1
|
Chaoua S, Flahaut S, Cornu B, Hiligsmann S, Chaouche NK. Unlocking the potential of Algerian lignocellulosic biomass: exploring indigenous microbial diversity for enhanced enzyme and sugar production. Arch Microbiol 2024; 206:277. [PMID: 38789671 DOI: 10.1007/s00203-024-04011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Nowadays, natural resources like lignocellulosic biomass are gaining more and more attention. This study was conducted to analyse chemical composition of dried and ground samples (500 μm) of various Algerian bioresources including alfa stems (AS), dry palms (DP), olive pomace (OP), pinecones (PC), and tomato waste (TW). AS exhibited the lowest lignin content (3.60 ± 0.60%), but the highest cellulose (58.30 ± 2.06%), and hemicellulose (20.00 ± 3.07%) levels. DP, OP, and PC had around 30% cellulose, and 10% hemicellulose. OP had the highest lignin content (29.00 ± 6.40%), while TW contained (15.70 ± 2.67% cellulose, 13.70 ± 0.002% hemicellulose, and 17.90 ± 4.00% lignin). Among 91 isolated microorganisms, nine were selected for cellulase, xylanase, and/or laccase production. The ability of Bacillus mojavensis to produce laccase and cellulase, as well as B. safensis to produce cellulase and xylanase, is being reported for the first time. In submerged conditions, TW was the most suitable substrate for enzyme production. In this conditions, T. versicolor K1 was the only strain able to produce laccase (4,170 ± 556 U/L). Additionally, Coniocheata hoffmannii P4 exhibited the highest cellulase activity (907.62 ± 26.22 U/L), and B. mojavensis Y3 the highest xylanase activity (612.73 ± 12.73 U/L). T. versicolor K1 culture showed reducing sugars accumulation of 18.87% compared to initial concentrations. Sucrose was the predominant sugar detected by HPLC analysis (13.44 ± 0.02 g/L). Our findings suggest that T. versicolor K1 holds promise for laccase production, while TW represents a suitable substrate for sucrose production.
Collapse
Affiliation(s)
- Samah Chaoua
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine 1, Constantine, Algeria.
- Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Brussels, Belgium.
| | - Sigrid Flahaut
- Laboratoire de Microbiologie Appliquée, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Serge Hiligsmann
- Bioengineering Department, CELABOR Research Center, Herve, Belgium
| | - Noreddine Kacem Chaouche
- Laboratoire de Mycologie, de Biotechnologie et de l'Activité Microbienne (LaMyBAM), Département de Biologie Appliquée, Université des Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
2
|
Zhou Y, Sun Q, Teng C, Zhou M, Fan G, Qu P. Preparation and Improvement of Physicochemical and Functional Properties of Dietary Fiber from Corn Cob Fermented by Aspergillus niger. J Microbiol Biotechnol 2024; 34:330-339. [PMID: 38073331 PMCID: PMC10940746 DOI: 10.4014/jmb.2308.08010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 03/01/2024]
Abstract
Corn cobs were fermented with Aspergillus niger to produce soluble dietary fiber (SDF) of high quality and excellent food safety. In this work, the fermentation process was optimized by single-factor test and response surface methodology (RSM). The optimal fermentation conditions were determined to be a material-liquid ratio of 1:30, an inoculum concentration of 11%, a temperature of 32°C, a time of 6 days, and a shaking speed of 200 r/min. Under these conditions, the SDF yield of corn cob increased from 2.34% to 11.92%, and the ratio of soluble dietary fiber to total dietary fiber (SDF/TDF) reached 19.08%, meeting the requirements for high-quality dietary fiber (SDF/TDF of more than 10%). Scanning electron microscopy (SEM) and Fourier-transformed infrared spectroscopy (FT-IR) analysis revealed that the fermentation effectively degraded part of cellulose and hemicellulose, resulting in the formation of a loose and porous structure. After fermentation the water swelling capacity, water-holding capacity, and oil-holding capacity of the corn cob SDF were significantly improved and the adsorption capacity of glucose, cholesterol, and nitrite ions all increased by more than 20%. Moreover, the total phenolic content increased by 20.96%, which correlated with the higher antioxidant activity of SDF. Overall, the fermentation of corn cobs by A. niger increased the yield and enhanced the functional properties of dietary fiber (DF) as well.
