1
|
Alonci G, Boussard A, Savona M, Cordella F, Angelici G, Mocchi R, Sommatis S, Monticelli D. A LC-QTOF Method for the Determination of PEGDE Residues in Dermal Fillers. Gels 2023; 9:gels9050409. [PMID: 37233001 DOI: 10.3390/gels9050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Hyaluronic acid is one of the most important ingredients in dermal fillers, where it is often cross-linked to gain more favorable rheological properties and to improve the implant duration. Poly(ethylene glycol) diglycidyl ether (PEGDE) has been recently introduced as a crosslinker because of its very similar chemical reactivity with the most-used crosslinker BDDE, while giving special rheological properties. Monitoring the amount of the crosslinker residues in the final device is always necessary, but in the case of PEGDE, no methods are available in literature. Here, we present an HPLC-QTOF method, validated according to the guidelines of the International Council on Harmonization, which enables the efficient routine examination of the PEGDE content in HA hydrogels.
Collapse
Affiliation(s)
| | - Anna Boussard
- Matex Lab Switzerland SA, 1228 Plan-les-Ouates, Switzerland
| | - Martina Savona
- Matex Lab Switzerland SA, 1228 Plan-les-Ouates, Switzerland
| | - Fabiana Cordella
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Gaetano Angelici
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Roberto Mocchi
- UB-CARE S.r.l., Spin-Off University of Pavia, Via della Scienza 12, 27100 Pavia, Italy
| | - Sabrina Sommatis
- UB-CARE S.r.l., Spin-Off University of Pavia, Via della Scienza 12, 27100 Pavia, Italy
| | - Damiano Monticelli
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy
| |
Collapse
|
2
|
Bedini E, Cassese E, D'Agostino A, Cammarota M, Frezza MA, Lepore M, Portaccio M, Schiraldi C, La Gatta A. Self-esterified hyaluronan hydrogels: Advancements in the production with positive implications in tissue healing. Int J Biol Macromol 2023; 236:123873. [PMID: 36870627 DOI: 10.1016/j.ijbiomac.2023.123873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/16/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Hyaluronan-(HA) short half-life in vivo limits its benefits in tissue repair. Self-esterified-HA is of great interest because it progressively releases HA, promoting tissue-regeneration longer than the unmodified-polymer. Here, the 1-ethyl-3-(3-diethylaminopropyl)carbodiimide(EDC)-hydroxybenzotriazole(HOBt) carboxyl-activating-system was evaluated for self-esterifying HA in the solid state. The aim was to propose an alternative to the time-consuming, conventional reaction of quaternary-ammonium-salts of HA with hydrophobic activating-systems in organic media, and to the EDC-mediated reaction, limited by by-product formation. Additionally, we aimed to obtain derivatives releasing defined molecular-weight(MW)-HA that would be valuable for tissue renewal. A 250 kDa-HA(powder/sponge) was reacted with increasing EDC/HOBt amounts. HA-modification was investigated through Size-Exclusion-Chromatography-Triple-Detector-Array-analyses, FT-IR/1H NMR and the products(XHAs) extensively characterized. Compared to conventional protocols, the set procedure is more efficient, avoids side-reactions, allows for an easier processing to diverse clinically-usable 3D-forms, leads to products gradually releasing HA under physiological conditions with the possibility to tune the MW of the biopolymer-released. Finally, the XHAs exhibit sound stability to Bovine-Testicular-Hyaluronidase, hydration/mechanical properties suitable for wound-dressings, with improvements over available matrices, and prompt in vitro wound-regeneration, comparably to linear-HA. To the best of our knowledge, the procedure is the first valid alternative to conventional protocols for HA self-esterification with advances in the process itself and in product performance.
