1
|
Maiti S, Maji B, Badwaik H, Pandey MM, Lakra P, Yadav H. Oxidized ionic polysaccharide hydrogels: Review on derived scaffolds characteristics and tissue engineering applications. Int J Biol Macromol 2024; 280:136089. [PMID: 39357721 DOI: 10.1016/j.ijbiomac.2024.136089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Polysaccharide-based hydrogels have gained prominence due to their non-toxicity, biocompatibility, and structural adaptability for constructing tissue engineering scaffolds. Polysaccharide crosslinking is necessary for hydrogel stability in vivo. The periodate oxidation enables the modification of native polysaccharide characteristics for wound healing and tissue engineering applications. It produces dialdehydes, which are used to crosslink biocompatible amine-containing macromolecules such as chitosan, gelatin, adipic acid dihydrazide, silk fibroin, and peptides via imine/hydrazone linkages. Crosslinked oxidized ionic polysaccharide hydrogels have been studied for wound healing, cardiac and liver tissue engineering, bone, cartilage, corneal tissue regeneration, abdominal wall repair, nucleus pulposus regeneration, and osteoarthritis. Several modified hydrogel systems have been synthesized using antibiotics and inorganic substances to improve porosity, mechanical and viscoelastic properties, desired swelling propensity, and antibacterial efficacy. Thus, the injectable hydrogels provide a host-tissue-mimetic environment with high cell adhesion and viability, making them appropriate for scarless wound healing and tissue engineering applications. This review describes the oxidation procedure for alginate, hyaluronic acid, gellan gum, pectin, xanthan gum and chitosan, as well as the characteristics of the resulting materials. Furthermore, a critical review of scientific advances in wound healing and tissue engineering applications has been provided.
Collapse
Affiliation(s)
- Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Hemant Badwaik
- Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Junwani, Bhilai, Chhattisgarh, India
| | - Murali Monohar Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Preeti Lakra
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Harsh Yadav
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| |
Collapse
|
2
|
Mascarenhas R, Hegde S, Manaktala N. Chitosan nanoparticle applications in dentistry: a sustainable biopolymer. Front Chem 2024; 12:1362482. [PMID: 38660569 PMCID: PMC11039901 DOI: 10.3389/fchem.2024.1362482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The epoch of Nano-biomaterials and their application in the field of medicine and dentistry has been long-lived. The application of nanotechnology is extensively used in diagnosis and treatment aspects of oral diseases. The nanomaterials and its structures are being widely involved in the production of medicines and drugs used for the treatment of oral diseases like periodontitis, oral carcinoma, etc. and helps in maintaining the longevity of oral health. Chitosan is a naturally occurring biopolymer derived from chitin which is seen commonly in arthropods. Chitosan nanoparticles are the latest in the trend of nanoparticles used in dentistry and are becoming the most wanted biopolymer for use toward therapeutic interventions. Literature search has also shown that chitosan nanoparticles have anti-tumor effects. This review highlights the various aspects of chitosan nanoparticles and their implications in dentistry.
Collapse
Affiliation(s)
- Roma Mascarenhas
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Shreya Hegde
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Nidhi Manaktala
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
Cai R, Shan Y, Du F, Miao Z, Zhu L, Hang L, Xiao L, Wang Z. Injectable hydrogels as promising in situ therapeutic platform for cartilage tissue engineering. Int J Biol Macromol 2024; 261:129537. [PMID: 38278383 DOI: 10.1016/j.ijbiomac.2024.129537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/01/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Injectable hydrogels are gaining prominence as a biocompatible, minimally invasive, and adaptable platform for cartilage tissue engineering. Commencing with their synthesis, this review accentuates the tailored matrix formulations and cross-linking techniques essential for fostering three-dimensional cell culture and melding with complex tissue structures. Subsequently, it spotlights the hydrogels' enhanced properties, highlighting their augmented functionalities and broadened scope in cartilage tissue repair applications. Furthermore, future perspectives are advocated, urging continuous innovation and exploration to surmount existing challenges and harness the full clinical potential of hydrogels in regenerative medicine. Such advancements are crucial for validating the long-term efficacy and safety of hydrogels, positioning them as a promising direction in regenerative medicine to address cartilage-related ailments.
Collapse
Affiliation(s)
- Rong Cai
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Yisi Shan
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Fengyi Du
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, 212013, China
| | - Zhiwei Miao
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Like Zhu
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Li Hang
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China
| | - Long Xiao
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China.
| | - Zhirong Wang
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang 215600, Jiangsu, China.
| |
Collapse
|
4
|
Song J, Zeng X, Li C, Yin H, Mao S, Ren D. Alteration in cartilage matrix stiffness as an indicator and modulator of osteoarthritis. Biosci Rep 2024; 44:BSR20231730. [PMID: 38014522 PMCID: PMC10794814 DOI: 10.1042/bsr20231730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Osteoarthritis (OA) is characterized by cartilage degeneration and destruction, leading to joint ankylosis and disability. The major challenge in diagnosing OA at early stage is not only lack of clinical symptoms but also the insufficient histological and immunohistochemical signs. Alteration in cartilage stiffness during OA progression, especially at OA initiation, has been confirmed by growing evidences. Moreover, the stiffness of cartilage extracellular matrix (ECM), pericellular matrix (PCM) and chondrocytes during OA development are dynamically changed in unique and distinct fashions, revealing possibly inconsistent conclusions when detecting cartilage matrix stiffness at different locations and scales. In addition, it will be discussed regarding the mechanisms through which OA-related cartilage degenerations exhibit stiffened or softened matrix, highlighting some critical events that generally incurred to cartilage stiffness alteration, as well as some typical molecules that participated in constituting the mechanical properties of cartilage. Finally, in vitro culturing chondrocytes in various stiffness-tunable scaffolds provided a reliable method to explore the matrix stiffness-dependent modulation of chondrocyte metabolism, which offers valuable information on optimizing implant scaffolds to maximally promote cartilage repair and regeneration during OA. Overall, this review systematically and comprehensively elucidated the current progresses in the relationship between cartilage stiffness alteration and OA progression. We hope that deeper attention and understanding in this researching field will not only develop more innovative methods in OA early detection and diagnose but also provide promising ideas in OA therapy and prognosis.