Collapse
Affiliation(s)
- Yadi Zhou
- School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
| | - Qijie Sun
- School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
| | - Chao Teng
- Key Laboratory of Green Manufacturing and Synthetic Biology of Food Bioactive Substances, China General Chamber of Commerce, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
- School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
| | - Mingchun Zhou
- School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
| | - Guangsen Fan
- Key Laboratory of Green Manufacturing and Synthetic Biology of Food Bioactive Substances, China General Chamber of Commerce, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
- School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
| | - Penghui Qu
- School of Food and Health, Beijing Technology and Business University, No. 11 Fucheng Street, Haidian District, Beijing 100084, P.R. China
| |
Collapse
|
3
|
Tian S, Chu Q, Ma S, Ma H, Song H. Dietary Fiber and Its Potential Role in Obesity: A Focus on Modulating the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14853-14869. [PMID: 37815013 DOI: 10.1021/acs.jafc.3c03923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Dietary fiber is a carbohydrate polymer with ten or more monomeric units that are resistant to digestion by human digestive enzymes, and it has gained widespread attention due to its significant role in health improvement through regulating gut microbiota. In this review, we summarized the interaction between dietary fiber, gut microbiota, and obesity, and the beneficial effects of dietary fiber on obesity through the modulation of microbiota, such as modifying selective microbial composition, producing starch-degrading enzymes, improving gut barrier function, reducing the inflammatory response, reducing trimethylamine N-oxide, and promoting the production of gut microbial metabolites (e.g., short chain fatty acids, bile acids, ferulic acid, and succinate). In addition, factors affecting the gut microbiota composition and metabolites by dietary fiber (length of the chain, monosaccharide composition, glycosidic bonds) were also concluded. Moreover, strategies for enhancing the biological activity of dietary fiber (fermentation technology, ultrasonic modification, nanotechnology, and microfluidization) were subsequently discussed. This review may provide clues for deeply exploring the structure-activity relationship between dietary fiber and antiobesity properties by targeting specific gut microbiota.
Collapse
Affiliation(s)
- Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shaotong Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Huan Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| |
Collapse
|
4
|
Li XJ, Li Q, Zhan XX, Zhang YJ, Xiong GL, Zheng JY. Expression and characterization of a thermostable lipase from Thermomyces dupontii. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Zhang J, Liu S, Sun H, Jiang Z, Zhou Z, Han X, Zhou Y, Sun H, Zhou W, Mao J. Enzyme Production Potential of Penicillium oxalicum M1816 and Its Application in Ferulic Acid Production. Foods 2021; 10:2577. [PMID: 34828858 PMCID: PMC8621443 DOI: 10.3390/foods10112577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
The present study focused on isolating an efficient enzyme production microorganism for ferulic acid (FA) production from wheat bran. A wild-type cellulase-, xylanase-, and feruloyl esterase-producing strain was isolated and identified as Penicillium oxalicum M1816. The genome was sequenced and assembled into 30.5 Mb containing 8301 predicted protein-coding genes. In total, 553 genes were associated with carbohydrate metabolism. Genomic CAZymes analysis indicated that P. oxalicum M1816, comprising 39 cellulolytic enzymes and 111 hemicellulases (including 5 feruloyl esterase genes), may play a vital role in wheat bran degradation and FA production. The crude enzyme of strain M1816 could release 1.85 ± 0.08 mg·g-1 FA from de-starched wheat bran (DSWB) at 12 h, which was significantly higher than other commercial enzymes. Meanwhile, when the strain M1816 was cultured in medium supplemented with DSWB, up to 92.89% of the total alkali-extractable FA was released. The process parameters of solid-state fermentation were optimized to enhance enzyme production. The optimized wheat bran Qu of P. oxalicum M1816 was applied to huangjiu fermentation, and the FA content was increased 12.4-fold compared to the control group. These results suggest that P. oxalicum M1816 is a good candidate for the development of fermented foods bio-fortified with FA.
Collapse
Affiliation(s)
- Jing Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (S.L.); (H.S.); (Z.J.); (Z.Z.); (X.H.)
| | - Shuangping Liu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (S.L.); (H.S.); (Z.J.); (Z.Z.); (X.H.)
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, (Shaoxing) Industrial Technology Research Institute, Jiangnan University, Shaoxing 312000, China;
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD., Shaoxing 312000, China; (Y.Z.); (H.S.)
| | - Hailong Sun
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (S.L.); (H.S.); (Z.J.); (Z.Z.); (X.H.)
| | - Zhengfei Jiang
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (S.L.); (H.S.); (Z.J.); (Z.Z.); (X.H.)
| | - Zhilei Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (S.L.); (H.S.); (Z.J.); (Z.Z.); (X.H.)
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, (Shaoxing) Industrial Technology Research Institute, Jiangnan University, Shaoxing 312000, China;
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD., Shaoxing 312000, China; (Y.Z.); (H.S.)
| | - Xiao Han
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (S.L.); (H.S.); (Z.J.); (Z.Z.); (X.H.)
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, (Shaoxing) Industrial Technology Research Institute, Jiangnan University, Shaoxing 312000, China;
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD., Shaoxing 312000, China; (Y.Z.); (H.S.)
| | - Yongxiang Zhou
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD., Shaoxing 312000, China; (Y.Z.); (H.S.)
| | - Honggen Sun
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD., Shaoxing 312000, China; (Y.Z.); (H.S.)
| | - Weibiao Zhou
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, (Shaoxing) Industrial Technology Research Institute, Jiangnan University, Shaoxing 312000, China;
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117542, Singapore
| | - Jian Mao
- National Engineering Laboratory for Cereal Fermentation Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (S.L.); (H.S.); (Z.J.); (Z.Z.); (X.H.)