Collapse
Affiliation(s)
- Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, I-80126 Naples, Italy
| | - Elisabetta Cassese
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Antonella D'Agostino
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Marcella Cammarota
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Maria Assunta Frezza
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Maria Lepore
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Marianna Portaccio
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Annalisa La Gatta
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
3
|
3D Bioprinting of Smart Oxygen-Releasing Cartilage Scaffolds. J Funct Biomater 2022; 13:jfb13040252. [PMID: 36412893 PMCID: PMC9680294 DOI: 10.3390/jfb13040252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Three-dimensional bioprinting is a powerful technique for manufacturing improved engineered tissues. Three-dimensional bioprinted hydrogels have significantly advanced the medical field to repair cartilage tissue, allowing for such constructs to be loaded with different components, such as cells, nanoparticles, and/or drugs. Cartilage, as an avascular tissue, presents extreme difficulty in self-repair when it has been damaged. In this way, hydrogels with optimal chemical and physical properties have been researched to respond to external stimuli and release various bioactive agents to further promote a desired tissue response. For instance, methacryloyl gelatin (GelMA) is a type of modified hydrogel that allows for the encapsulation of cells, as well as oxygen-releasing nanoparticles that, in the presence of an aqueous medium and through controlled porosity and swelling, allow for internal and external environmental exchanges. This review explores the 3D bioprinting of hydrogels, with a particular focus on GelMA hydrogels, to repair cartilage tissue. Recent advances and future perspectives are described.
Collapse
|
4
|
Evaluation of Adverse Effects of Resorbable Hyaluronic Acid Fillers: Determination of Macrophage Responses. Int J Mol Sci 2022; 23:ijms23137275. [PMID: 35806280 PMCID: PMC9266407 DOI: 10.3390/ijms23137275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 12/01/2022] Open
Abstract
Resorbable tissue fillers for aesthetic purposes can induce severe complications including product migration, late swelling, and inflammatory reactions. The relation between product characteristics and adverse effects is not well understood. We hypothesized that the degree of cross-linking hyaluronic acid (HA) fillers was associated with the occurrence of adverse effects. Five experimental HA preparations similar to HA fillers were synthesized with an increasing degree of cross-linking. Furthermore, a series of commercial fillers (Perfectha®) was obtained that differ in degradation time based on the size of their particulate HA components. Cytotoxic responses and cytokine production by human THP-1-derived macrophages exposed to extracts of the evaluated resorbable HA fillers were absent to minimal. Gene expression analysis of the HA-exposed macrophages revealed the responses related to cell cycle control and immune reactivity. Our results could not confirm the hypothesis that the level of cross-linking in our experimental HA fillers or the particulate size of commercial HA fillers is related to the induced biological responses. However, the evaluation of cytokine induction and gene expression in macrophages after biomaterial exposure presents promising opportunities for the development of methods to identify cellular processes that may be predictive for biomaterial-induced responses in patients.
Collapse
|
5
|
Hafezi M, Nouri Khorasani S, Zare M, Esmaeely Neisiany R, Davoodi P. Advanced Hydrogels for Cartilage Tissue Engineering: Recent Progress and Future Directions. Polymers (Basel) 2021; 13:4199. [PMID: 34883702 PMCID: PMC8659862 DOI: 10.3390/polym13234199] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Cartilage is a tension- and load-bearing tissue and has a limited capacity for intrinsic self-healing. While microfracture and arthroplasty are the conventional methods for cartilage repair, these methods are unable to completely heal the damaged tissue. The need to overcome the restrictions of these therapies for cartilage regeneration has expanded the field of cartilage tissue engineering (CTE), in which novel engineering and biological approaches are introduced to accelerate the development of new biomimetic cartilage to replace the injured tissue. Until now, a wide range of hydrogels and cell sources have been employed for CTE to either recapitulate microenvironmental cues during a new tissue growth or to compel the recovery of cartilaginous structures via manipulating biochemical and biomechanical properties of the original tissue. Towards modifying current cartilage treatments, advanced hydrogels have been designed and synthesized in recent years to improve network crosslinking and self-recovery of implanted scaffolds after damage in vivo. This review focused on the recent advances in CTE, especially self-healing hydrogels. The article firstly presents the cartilage tissue, its defects, and treatments. Subsequently, introduces CTE and summarizes the polymeric hydrogels and their advances. Furthermore, characterizations, the advantages, and disadvantages of advanced hydrogels such as multi-materials, IPNs, nanomaterials, and supramolecular are discussed. Afterward, the self-healing hydrogels in CTE, mechanisms, and the physical and chemical methods for the synthesis of such hydrogels for improving the reformation of CTE are introduced. The article then briefly describes the fabrication methods in CTE. Finally, this review presents a conclusion of prevalent challenges and future outlooks for self-healing hydrogels in CTE applications.