Collapse
Affiliation(s)
- Jing Song
- Qingdao University Affiliated Qingdao Women and Children’s Hospital, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| | - Xuemin Zeng
- The Affiliated Hospital of Qingdao University, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| | - Chenzhi Li
- The Affiliated Hospital of Qingdao University, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| | - Hongyan Yin
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, CN, China
| | - Sui Mao
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, CN, China
| | - Dapeng Ren
- The Affiliated Hospital of Qingdao University, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| |
Collapse
|
5
|
Luo Z, Wang Y, Xu Y, Wang J, Yu Y. Modification and crosslinking strategies for hyaluronic acid-based hydrogel biomaterials. SMART MEDICINE 2023; 2:e20230029. [PMID: 39188300 PMCID: PMC11235888 DOI: 10.1002/smmd.20230029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/24/2023] [Indexed: 08/28/2024]
Abstract
Hyaluronic acid (HA) is an attractive extracellular matrix-derived polymer. The related HA-based hydrogels are emerging to be the hotspots in the cutting edge of biomaterials. The continuous sights concentrate on exploring modification methods and crosslinking strategies to promote the advancement of HA-based hydrogels with enhanced physical/chemical properties and enriched biological performance. Here, the advances on modification methods and crosslinking strategies for fabricating HA-based hydrogels with diverse capacities are summarized. Firstly, the modification reactions that occur on the active hydroxyl, carboxyl and N-acetyl groups of HA molecule are discussed. Next, the emphasis is put on various crosslinking strategies including physical crosslinking, covalent crosslinking and dynamic covalent crosslinking. Finally, we provide a general summary and give a critical viewpoint on the remaining challenges and the future development of HA-based hydrogels. It is hoped that this review can provide new proposals for the specific design of functional hydrogel biomaterials.
Collapse
Affiliation(s)
- Zhiqiang Luo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Ye Xu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yunru Yu
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| |
Collapse
|
6
|
Gong T, Wu D, Pan H, Sun Z, Yao X, Wang D, Huang Y, Li X, Guo Y, Lu Y. Biomimetic Microenvironmental Stiffness Boosts Stemness of Pancreatic Ductal Adenocarcinoma via Augmented Autophagy. ACS Biomater Sci Eng 2023; 9:5347-5360. [PMID: 37561610 DOI: 10.1021/acsbiomaterials.3c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features high recurrence rates and intensified lethality, accompanied by stiffening of the extracellular matrix (ECM) microenvironment, which is mainly due to the deposition, remodeling, and cross-linking of collagen. Boosted stemness plays an essential role during occurrence and progression, which indicates a poor prognosis. Therefore, it is of great importance to understand the effect of the underlying interaction of matrix stiffness and stemness on PDAC. For this purpose, a methacrylated gelatin (GelMA) hydrogel with tunable stiffness was applied for incubating MIA PaCa-2 and PANC-1 cells. The results demonstrated that compared to the soft group (5% GelMA, w/v), the expression of stemness-related genes (SOX2, OCT4, and NANOG) in the stiff group (10% GelMA, w/v) displayed pronounced elevation as well as sphere formation. Intriguingly, we also observed that matrix stiffness regulated autophagy of PDAC, which played a momentous role in stemness promotion. In order to clarify the underlying relationship between matrix stiffness-mediated cell autophagy and stemness, rescue experiments with rapamycin and chloroquine were conducted with transmission electron microscopy, immunofluorescence staining, sphere formation, and qRT-PCR assays to evaluate the level of stemness and autophagy. For exploring the molecular mechanism in depth, RNA-seq and differential expression of miRNAs were carried out, which may sensor and respond to matrix stiffness during the regulation of stemness and autophagy. In conclusion, we validated that blocking autophagy repressed the stemness induced by matrix stiffness in PDAC and provided a potential therapeutic strategy for this aggressive cancer.
Collapse
Affiliation(s)
- Tiancheng Gong
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Di Wu
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Haopeng Pan
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Zhongxiang Sun
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xihao Yao
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Dongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaohong Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
7
|
Zlotnikov ID, Savchenko IV, Kudryashova EV. Fluorescent Probes with Förster Resonance Energy Transfer Function for Monitoring the Gelation and Formation of Nanoparticles Based on Chitosan Copolymers. J Funct Biomater 2023; 14:401. [PMID: 37623646 PMCID: PMC10455860 DOI: 10.3390/jfb14080401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Nanogel-forming polymers such as chitosan and alginic acid have a number of practical applications in the fields of drug delivery, food technology and agrotechnology as biocompatible, biodegradable polymers. Unlike bulk macrogel formation, which is followed by visually or easily detectable changes and physical parameters, such as viscosity or turbidity, the formation of nanogels is not followed by such changes and is therefore very difficult to track. The counterflow extrusion method (or analogues) enables gel nanoparticle formation for certain polymers, including chitosan and its derivatives. DLS or TEM, which are typically used for their characterization, only allow for the study of the already-formed nanoparticles. Alternatively, one might introduce a fluorescent dye into the gel-forming polymer, with the purpose of monitoring the effect of its microenvironment on the fluorescence spectra. But apparently, this approach does not provide a sufficiently specific signal, as the microenvironment may be affected by a big number of various factors (such as pH changes) including but not limited to gel formation per se. Here, we propose a new approach, based on the FRET effect, which we believe is much more specific and enables the elucidation of nanogel formation process in real time. Tryptophan-Pyrene is suggested as one of the donor-acceptor pairs, yielding the FRET effect when the two compounds are in close proximity to one another. We covalently attached Pyrene (the acceptor) to the chitosan (or PEG-chitosan) polymeric chain. The amount of introduced Pyrene was low enough to produce no significant effect on the properties of the resulting gel nanoparticles, but high enough to detect the FRET effect upon its interaction with Trp. When the Pyr-modified chitosan and Trp are both present in the solution, no FRET effect is observed. But as soon as the gel formation is initiated using the counterflow extrusion method, the FRET effect is easily detectable, manifested in a sharp increase in the fluorescence intensity of the pyrene acceptor and reflecting the gel formation process in real time. Apparently, the gel formation promotes the Trp-Pyr stacking interaction, which is deemed necessary for the FRET effect, and which does not occur in the solution. Further, we observed a similar FRET effect when the chitosan gel formation is a result of the covalent crosslinking of chitosan chains with genipin. Interestingly, using ovalbumin, having numerous Trp exposed on the protein surface instead of individual Trp yields a FRET effect similar to Trp. In all cases, we were able to detect the pH-, concentration- and temperature-dependent behaviors of the polymers as well as the kinetics of the gel formation for both nanogels and macrogels. These findings indicate a broad applicability of FRET-based analysis in biomedical practice, ranging from the optimization of gel formation to the encapsulation of therapeutic agents to food and biomedical technologies.
