0 T). Retention of nanoparticles resulted in a significant contrast enhancement of the tumor image that was accompanied with a dramatic drop in T2 values (P<0.001). Subsequent histological studies proved the accumulation of the nanoparticles inside glioblastoma cells. Conclusion Hybrid chitosan-dextran magnetic particles demonstrated high MR contrast enhancing properties for the delineation of the brain tumor. Due to a significant retention of the particles in the tumor an application of the CS-DX-SPIONs could not only improve the tumor imaging but also could allow a targeted delivery of chemotherapeutic agents.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Department of Cell Biotechnology, Institute of Cytology of the Russian Academy of Sciences, St Petersburg, Russia.,Department of Radiation Immuno Oncology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany.,Department of Biotechnology, Pavlov First Saint Petersburg State Medical University, St Petersburg, Russia.,Department of Pediatric Neurosurgery, Polenov Russian Scientific Research Institute of Neurosurgery, St Petersburg, Russia
| | - Boris Nikolaev
- Department of Nanomedicine, Research Institute of Highly Pure Biopreparations, St Petersburg, Russia
| | - Yaroslav Marchenko
- Department of Nanomedicine, Research Institute of Highly Pure Biopreparations, St Petersburg, Russia
| | - Ludmila Yakovleva
- Department of Nanomedicine, Research Institute of Highly Pure Biopreparations, St Petersburg, Russia
| | - Nikita Skvortsov
- Department of Nanomedicine, Research Institute of Highly Pure Biopreparations, St Petersburg, Russia
| | - Anton Mazur
- Department of NMR, Saint Petersburg State University, St Petersburg, Russia
| | - Peter Tolstoy
- Department of NMR, Saint Petersburg State University, St Petersburg, Russia
| | - Vyacheslav Ryzhov
- Department of NMR, NRC "Kurchatov Institute", Petersburg Nuclear Physics Institute, Gatchina, Russia
| | - Gabriele Multhoff
- Department of Radiation Immuno Oncology, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
32
|
The effect of the molecular weight of hyaluronic acid on the physicochemical characterization of hyaluronic acid-curcumin conjugates and in vitro evaluation in glioma cells. Colloids Surf B Biointerfaces 2018; 165:45-55. [PMID: 29453085 DOI: 10.1016/j.colsurfb.2018.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/22/2022]
Abstract
In this study, a redox-sensitive glioma-targeting micelle system was designed to deliver curcumin (CUR) by conjugating it to hyaluronic acid (HA-s-s-CUR, HSC) via disulfide linkage. The effect of the molecular weight of HA on the physicochemical characteristics of HSC conjugates and their in vitro effects in glioma cells were also explored. These conjugates formed nano-scale micelles (209-926 nm) independently in aqueous solution. The micelles greatly increased the solubility of CUR and improved its stability, which is crucial for harnessing the therapeutic potential of this active molecule. The redox sensitivities of different HSC micelles were measured by using a dynamic light scattering method and in vitro release assay, which showed that the low (50 kDa) and medium molecular weight (200 kDa and 500 kD) HA-based conjugates were sensitive to GSH, whereas higher molecular weights (1000 kDa and 2000 kDa) did not show redox-sensitivity. Increased cytotoxicity and uptake of low and medium molecular weight-modified HSC conjugates by the glioma cells further confirmed that the sensitive micelles are more effective for intracellular drug delivery compared to the high molecular weight-modified HSC conjugates or the plain CUR. In summary, the molecular weight of HA affects the physicochemical attributes of HSC conjugates. Only HSC micelles made with HA molecules less than 500 kDa exhibit redox sensitivity.
Collapse
|
33
|
Skalickova S, Loffelmann M, Gargulak M, Kepinska M, Docekalova M, Uhlirova D, Stankova M, Fernandez C, Milnerowicz H, Ruttkay-Nedecky B, Kizek R. Zinc-Modified Nanotransporter of Doxorubicin for Targeted Prostate Cancer Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E435. [PMID: 29292780 PMCID: PMC5746925 DOI: 10.3390/nano7120435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/23/2017] [Accepted: 11/30/2017] [Indexed: 12/12/2022]
Abstract
This work investigated the preparation of chitosan nanoparticles used as carriers for doxorubicin for targeted cancer delivery. Prepared nanocarriers were stabilized and functionalized via zinc ions incorporated into the chitosan nanoparticle backbone. We took the advantage of high expression of sarcosine in the prostate cancer cells. The prostate cancer targeting was mediated by the AntiSar antibodies decorated surface of the nanocage. Formation of the chitosan nanoparticles was determined using a ninhydrin assay and differential pulse voltammetry. Obtained results showed the strong effect of tripolyphosphine on the nanoparticle formation. The zinc ions affected strong chitosan backbone coiling both in inner and outer chitosan nanoparticle structure. Zinc electrochemical signal depended on the level of the complex formation and the potential shift from -960 to -950 mV. Formed complex is suitable for doxorubicin delivery. It was observed the 20% entrapment efficiency of doxorubicin and strong dependence of drug release after 120 min in the blood environment. The functionality of the designed nanotransporter was proven. The purposed determination showed linear dependence in the concentration range of Anti-sarcosine IgG labeled gold nanoparticles from 0 to 1000 µg/mL and the regression equation was found to be y = 3.8x - 66.7 and R² = 0.99. Performed ELISA confirmed the ability of Anti-sarcosine IgG labeled chitosan nanoparticles with loaded doxorubicin to bind to the sarcosine molecule. Observed hemolytic activity of the nanotransporter was 40%. Inhibition activity of our proposed nanotransporter was evaluated to be 0% on the experimental model of S. cerevisiae. Anti-sarcosine IgG labeled chitosan nanoparticles, with loaded doxorubicin stabilized by Zn ions, are a perspective type of nanocarrier for targeted drug therapy managed by specific interaction with sarcosine and metallothionein for prostate cancer.
Collapse
Affiliation(s)
- Sylvie Skalickova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
| | - Martin Loffelmann
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
| | - Michael Gargulak
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
| | - Marta Kepinska
- Faculty of Pharmacy, Department of Biomedical and Environmental Analyses, Wroclaw Medical University, 50-556 Wrocław, Poland.
| | - Michaela Docekalova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
- Prevention Medicals s.r.o, Tovární 342, Butovice, 742-13 Studentka, Czech Republic.
| | - Dagmar Uhlirova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
- Prevention Medicals s.r.o, Tovární 342, Butovice, 742-13 Studentka, Czech Republic.
| | - Martina Stankova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
- Prevention Medicals s.r.o, Tovární 342, Butovice, 742-13 Studentka, Czech Republic.
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB10 7QB, UK.
| | - Halina Milnerowicz
- Faculty of Pharmacy, Department of Biomedical and Environmental Analyses, Wroclaw Medical University, 50-556 Wrocław, Poland.
| | - Branislav Ruttkay-Nedecky
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
| | - Rene Kizek
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, 61200 Brno, Czech Republic.
- Faculty of Pharmacy, Department of Biomedical and Environmental Analyses, Wroclaw Medical University, 50-556 Wrocław, Poland.
| |
Collapse
|