Collapse
Affiliation(s)
- Mahshid Hafezi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mohadeseh Zare
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK;
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 96179-76487, Iran;
| | - Pooya Davoodi
- School of Pharmacy and Bioengineering, Hornbeam Building, Keele University, Staffordshire ST5 5BG, UK
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, Keele University, Staffordshire ST4 7QB, UK
| |
Collapse
|
6
|
Xu Q, Torres JE, Hakim M, Babiak PM, Pal P, Battistoni CM, Nguyen M, Panitch A, Solorio L, Liu JC. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 146:100641. [PMID: 34483486 PMCID: PMC8409465 DOI: 10.1016/j.mser.2021.100641] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.
Collapse
Affiliation(s)
- Qinghua Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mazin Hakim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pallabi Pal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Nguyen
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
7
|
Hyaluronan and Derivatives: An In Vitro Multilevel Assessment of Their Potential in Viscosupplementation. Polymers (Basel) 2021; 13:polym13193208. [PMID: 34641024 PMCID: PMC8512809 DOI: 10.3390/polym13193208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022] Open
Abstract
In this research work, viscosupplements based on linear, derivatized, crosslinked and complexed HA forms were extensively examined, providing data on the hydrodynamic parameters for the water-soluble-HA-fraction, rheology, sensitivity to enzymatic hydrolysis and capacity to modulate specific biomarkers’ expression in human pathological chondrocytes and synoviocytes. Soluble HA ranged from 0 to 32 mg/mL and from 150 to 1330 kDa MW. The rheological behavior spanned from purely elastic to viscoelastic, suggesting the diversity of the categories that are suitable for restoring specific/different features of the healthy synovial fluid. The rheological parameters were reduced in a diverse manner upon dilution and hyaluronidases action, indicating different durations of the viscosupplementation effect. Bioactivity was found for all the samples, increasing the expression of different matrix markers (e.g., hyaluronan-synthase); however, the hybrid cooperative complexes performed better in most of the experiments. Hybrid cooperative complexes improved COLII mRNA expression (~12-fold increase vs. CTR), proved the most effective at preserving cell phenotype. In addition, in these models, the HA samples reduced inflammation. IL-6 was down-regulated vs. CTR by linear and chemically modified HA, and especially by hybrid complexes. The results represent the first comprehensive panel of data directly comparing the diverse HA forms for intra-articular injections and provide valuable information for tailoring products’ clinical use as well as for designing new, highly performing HA-formulations that can address specific needs.
Collapse
|
8
|
An S, Choi S, Min S, Cho SW. Hyaluronic Acid-based Biomimetic Hydrogels for Tissue Engineering and Medical Applications. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0343-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Alonci G, Mocchi R, Sommatis S, Capillo MC, Liga E, Janowska A, Nachbaur L, Zerbinati N. Physico-Chemical Characterization and In Vitro Biological Evaluation of a Bionic Hydrogel Based on Hyaluronic Acid and l-Lysine for Medical Applications. Pharmaceutics 2021; 13:pharmaceutics13081194. [PMID: 34452157 PMCID: PMC8400252 DOI: 10.3390/pharmaceutics13081194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
Hyaluronic acid (HA) is an endogenous polysaccharide, whose hydrogels have been used in medical applications for decades. Here, we present a technology platform for stabilizing HA with a biocrosslinker, the amino acid l-Lysine, to manufacture bionic hydrogels for regenerative medicine. We synthetized bionic hydrogels with tailored composition with respect to HA concentration and degree of stabilization depending on the envisaged medical use. The structure of the hydrogels was assessed by microscopy and rheology, and the resorption behavior through enzymatic degradation with hyaluronidase. The biological compatibility was evaluated in vitro with human dermal fibroblast cell lines. HA bionic hydrogels stabilized with lysine show a 3D network structure, with a rheological profile that mimics biological matrixes, as a harmless biodegradable substrate for cell proliferation and regeneration and a promising candidate for wound healing and other medical applications.