Collapse
Affiliation(s)
| | | | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (I.D.Z.)
| |
Collapse
|
8
|
Kim J, Bonassar LJ. Controlling collagen gelation pH to enhance biochemical, structural, and biomechanical properties of tissue-engineered menisci. J Biomed Mater Res A 2023; 111:478-487. [PMID: 36300869 DOI: 10.1002/jbm.a.37464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/16/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Abstract
Collagen-based hydrogels have been widely used in biomedical applications due to their biocompatibility. Enhancing mechanical properties of collagen gels remains challenging while maintaining biocompatibility. Here, we demonstrate that gelation pH has profound effects on cellular activity, collagen fibril structure, and mechanical properties of the fibrochondrocyte-seeded collagen gels in both short- and long-terms. Acidic and basic gelation pH, below pH 7.0 and above 8.5, resulted in dramatic cell death. Gelation pH ranging from 7.0 to 8.5 showed a relatively high cell viability. Furthermore, physiologic gelation (pH 7.5) showed the greatest collagen deposition while glycosaminoglycan deposition appeared independent of gelation pH. Scanning electron microscopy showed that neutral and physiologic gelation pH, 7.0 and 7.5, exhibited well-aligned collagen fibril structure on day 0 and enhanced collagen fibril structure with laterally joined fibrils on day 30. However, basic pH, 8.0 and 8.5, displayed a densely packed collagen fibril structure on day 0, which was also persistent on day 30. Initial equilibrium modulus increased with increasing gelation pH. Notably, after 30 days of culture, gelation pH of 7.5 and 8.0 showed the highest equilibrium modulus, reaching 150 -160 kPa. While controlling gelation pH is simply achieved compared with other strategies to improve mechanical properties, its influences on biochemical and biomechanical properties of the collagen gel are long-lasting. As such, gelation pH is a useful means to modulate both biochemical and biomechanical properties of the collagen-based hydrogels and can be utilized for diverse types of tissue engineering due to its simple application.
Collapse
Affiliation(s)
- Jongkil Kim
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
Li R, Zhao Y, Zheng Z, Liu Y, Song S, Song L, Ren J, Dong J, Wang P. Bioinks adapted for in situ bioprinting scenarios of defect sites: a review. RSC Adv 2023; 13:7153-7167. [PMID: 36875875 PMCID: PMC9982714 DOI: 10.1039/d2ra07037e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
In situ bioprinting provides a reliable solution to the problem of in vitro tissue culture and vascularization by printing tissue directly at the site of injury or defect and maturing the printed tissue using the natural cell microenvironment in vivo. As an emerging field, in situ bioprinting is based on computer-assisted scanning results of the defect site and is able to print cells directly at this site with biomaterials, bioactive factors, and other materials without the need to transfer prefabricated grafts as with traditional in vitro 3D bioprinting methods, and the resulting grafts can accurately adapt to the target defect site. However, one of the important reasons hindering the development of in situ bioprinting is the absence of suitable bioinks. In this review, we will summarize bioinks developed in recent years that can adapt to in situ printing scenarios at the defect site, considering three aspects: the in situ design strategy of bioink, the selection of commonly used biomaterials, and the application of bioprinting to different treatment scenarios.
Collapse
Affiliation(s)
- Ruojing Li
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| | - Yeying Zhao
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| | - Zhiqiang Zheng
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| | - Yangyang Liu
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| | - Shurui Song
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| | - Lei Song
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| | - Jianan Ren
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
- Department of General Surgery, The Affiliated General Hospital of Nanjing Military Region 305 Zhongshan East Road Nanjing 210016 China
| | - Jing Dong
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
- Special Medicine Department, Medical College, Qingdao University Qingdao 266071 China
| | - Peige Wang
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University 16 Jiangsu Road Qingdao 266000 China
| |
Collapse
|
10
|
Gupta R, Swarupa S, Mayya C, Bhatia D, Thareja P. Graphene Oxide-Carbamoylated Chitosan Hydrogels with Tunable Mechanical Properties for Biological Applications. ACS APPLIED BIO MATERIALS 2023; 6:578-590. [PMID: 36655342 DOI: 10.1021/acsabm.2c00885] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chitosan (CH)-based hydrogels have been extensively researched in numerous biological applications, including drug delivery, biosensing, wound healing, and tissue engineering, to name a few. Previously, modified CH hydrogels by carbamoylation, using potassium cyanate (KCNO) as the cross-linker, have shown improvement in viscoelastic properties and biocompatibility. In this study, graphene oxide (GO) nanofillers are added to carbamoylated CH to form a nanocomposite hydrogel and study the influence of CH molecular weight (Mw) and GO loading concentrations on hydrogel properties. The physical properties (swelling, degradation, and porous structure) of the hydrogels can be tuned as required for cell attachment and spreading by varying both the GO concentration and the Mw of CH. Rheological characterization showed an improvement in the mechanical properties (storage modulus, yield stress, and viscosity) of the synthesized CH-GO hydrogels with an increase in the Mw of CH and the GO concentration. Human retinal pigmented epithelial-1 (RPE-1) cells seeded onto the prepared hydrogel scaffolds showed good cell viability, adhesion, and cell spreading, confirming their cytocompatibility, with dependence on both Mw of CH and GO loading.