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, (Shaoxing) Industrial Technology Research Institute, Jiangnan University, Shaoxing 312000, China;
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD., Shaoxing 312000, China; (Y.Z.); (H.S.)
| |
Collapse
|
6
|
Gao H, Lu C, Wang H, Wang L, Yang Y, Jiang T, Li S, Xu D, Wu L. Production exopolysaccharide from Kosakonia cowanii LT-1 through solid-state fermentation and its application as a plant growth promoter. Int J Biol Macromol 2020; 150:955-964. [DOI: 10.1016/j.ijbiomac.2019.10.209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/05/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023]
|
7
|
Chemical-free pretreatment of unwashed oil palm empty fruit bunch by using locally isolated fungus (Schizophyllum commune ENN1) for delignification. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Wang YC, Zhao N, Ma JW, Liu J, Yan QJ, Jiang ZQ. High-level expression of a novel α-amylase from Thermomyces dupontii in Pichia pastoris and its application in maltose syrup production. Int J Biol Macromol 2019; 127:683-692. [DOI: 10.1016/j.ijbiomac.2019.01.162] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
|
9
|
Li L, Li H, Yan B, Yu S. Preparation of a reversible soluble-insoluble β-d-Glucosidase with perfect stability and activity. J Biotechnol 2019; 291:46-51. [DOI: 10.1016/j.jbiotec.2018.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
|
10
|
Mayer-Laigle C, Blanc N, Rajaonarivony RK, Rouau X. Comminution of Dry Lignocellulosic Biomass, a Review: Part I. From Fundamental Mechanisms to Milling Behaviour. Bioengineering (Basel) 2018; 5:E41. [PMID: 29865229 PMCID: PMC6027489 DOI: 10.3390/bioengineering5020041] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 11/22/2022] Open
Abstract
The comminution of lignocellulosic biomass is a key operation for many applications as bio-based materials, bio-energy or green chemistry. The grinder used can have a significant impact on the properties of the ground powders, of those of the end-products and on the energy consumption. Since several years, the milling of lignocellulosic biomass has been the subject of numerous studies most often focused on specific materials and/or applications but there is still a lack of generic knowledge about the relation between the histological structure of the raw materials, the milling technologies and the physical and chemical properties of the powders. This review aims to point out the main process parameters and plant raw material properties that influence the milling operation and their consequences on the properties of ground powders and on the energy consumption during the comminution.
Collapse
Affiliation(s)
- Claire Mayer-Laigle
- UMR Ingénierie des Agropolymères et des Technologies Emergentes (IATE), University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
| | - Nicolas Blanc
- UMR Ingénierie des Agropolymères et des Technologies Emergentes (IATE), University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
| | - Rova Karine Rajaonarivony
- UMR Ingénierie des Agropolymères et des Technologies Emergentes (IATE), University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
| | - Xavier Rouau
- UMR Ingénierie des Agropolymères et des Technologies Emergentes (IATE), University of Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
| |
Collapse
|
11
|
Oh JM, Lee JP, Baek SC, Kim SG, Jo YD, Kim J, Kim H. Characterization of two extracellular β-glucosidases produced from the cellulolytic fungus Aspergillus sp. YDJ216 and their potential applications for the hydrolysis of flavone glycosides. Int J Biol Macromol 2018; 111:595-603. [PMID: 29339289 DOI: 10.1016/j.ijbiomac.2018.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/29/2017] [Accepted: 01/12/2018] [Indexed: 01/12/2023]
Abstract
A cellulolytic fungus YDJ216 was isolated from a compost and identified as an Aspergillus sp. strain. Two extracellular β-glucosidases, BGL1 and BGL2, were purified using ultrafiltration, ammonium sulfate fractionation, and High-Q chromatography. Molecular masses of BGL1 and BGL2 were estimated to be 97 and 45 kDa, respectively, by SDS-PAGE. The two enzymes eluted as one peak at 87 kDa by Sephacryl S-200 chromatography, and located at similar positions in a zymogram after intact gel electrophoresis, suggesting BGL1 and BGL2 might be monomeric and dimeric, respectively. Both enzymes showed similar enzymatic properties; they were optimally active at pH 4.0-4.5 and 60 °C, and had similar half-lives at 70 °C. Two enzymes also preferred p-nitrophenyl glucose (pNPG) with the same Km and hardly hydrolyzed cellobiose, suggesting both enzymes are aryl β-glucosidases. However, Vmax for pNPG of BGL1 (953.2 U/mg) was much higher than those of BGL2 (66.5U/mg) and other β-glucosidases reported. When tilianin (a flavone glycoside of acacetin) was reacted with both enzymes, inhibitory activity for monoamine oxidase, relating to oxidation of neurotransmitter amines, was increased closely to the degree obtained by acacetin. These results suggest that BGL1 and BGL2 could be used to hydrolyze flavone glycosides to improve their inhibitory activities.
Collapse
Affiliation(s)
- Jong Min Oh
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jae Pil Lee
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seung Cheol Baek
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seul Gi Kim
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yang Do Jo
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jungho Kim
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hoon Kim
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea; Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|