Collapse
Affiliation(s)
- Giuseppe Alonci
- Qventis GmbH, 16761 Hennigsdorf, Germany;
- Matex Lab Switzerland SA, 1228 Plan-les-Ouates, Switzerland
| | - Roberto Mocchi
- UB—CARE S.r.l.-Spin-off University of Pavia, 27100 Pavia, Italy; (R.M.); (S.S.); (M.C.C.); (E.L.)
| | - Sabrina Sommatis
- UB—CARE S.r.l.-Spin-off University of Pavia, 27100 Pavia, Italy; (R.M.); (S.S.); (M.C.C.); (E.L.)
| | - Maria Chiara Capillo
- UB—CARE S.r.l.-Spin-off University of Pavia, 27100 Pavia, Italy; (R.M.); (S.S.); (M.C.C.); (E.L.)
| | - Elsa Liga
- UB—CARE S.r.l.-Spin-off University of Pavia, 27100 Pavia, Italy; (R.M.); (S.S.); (M.C.C.); (E.L.)
| | - Agata Janowska
- Department of Dermatology, University of Pisa, 56121 Pisa, Italy;
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Lidia Nachbaur
- Qventis GmbH, 16761 Hennigsdorf, Germany;
- Correspondence: (L.N.); (N.Z.)
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
- Correspondence: (L.N.); (N.Z.)
| |
Collapse
|
10
|
La Gatta A, Schiraldi C, Zaccaria G, Cassuto D. Hyaluronan Dermal Fillers: Efforts Towards a Wider Biophysical Characterization and the Correlation of the Biophysical Parameters to the Clinical Outcome. Clin Cosmet Investig Dermatol 2020; 13:87-97. [PMID: 32095081 PMCID: PMC6995295 DOI: 10.2147/ccid.s220227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
Abstract
Introduction Hyaluronic Acid (HA) fillers are among the most used products in cosmetic medicine. Companies offer different formulations to allow full facial treatment and/or remodeling. Gels are being studied to establish the biophysical properties behind the specific clinical use and a correlation between the gel biophysical properties and their clinical performance. Clinicians' awareness is growing about the potential benefit deriving from such biophysical characterization. Aim The Aliaxin® line of HA dermal fillers is the object of this study. The study aimed to widen the biophysical characterization of these gels by investigating a variety of properties to better support their optimal use. Further, we aimed to provide some clinical findings to gain a deeper insight into the correlation between filler features and clinical outcome. Methods The four gels of the line were investigated, for the first time, for their cohesivity and stability to Reactive Oxygen Species (ROS). Additional secondary rheological parameters; evidence of relative water-uptake ability; and some clinical findings on product safety, palpability and duration of the aesthetic effect are provided. Results and conclusion The gels proved highly cohesive and sensitive to ROS action with stability declining with the decrease in the overall gel elasticity. The G* and complex viscosity values at clinically relevant frequencies and gel water-uptake ability are consistent with the relative clinical indication related to gel projection and hydration capacity. Clinical outcomes showed the safety of the products and a perception of palpability well correlating with the cohesive/viscosity properties of the gels. A similar duration of the aesthetic effect (up to 1 year) was observed despite the diverse in vitro gel stability. The results broaden our knowledge of these gels and may contribute to optimize their clinical use towards the improvement of patient safety and satisfaction. Initial clinical observation indicated that gel biophysical properties allow for a reliable prediction of gel palpability, while in vitro data on gel stability cannot be related to the duration of the observed skin improvement. The latter finding further corroborates the idea of a skin restoration process activated by the gels besides the physical volumetric action.