Collapse
Affiliation(s)
- Ratnika Gupta
- Chemical Engineering, Indian Institute of Technology, Gandhinagar382355, India
| | - Sanchari Swarupa
- Biological Engineering, Indian Institute of Technology, Gandhinagar382355, India
| | - Chaithra Mayya
- Biological Engineering, Indian Institute of Technology, Gandhinagar382355, India
| | - Dhiraj Bhatia
- Biological Engineering, Indian Institute of Technology, Gandhinagar382355, India
| | - Prachi Thareja
- Chemical Engineering, Indian Institute of Technology, Gandhinagar382355, India
| |
Collapse
|
11
|
Ishihara S, Kurosawa H, Haga H. Stiffness-Modulation of Collagen Gels by Genipin-Crosslinking for Cell Culture. Gels 2023; 9:gels9020148. [PMID: 36826318 PMCID: PMC9957210 DOI: 10.3390/gels9020148] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The stiffness of extracellular matrices (ECMs) is critical for cellular functions. Therefore, modulating the stiffness of ECMs in vitro is necessary to investigate the role of stiffness in cellular phenomena. Collagen gels are widely used for cell culture matrices in vitro. However, modulation of the stiffness in collagen gels for cell culture is challenging owing to the limited knowledge of the method to increase the stiffness while maintaining low cytotoxicity. Here, we established a novel method to modulate collagen gel stiffness from 0.0292 to 12.5 kPa with low cytotoxicity. We prepared collagens with genipin, a low-cytotoxic crosslinker of amines, at different concentrations and successfully modulated the stiffness of the gels. In addition, on 10 mM genipin-mixed collagen gels (approximately 12.5 kPa), H1299 human lung cancer cells showed spreading morphology and nuclear localization of yes-associated protein (YAP), typical phenomena of cells on stiff ECMs. Mouse mesenchymal stromal cells on 10 mM genipin-mixed collagen gels differentiated to vascular smooth muscle cells. On the other hand, the cells on 0 mM genipin-mixed collagen gels (approximately 0.0292 kPa) differentiated to visceral smooth muscle cells. Our new method provides a novel way to prepare stiffness-modulated collagen gels with low cytotoxicity in cell culture.
Collapse
Affiliation(s)
- Seiichiro Ishihara
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan
- Correspondence: (S.I.); (H.H.)
| | - Haruna Kurosawa
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan
| | - Hisashi Haga
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, N10-W8, Kita-ku, Sapporo 060-0810, Japan
- Correspondence: (S.I.); (H.H.)
| |
Collapse
|
12
|
Zheng G, Xue C, Cao F, Hu M, Li M, Xie H, Yu W, Zhao D. Effect of the uronic acid composition of alginate in alginate/collagen hybrid hydrogel on chondrocyte behavior. Front Bioeng Biotechnol 2023; 11:1118975. [PMID: 36959903 PMCID: PMC10027720 DOI: 10.3389/fbioe.2023.1118975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction: Developing a culture system that can effectively maintain chondrocyte phenotype and functionalization is a promising strategy for cartilage repair. Methods: An alginate/collagen (ALG/COL) hybrid hydrogel using different guluronate/mannuronate acid ratio (G/M ratio) of alginates (a G/M ratio of 64/36 and a G/M ratio of 34/66) with collagen was developed. The effects of G/M ratios on the properties of hydrogels and their effects on the chondrocytes behaviors were evaluated. Results: The results showed that the mechanical stiffness of the hydrogel was significantly affected by the G/M ratios of alginate. Chondrocytes cultured on Mid-G/M hydrogels exhibited better viability and phenotype preservation. Moreover, RT-qPCR analysis showed that the expression of cartilage-specific genes, including SOX9, COL2, and aggrecan was increased while the expression of RAC and ROCK1 was decreased in chondrocytes cultured on Mid-G/M hydrogels. Conclusion: These findings demonstrated that Mid-G/M hydrogels provided suitable matrix conditions for cultivating chondrocytes and may be useful in cartilage tissue engineering. More importantly, the results indicated the importance of taking alginate G/M ratios into account when designing alginate-based composite materials for cartilage tissue engineering.
Collapse
Affiliation(s)
- Guoshuang Zheng
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Chundong Xue
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Fang Cao
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Minghui Hu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Maoyuan Li
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Hui Xie
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Weiting Yu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- *Correspondence: Dewei Zhao, ; Weiting Yu,
| | - Dewei Zhao
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- *Correspondence: Dewei Zhao, ; Weiting Yu,
| |
Collapse
|
13
|
Sungkhaphan P, Risangud N, Hankamolsiri W, Sonthithai P, Janvikul W. Pluronic-F127 and Click chemistry-based injectable biodegradable hydrogels with controlled mechanical properties for cell encapsulation. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Asghari-Vostakolaei M, Bahramian H, Karbasi S, Setayeshmehr M. Effects of decellularized extracellular matrix on Polyhydroxybutyrate electrospun scaffolds for cartilage tissue engineering. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2150863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Mohsen Asghari-Vostakolaei
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Bahramian
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Setayeshmehr
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Wang M, Deng Z, Guo Y, Xu P. Designing functional hyaluronic acid-based hydrogels for cartilage tissue engineering. Mater Today Bio 2022; 17:100495. [PMID: 36420054 PMCID: PMC9676212 DOI: 10.1016/j.mtbio.2022.100495] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/14/2022] Open
Abstract
Damage to cartilage tissues is often difficult to repair owing to chronic inflammation and a lack of bioactive factors. Therefore, developing bioactive materials, such as hydrogels acting as extracellular matrix mimics, that can inhibit the inflammatory microenvironment and promote cartilage repair is crucial. Hyaluronic acid, which exists in cartilage and synovial fluid, has been extensively investigated for cartilage tissue engineering because of its promotion of cell adhesion and proliferation, regulation of inflammation, and enhancement of cartilage regeneration. However, hyaluronic acid-based hydrogels have poor degradation rates and unfavorable mechanical properties, limiting their application in cartilage tissue engineering. Recently, various multifunctional hyaluronic acid-based hydrogels, including alkenyl, aldehyde, thiolated, phenolized, hydrazide, and host–guest group-modified hydrogels, have been extensively studied for use in cartilage tissue engineering. In this review, we summarize the recent progress in the multifunctional design of hyaluronic acid-based hydrogels and their application in cartilage tissue engineering. Moreover, we outline the future research prospects and directions in cartilage tissue regeneration. This would provide theoretical guidance for developing hyaluronic acid-based hydrogels with specific properties to satisfy the requirements of cartilage tissue repair.
Collapse
|
16
|
Yang X, Wang B, Peng D, Nie X, Wang J, Yu CY, Wei H. Hyaluronic Acid‐Based Injectable Hydrogels for Wound Dressing and Localized Tumor Therapy: A Review. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Xu Yang
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Bin Wang
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Dongdong Peng
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Xiaobo Nie
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Jun Wang
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Cui-Yun Yu
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| | - Hua Wei
- Postdoctoral Mobile Station of Basic Medical Sciences Hengyang Medical School University of South China Hengyang 421001 China
- Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science University of South China Hengyang Hunan 421001 China
| |
Collapse
|
17
|
Designer injectable matrices of photocrosslinkable carboxymethyl cellulose methacrylate based hydrogels as cell carriers for gel type autologous chondrocyte implantation (GACI). Int J Biol Macromol 2022; 224:465-482. [DOI: 10.1016/j.ijbiomac.2022.10.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
18
|
Wegrzynowska-Drzymalska K, Mylkie K, Nowak P, Mlynarczyk DT, Chelminiak-Dudkiewicz D, Kaczmarek H, Goslinski T, Ziegler-Borowska M. Dialdehyde Starch Nanocrystals as a Novel Cross-Linker for Biomaterials Able to Interact with Human Serum Proteins. Int J Mol Sci 2022; 23:ijms23147652. [PMID: 35886996 PMCID: PMC9320567 DOI: 10.3390/ijms23147652] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/20/2023] Open
Abstract
In recent years, new cross-linkers from renewable resources have been sought to replace toxic synthetic compounds of this type. One of the most popular synthetic cross-linking agents used for biomedical applications is glutaraldehyde. However, the unreacted cross-linker can be released from the materials and cause cytotoxic effects. In the present work, dialdehyde starch nanocrystals (NDASs) were obtained from this polysaccharide nanocrystal form as an alternative to commonly used cross-linking agents. Then, 5-15% NDASs were used for chemical cross-linking of native chitosan (CS), gelatin (Gel), and a mixture of these two biopolymers (CS-Gel) via Schiff base reaction. The obtained materials, forming thin films, were characterized by ATR-FTIR, SEM, and XRD analysis. Thermal and mechanical properties were determined by TGA analysis and tensile testing. Moreover, all cross-linked biopolymers were also characterized by hydrophilic character, swelling ability, and protein absorption. The toxicity of obtained materials was tested using the Microtox test. Dialdehyde starch nanocrystals appear as a beneficial plant-derived cross-linking agent that allows obtaining cross-linked biopolymer materials with properties desirable for biomedical applications.
Collapse
Affiliation(s)
- Katarzyna Wegrzynowska-Drzymalska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.W.-D.); (K.M.); (P.N.); (D.C.-D.); (H.K.)
| | - Kinga Mylkie
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.W.-D.); (K.M.); (P.N.); (D.C.-D.); (H.K.)
| | - Pawel Nowak
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.W.-D.); (K.M.); (P.N.); (D.C.-D.); (H.K.)
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.T.M.); (T.G.)
| | - Dorota Chelminiak-Dudkiewicz
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.W.-D.); (K.M.); (P.N.); (D.C.-D.); (H.K.)
| | - Halina Kaczmarek
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.W.-D.); (K.M.); (P.N.); (D.C.-D.); (H.K.)
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.T.M.); (T.G.)
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (K.W.-D.); (K.M.); (P.N.); (D.C.-D.); (H.K.)
- Correspondence:
| |
Collapse
|
19
|
Ghandforoushan P, Hanaee J, Aghazadeh Z, Samiei M, Navali AM, Khatibi A, Davaran S. Enhancing the function of PLGA-collagen scaffold by incorporating TGF-β1-loaded PLGA-PEG-PLGA nanoparticles for cartilage tissue engineering using human dental pulp stem cells. Drug Deliv Transl Res 2022; 12:2960-2978. [PMID: 35650332 DOI: 10.1007/s13346-022-01161-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 02/07/2023]
Abstract
Since cartilage has a limited capacity for self-regeneration, treating cartilage degenerative disorders is a long-standing difficulty in orthopedic medicine. Researchers have scrutinized cartilage tissue regeneration to handle the deficiency of cartilage restoration capacity. This investigation proposed to compose an innovative nanocomposite biomaterial that enhances growth factor delivery to the injured cartilage site. Here, we describe the design and development of the biocompatible poly(lactide-co-glycolide) acid-collagen/poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide) (PLGA-collagen/PLGA-PEG-PLGA) nanocomposite hydrogel containing transforming growth factor-β1 (TGF-β1). PLGA-PEG-PLGA nanoparticles were employed as a delivery system embedding TGF-β1 as an articular cartilage repair therapeutic agent. This study evaluates various physicochemical aspects of fabricated scaffolds by 1HNMR, FT-IR, SEM, BET, and DLS methods. The physicochemical features of the developed scaffolds, including porosity, density, degradation, swelling ratio, mechanical properties, morphologies, BET, ELISA, and cytotoxicity were assessed. The cell viability was investigated with the MTT test. Chondrogenic differentiation was assessed via Alcian blue staining and RT-PCR. In real-time PCR testing, the expression of Sox-9, collagen type II, and aggrecan genes was monitored. According to the results, human dental pulp stem cells (hDPSCs) exhibited high adhesion, proliferation, and differentiation on PLGA-collagen/PLGA-PEG-PLGA-TGFβ1 nanocomposite scaffolds compared to the control groups. SEM images displayed suitable cell adhesion and distribution of hDPSCs throughout the scaffolds. RT-PCR assay data displayed that TGF-β1 loaded PLGA-PEG-PLGA nanoparticles puts forward chondroblast differentiation in hDPSCs through the expression of chondrogenic genes. The findings revealed that PLGA-collagen/PLGA-PEG-PLGA-TGF-β1 nanocomposite hydrogel can be utilized as a supportive platform to support hDPSCs differentiation by implementing specific physio-chemical features.