Collapse
Affiliation(s)
- Annalisa La Gatta
- Department Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, School of Medicine, University of Campania "L. Vanvitelli", Naples 80138, Italy
| | - Chiara Schiraldi
- Department Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, School of Medicine, University of Campania "L. Vanvitelli", Naples 80138, Italy
| | | | | |
Collapse
|
11
|
La Gatta A, Salzillo R, Catalano C, Pirozzi AVA, D'Agostino A, Bedini E, Cammarota M, De Rosa M, Schiraldi C. Hyaluronan-based hydrogels via ether-crosslinking: Is HA molecular weight an effective means to tune gel performance? Int J Biol Macromol 2019; 144:94-101. [PMID: 31794831 DOI: 10.1016/j.ijbiomac.2019.11.227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Hyaluronan (HA)-based hydrogels obtained by crosslinking the biopolymer via ether bonds are widely used in clinical practice. There is interest in improving the design of these gels to match specific properties. Here, the possibility to tune HA-hydrogel behavior by adjusting the molecular weight distribution of the biopolymer undergoing crosslinking was investigated. Three HA samples (500, 1100 and 1600 kDa) underwent reaction with 1,4-butandioldiglycidyl-ether(BDDE) under reported conditions and the crosslinked products were characterized for chemical modification extent, swelling, rheological behavior, cohesivity, sensitivity to enzymatic degradation and effect on Human Dermal Fibroblasts (HDF). HA hydrolysis, under the highly alkaline crosslinking conditions, was also studied for the first time. The main achievements are that 1) varying HA chain length affects hydrogel behavior less than expected, due to the de-polymerization occurring alongside crosslinking, that reduces the differences in sample size 2) when differences in chain length persist notwithstanding hydrolysis, lowering HA size is a means to prepare more concentrated formulations, expected to exhibit longer duration and better cohesivity in vivo, while retaining a certain rigidity, preserving biocompatibility and slightly influencing HDF behavior in relation to CollagenI production. The study shed light on aspects concerning BDDE-HA gel manufacturing and contributed to the improvement of their design.
Collapse
Affiliation(s)
- Annalisa La Gatta
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Rosanna Salzillo
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Claudia Catalano
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Anna Virginia Adriana Pirozzi
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Antonella D'Agostino
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, I-80126 Naples, Italy"
| | - Marcella Cammarota
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Mario De Rosa
- Centro Regionale di Competenza in Biotecnologie Industriali BioTekNet S.C.p.A. c/o University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
12
|
Pérez-Madrigal MM, Shaw JE, Arno MC, Hoyland JA, Richardson SM, Dove AP. Robust alginate/hyaluronic acid thiol-yne click-hydrogel scaffolds with superior mechanical performance and stability for load-bearing soft tissue engineering. Biomater Sci 2019; 8:405-412. [PMID: 31729512 DOI: 10.1039/c9bm01494b] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydrogels based on hyaluronic acid (HA) exhibit great potential as tissue engineering (TE) scaffolds as a consequence of their unique biological features. Herein, we examine how the advantages of two natural polymers (i.e. HA and alginate) are combined with the efficiency and rapid nature of the thiol-yne click chemistry reaction to obtain biocompatible matrices with tailored properties. Our injectable click-hydrogels revealed excellent mechanical performance, long-term stability, high cytocompatibility and adequate stiffness for the targeted application. This simple approach yielded HA hydrogels with characteristics that make them suitable for applications as 3D scaffolds to support and promote soft tissue regeneration.
Collapse
Affiliation(s)
| | - Joshua E Shaw
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Maria C Arno
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK.
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK and NIHR Manchester Biomedical Research Centre, Central Manchester Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Andrew P Dove
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
13
|
Yang D, Xiao J, Wang B, Li L, Kong X, Liao J. The immune reaction and degradation fate of scaffold in cartilage/bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109927. [DOI: 10.1016/j.msec.2019.109927] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023]
|
14
|
Li L, Yu F, Zheng L, Wang R, Yan W, Wang Z, Xu J, Wu J, Shi D, Zhu L, Wang X, Jiang Q. Natural hydrogels for cartilage regeneration: Modification, preparation and application. J Orthop Translat 2019; 17:26-41. [PMID: 31194006 PMCID: PMC6551352 DOI: 10.1016/j.jot.2018.09.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 01/19/2023] Open
Abstract
Hydrogels, consisting of hydrophilic polymers, can be used as films, scaffolds, nanoparticles and drug carriers. They are one of the hot research topics in material science and tissue engineering and are widely used in the field of biomedical and biological sciences. Researchers are seeking for a type of material that is similar to human tissues and can partially replace human tissues or organs. The hydrogel has brought possibility to solve this problem. It has good biocompatibility and biodegradability. After entering the body, it does not cause immune and toxic reactions. The degradation time can be controlled, and the degradation products are nontoxic and nonimmunogenic; the final metabolites can be excreted outside the body. Owing to the lack of blood vessels and poor migration ability of chondrocytes, the self-healing ability of damaged cartilage is limited. Tissue engineering has brought a new direction for the regeneration of cartilage. Drug carriers and scaffolds made of hydrogels are widely used in cartilage tissue engineering. The present review introduces the natural hydrogels, which are often used for cartilage tissue engineering with respect to synthesis, modification and application methods. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This review introduces the natural hydrogels that are often used in cartilage tissue engineering with respect to synthesis, modification and application methods. Furthermore, the essential concepts and recent discoveries were demonstrated to illustrate the achievable goals and the current limitations. In addition, we propose the putative challenges and directions for the use of natural hydrogels in cartilage regeneration.