Collapse
Affiliation(s)
- Parisa Ghandforoushan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Hanaee
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medicinal Science, Tabriz, Iran
| | - Zahra Aghazadeh
- Stem Cell Research Center, Oral Medicine Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Khatibi
- Department of Biotechnology, Alzahra University, Tehran, Iran
| | - Soodabeh Davaran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. .,Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Gupta A, Lee J, Ghosh T, Nguyen VQ, Dey A, Yoon B, Um W, Park JH. Polymeric Hydrogels for Controlled Drug Delivery to Treat Arthritis. Pharmaceutics 2022; 14:540. [PMID: 35335915 PMCID: PMC8948938 DOI: 10.3390/pharmaceutics14030540] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are disabling musculoskeletal disorders that affect joints and cartilage and may lead to bone degeneration. Conventional delivery of anti-arthritic agents is limited due to short intra-articular half-life and toxicities. Innovations in polymer chemistry have led to advancements in hydrogel technology, offering a versatile drug delivery platform exhibiting tissue-like properties with tunable drug loading and high residence time properties This review discusses the advantages and drawbacks of polymeric materials along with their modifications as well as their applications for fabricating hydrogels loaded with therapeutic agents (small molecule drugs, immunotherapeutic agents, and cells). Emphasis is given to the biological potentialities of hydrogel hybrid systems/micro-and nanotechnology-integrated hydrogels as promising tools. Applications for facile tuning of therapeutic drug loading, maintaining long-term release, and consequently improving therapeutic outcome and patient compliance in arthritis are detailed. This review also suggests the advantages, challenges, and future perspectives of hydrogels loaded with anti-arthritic agents with high therapeutic potential that may alter the landscape of currently available arthritis treatment modalities.
Collapse
Affiliation(s)
- Anuradha Gupta
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Torsha Ghosh
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Van Quy Nguyen
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Anup Dey
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Been Yoon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Wooram Um
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
21
|
Recent Developments in Hyaluronic Acid-Based Hydrogels for Cartilage Tissue Engineering Applications. Polymers (Basel) 2022; 14:polym14040839. [PMID: 35215752 PMCID: PMC8963043 DOI: 10.3390/polym14040839] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 01/27/2023] Open
Abstract
Articular cartilage lesions resulting from injurious impact, recurring loading, joint malalignment, etc., are very common and encompass the risk of evolving to serious cartilage diseases such as osteoarthritis. To date, cartilage injuries are typically treated via operative procedures such as autologous chondrocyte implantation (ACI), matrix-associated autologous chondrocyte implantation (MACI) and microfracture, which are characterized by low patient compliance. Accordingly, cartilage tissue engineering (CTE) has received a lot of interest. Cell-laden hydrogels are favorable candidates for cartilage repair since they resemble the native tissue environment and promote the formation of extracellular matrix. Various types of hydrogels have been developed so far for CTE applications based on both natural and synthetic biomaterials. Among these materials, hyaluronic acid (HA), a principal component of the cartilage tissue which can be easily modified and biofunctionalized, has been favored for the development of hydrogels since it interacts with cell surface receptors, supports the growth of chondrocytes and promotes the differentiation of mesenchymal stem cells to chondrocytes. The present work reviews the various types of HA-based hydrogels (e.g., in situ forming hydrogels, cryogels, microgels and three-dimensional (3D)-bioprinted hydrogel constructs) that have been used for cartilage repair, specially focusing on the results of their preclinical and clinical assessment.
Collapse
|
22
|
Luo T, Tan B, Zhu L, Wang Y, Liao J. A Review on the Design of Hydrogels With Different Stiffness and Their Effects on Tissue Repair. Front Bioeng Biotechnol 2022; 10:817391. [PMID: 35145958 PMCID: PMC8822157 DOI: 10.3389/fbioe.2022.817391] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
Tissue repair after trauma and infection has always been a difficult problem in regenerative medicine. Hydrogels have become one of the most important scaffolds for tissue engineering due to their biocompatibility, biodegradability and water solubility. Especially, the stiffness of hydrogels is a key factor, which influence the morphology of mesenchymal stem cells (MSCs) and their differentiation. The researches on this point are meaningful to the field of tissue engineering. Herein, this review focus on the design of hydrogels with different stiffness and their effects on the behavior of MSCs. In addition, the effect of hydrogel stiffness on the phenotype of macrophages is introduced, and then the relationship between the phenotype changes of macrophages on inflammatory response and tissue repair is discussed. Finally, the future application of hydrogels with a certain stiffness in regenerative medicine and tissue engineering has been prospected.
Collapse
Affiliation(s)
- Tianyi Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Bowen Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lengjing Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yating Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jinfeng Liao,
| |
Collapse
|
23
|
Hou M, Bai B, Tian B, Ci Z, Liu Y, Zhou G, Cao Y. Cartilage Regeneration Characteristics of Human and Goat Auricular Chondrocytes. Front Bioeng Biotechnol 2022; 9:766363. [PMID: 34993186 PMCID: PMC8724709 DOI: 10.3389/fbioe.2021.766363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Although cartilage regeneration technology has achieved clinical breakthroughs, whether auricular chondrocytes (AUCs) represent optimal seed cells to achieve stable cartilage regeneration is not clear. In this study, we systematically explore biological behaviors of human- and goat-derived AUCs during in vitro expansion as well as cartilage regeneration in vitro and in vivo. To eliminate material interference, a cell sheet model was used to evaluate the feasibility of dedifferentiated AUCs to re-differentiate and regenerate cartilage in vitro and in vivo. We found that the dedifferentiated AUCs could re-differentiate and regenerate cartilage sheets under the chondrogenic medium system, and the generated chondrocyte sheets gradually matured with increased in vitro culture time (2, 4, and 8 weeks). After the implantation of cartilage sheets with different in vitro culture times in nude mice, optimal neocartilage was formed in the group with 2 weeks in vitro cultivation. After in vivo implantation, ossification only occurred in the group with goat-regenerated cartilage sheet of 8 weeks in vitro cultivation. These results, which were confirmed in human and goat AUCs, suggest that AUCs are ideal seed cells for the clinical translation of cartilage regeneration under the appropriate culture system and culture condition.
Collapse
Affiliation(s)
- Mengjie Hou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Baoshuai Bai
- National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
| | - Baoxing Tian
- Department of Breast Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Ci
- National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
| | - Yu Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| |
Collapse
|
24
|
Kahl M, Schneidereit D, Bock N, Friedrich O, Hutmacher DW, Meinert C. MechAnalyze: An Algorithm for Standardization and Automation of Compression Test Analysis. Tissue Eng Part C Methods 2021; 27:529-542. [PMID: 34541882 DOI: 10.1089/ten.tec.2021.0170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mechanical properties of hydrogels, as well as native and engineered tissues are key parameters frequently assessed in biomaterial science and tissue engineering research. However, a lack of standardized methods and user-independent data analysis has impacted the research community for many decades and contributes to poor reproducibility and comparability of datasets, representing a significant issue often neglected in publications. In this study, we provide a software package, MechAnalyze, facilitating the standardized and automated analysis of force-displacement data generated in unconfined compression tests. Using comparative studies of datasets analyzed manually and with MechAnalyze, we demonstrate that the software reliably determines the compressive moduli, failure stress and failure strain of hydrogels, as well as engineered and native tissues, while providing an intuitive user interface that requires minimal user input. MechAnalyze provides a fast and user-independent data analysis method and advances process standardization, reproducibility, and comparability of data for the mechanical characterization of biomaterials as well as native and engineered tissues. Impact statement Mechanical properties of hydrogels are crucial parameters in the development of new materials for tissue engineering. However, manual assessment is tedious, not standardized and suffers under user-to-user bias. Hence, the here presented stand-alone software package provides analysis and statistics of force-displacement and material geometry data to determine the compressive moduli, failure stress, and failure strain in a standardized, robust, and automated fashion. MechAnalyze will substantially support biomechanical testing of hydrogels as well as engineered and native tissues and will thus, be of appreciable value to a broad target group in regenerative medicine, tissue engineering, but also life sciences and biomedicine.
Collapse
Affiliation(s)
- Melanie Kahl
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Dominik Schneidereit
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Nathalie Bock
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Queensland University of Technology, Woolloongabba, Australia
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Centre for Biomedical Technologies, Science and Engineering Faculty, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - Dietmar W Hutmacher
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.,Centre for Biomedical Technologies, Science and Engineering Faculty, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.,ARC ITTC in Additive Biomanufacturing, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia
| | - Christoph Meinert
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Centre for Biomedical Technologies, Science and Engineering Faculty, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia.,Herston Biofabrication Institute, Metro North Hospital and Health Services, Brisbane, Australia
| |
Collapse
|
25
|
Ebhodaghe SO. Natural Polymeric Scaffolds for Tissue Engineering Applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2144-2194. [PMID: 34328068 DOI: 10.1080/09205063.2021.1958185] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural polymeric scaffolds can be used for tissue engineering applications such as cell delivery and cell-free supporting of native tissues. This is because of their desirable properties such as; high biocompatibility, tunable mechanical strength and conductivity, large surface area, porous- and extracellular matrix (ECM)-mimicked structures. Specifically, their less toxicity and biocompatibility makes them suitable for several tissue engineering applications. For these reasons, several biopolymeric scaffolds are currently being explored for numerous tissue engineering applications. To date, research on the nature, chemistry, and properties of nanocomposite biopolymers are been reported, while the need for a comprehensive research note on more tissue engineering application of these biopolymers remains. As a result, this present study comprehensively reviews the development of common natural biopolymers as scaffolds for tissue engineering applications such as cartilage tissue engineering, cornea repairs, osteochondral defect repairs, and nerve regeneration. More so, the implications of research findings for further studies are presented, while the impact of research advances on future research and other specific recommendations are added as well.
Collapse
|
26
|
In Vitro Evaluation of Biomaterials for Vocal Fold Injection: A Systematic Review. Polymers (Basel) 2021; 13:polym13162619. [PMID: 34451158 PMCID: PMC8400183 DOI: 10.3390/polym13162619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Vocal fold injection is a preferred treatment in glottic insufficiency because it is relatively quick and cost-saving. However, researchers have yet to discover the ideal biomaterial with properties suitable for human vocal fold application. The current systematic review employing PRISMA guidelines summarizes and discusses the available evidence related to outcome measures used to characterize novel biomaterials in the development phase. The literature search of related articles published within January 2010 to March 2021 was conducted using Scopus, Web of Science (WoS), Google Scholar and PubMed databases. The search identified 6240 potentially relevant records, which were screened and appraised to include 15 relevant articles based on the inclusion and exclusion criteria. The current study highlights that the characterization methods were inconsistent throughout the different studies. While rheologic outcome measures (viscosity, elasticity and shear) were most widely utilized, there appear to be no target or reference values. Outcome measures such as cellular response and biodegradation should be prioritized as they could mitigate the clinical drawbacks of currently available biomaterials. The review suggests future studies to prioritize characterization of the viscoelasticity (to improve voice outcomes), inflammatory response (to reduce side effects) and biodegradation (to improve longevity) profiles of newly developed biomaterials.
Collapse
|
27
|
Hu M, Yang J, Xu J. Structural and biological investigation of chitosan/hyaluronic acid with silanized-hydroxypropyl methylcellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Drug Deliv 2021; 28:607-619. [PMID: 33739203 PMCID: PMC7993376 DOI: 10.1080/10717544.2021.1895906] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cartilage damage continues to pose a threat to humans, but no treatment is currently available to fully restore cartilage function. In this study, a new class of composite hydrogels derived from water-soluble chitosan (CS)/hyaluronic acid (HA) and silanized-hydroxypropyl methylcellulose (Si-HPMC) (CS/HA/Si-HPMC) has been synthesized and tested as injectable hydrogels for cartilage tissue engineering when combined without the addition of a chemical crosslinking agent. Mechanical studies of CS/HA and CS/HA/Si-HPMC hydrogels showed that as Si-HPMC content increased, swelling rate and rheological properties were higher, compressive strength decreased and degradation was faster. Our results demonstrate that the CS and HA-based hydrogel scaffolds, especially the ones with 3.0% (w/v) Si-HPMC and 2.5/4.0% (w/v) CS/HA, have suitable physical performance and bioactive properties, thus provide a potential opportunity to be used for cartilage tissue engineering. In vitro studies of CS/HA and CS/HA/Si-HPMC hydrogels encapsulated in chondrocytes have shown that the proper amount of Si-HPMC increases the proliferation and deposition of the cartilage extracellular matrix. The regeneration rate of the CS/HA/Si-HPMC (3%) hydrogel reached about 79.5% at 21 days for long retention periods, indicating relatively good in vivo bone regeneration. These CS/HA/Si-HPMC hydrogels are promising candidates for tissue compatibility injectable scaffolds. The data provide proof of the principle that the resulting hydrogel has an excellent ability to repair joint cartilage using a tissue-engineered approach.RESEARCH HIGHLIGHTS An injectable hydrogel based on CS/HA/Si-HPMC composites was developed. The CS/HA/Si-HPMC hydrogel displays the tunable rheological with mechanical properties. The CS/HA/Si-HPMC hydrogel is highly porous with high swelling and degradation ratio. Increasing concentration of Si-HPMC promote an organized network in CS/HA/Si-HPMC hydrogels. Injectable CS/HA/Si-HPMC hydrogels have a high potential for cartilage tissue engineering.