Collapse
Affiliation(s)
- Lan Li
- School of Mechanical Engineering, Southeast University, Nanjing, China
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Fei Yu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Liming Zheng
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Rongliang Wang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Wenqiang Yan
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Zixu Wang
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jia Xu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jianxiang Wu
- Drum Tower of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Liya Zhu
- School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, China
| | - Xingsong Wang
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Tang Z, Jiang F, Zhang Y, Zhang Y, Huang X, Wang Y, Zhang D, Ni N, Liu F, Luo M, Fan X, Zhang W, Gu P. Mussel-inspired injectable hydrogel and its counterpart for actuating proliferation and neuronal differentiation of retinal progenitor cells. Biomaterials 2018; 194:57-72. [PMID: 30583149 DOI: 10.1016/j.biomaterials.2018.12.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022]
Abstract
Biomaterials-mediated retinal progenitor cell (RPC)-based transplantation therapy has shown substantial potential for retinal degeneration (RD), but it is limited by the poor RPC survival, proliferation and differentiation. Herein, the gelatin-hyaluronic acid (Gel-HA)-based hydrogels formed via moderate Michael-type addition reaction with or without the introduction of mussel-inspired polydopamine (PDA), i.e. Gel-HA-PDA and its counterpart Gel-HA hydrogels are developed, and their effects on the biological behaviour of RPCs, including adhesion, survival, proliferation, differentiation, delivery and migration are investigated. The hybrid hydrogels can adopt the intricate structure of the retina with suitable mechanical strength, degradation rate and biological activity to support cellular adhesion, survival and delivery. Meanwhile, Gel-HA hydrogel can remarkably promote RPC proliferation with much larger cell clusters, while Gel-HA-PDA hydrogel significantly enhances RPC adhesion and migration, and directs RPCs to preferentially differentiate toward retinal neurons such as photoreceptors (the most crucial cell-type for RD treatment), which is mainly induced by the activation of integrin α5β1-phosphatidylinositol-3-kinase (PI3K) pathway. This study demonstrates that Gel-HA hydrogel possesses great potential for RPC proliferation, while mussel-inspired PDA-modified Gel-HA hydrogel with superior biocompatibility can significantly promote RPC neuronal differentiation, providing new insights for developing biomedical materials applied for RPC-based transplantation therapy.
Collapse
Affiliation(s)
- Zhimin Tang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Fang Jiang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yi Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Xiaolin Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Yuyao Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Dandan Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Ni Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Feng Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Min Luo
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China.
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China.
| |
Collapse
|
16
|
Catanzano O, Soriente A, La Gatta A, Cammarota M, Ricci G, Fasolino I, Schiraldi C, Ambrosio L, Malinconico M, Laurienzo P, Raucci MG, Gomez d’Ayala G. Macroporous alginate foams crosslinked with strontium for bone tissue engineering. Carbohydr Polym 2018; 202:72-83. [DOI: 10.1016/j.carbpol.2018.08.086] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/03/2018] [Accepted: 08/20/2018] [Indexed: 01/23/2023]
|
17
|
Keizers PH, Vanhee C, van den Elzen EM, de Jong WH, Venhuis BJ, Hodemaekers HM, Schwillens P, Lensen DG. A high crosslinking grade of hyaluronic acid found in a dermal filler causing adverse effects. J Pharm Biomed Anal 2018; 159:173-178. [DOI: 10.1016/j.jpba.2018.06.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 11/30/2022]
|