Collapse
Affiliation(s)
- Mu Hu
- Department of Orthopedics, Ruijin Hospital North, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jielai Yang
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jihai Xu
- Department of Hand Surgery, Ningbo No. 6 Hospital, Jiangdong, Ningbo, China
| |
Collapse
|
28
|
Jacob S, Nair AB, Shah J, Sreeharsha N, Gupta S, Shinu P. Emerging Role of Hydrogels in Drug Delivery Systems, Tissue Engineering and Wound Management. Pharmaceutics 2021; 13:357. [PMID: 33800402 PMCID: PMC7999964 DOI: 10.3390/pharmaceutics13030357] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
The popularity of hydrogels as biomaterials lies in their tunable physical properties, ability to encapsulate small molecules and macromolecular drugs, water holding capacity, flexibility, and controllable degradability. Functionalization strategies to overcome the deficiencies of conventional hydrogels and expand the role of advanced hydrogels such as DNA hydrogels are extensively discussed in this review. Different types of cross-linking techniques, materials utilized, procedures, advantages, and disadvantages covering hydrogels are tabulated. The application of hydrogels, particularly in buccal, oral, vaginal, and transdermal drug delivery systems, are described. The review also focuses on composite hydrogels with enhanced properties that are being developed to meet the diverse demand of wound dressing materials. The unique advantages of hydrogel nanoparticles in targeted and intracellular delivery of various therapeutic agents are explained. Furthermore, different types of hydrogel-based materials utilized for tissue engineering applications and fabrication of contact lens are discussed. The article also provides an overview of selected examples of commercial products launched particularly in the area of oral and ocular drug delivery systems and wound dressing materials. Hydrogels can be prepared with a wide variety of properties, achieving biostable, bioresorbable, and biodegradable polymer matrices, whose mechanical properties and degree of swelling are tailored with a specific application. These unique features give them a promising future in the fields of drug delivery systems and applied biomedicine.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana 133203, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
29
|
KhaliliJafarabad N, Behnamghader A, Khorasani MT, Mozafari M. Platelet-rich plasma-hyaluronic acid/chondrotin sulfate/carboxymethyl chitosan hydrogel for cartilage regeneration. Biotechnol Appl Biochem 2021; 69:534-547. [PMID: 33608921 DOI: 10.1002/bab.2130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 02/07/2021] [Indexed: 12/30/2022]
Abstract
In this study, the chondrogenic potential of hyaluronic acid/chondrotin sulfate/carboxymethyl chitosan hydrogels with adipose-derived mesenchymal stem cells (ADMSCs) was evaluated. Here, hyaluronic acid, chondrotin sulfate, and carboxymethyl chitosan were used as the substrate for cartilage tissue engineering in which the hydrogel is formed due to electrostatic and hydrogen bonds through mixing the polymers. Because of the instability of this hydrogel in the biological environment, 1-ethyl-3-(3-dimethylaminopropyl-carbodiimide hydrochloride/N-hydroxy-succinimide was used as a crosslinker to increase the hydrogel stability. The hydrogels showed reasonable stability due to the combined effect of self-crosslinking and chemical crosslinking. The cells were treated with the prepared hydrogel samples for 14 and 21 days in nondifferentiation medium for evaluation of the cellular behavior of ADMSCs. Gene expression evaluation was performed, and expression of specific genes involved in differentiation was shown in the crosslinked hydrogel with platelet-rich plasma (PRP) (H-EN-P) had increased the gene expression levels. Quantification of immunofluorescence intensity indicated the high level of expression of SOX9 in H-EN-P hydrogel. Based on the results, we confirmed that the presence of PRP and the similarity of the hydrogel constituents to the cartilage extracellular matrix could have positive effects on the differentiation of the cells, which is favorable for cartilage tissue engineering approaches.
Collapse
Affiliation(s)
- Nadieh KhaliliJafarabad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aliasghar Behnamghader
- Departments of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Tehran, Iran
| | | | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Davis S, Roldo M, Blunn G, Tozzi G, Roncada T. Influence of the Mechanical Environment on the Regeneration of Osteochondral Defects. Front Bioeng Biotechnol 2021; 9:603408. [PMID: 33585430 PMCID: PMC7873466 DOI: 10.3389/fbioe.2021.603408] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Articular cartilage is a highly specialised connective tissue of diarthrodial joints which provides a smooth, lubricated surface for joint articulation and plays a crucial role in the transmission of loads. In vivo cartilage is subjected to mechanical stimuli that are essential for cartilage development and the maintenance of a chondrocytic phenotype. Cartilage damage caused by traumatic injuries, ageing, or degradative diseases leads to impaired loading resistance and progressive degeneration of both the articular cartilage and the underlying subchondral bone. Since the tissue has limited self-repairing capacity due its avascular nature, restoration of its mechanical properties is still a major challenge. Tissue engineering techniques have the potential to heal osteochondral defects using a combination of stem cells, growth factors, and biomaterials that could produce a biomechanically functional tissue, representative of native hyaline cartilage. However, current clinical approaches fail to repair full-thickness defects that include the underlying subchondral bone. Moreover, when tested in vivo, current tissue-engineered grafts show limited capacity to regenerate the damaged tissue due to poor integration with host cartilage and the failure to retain structural integrity after insertion, resulting in reduced mechanical function. The aim of this review is to examine the optimal characteristics of osteochondral scaffolds. Additionally, an overview on the latest biomaterials potentially able to replicate the natural mechanical environment of articular cartilage and their role in maintaining mechanical cues to drive chondrogenesis will be detailed, as well as the overall mechanical performance of grafts engineered using different technologies.
Collapse
Affiliation(s)
- Sarah Davis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Tosca Roncada
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
31
|
Fakhri E, Eslami H, Maroufi P, Pakdel F, Taghizadeh S, Ganbarov K, Yousefi M, Tanomand A, Yousefi B, Mahmoudi S, Kafil HS. Chitosan biomaterials application in dentistry. Int J Biol Macromol 2020; 162:956-974. [DOI: 10.1016/j.ijbiomac.2020.06.211] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022]
|
32
|
Sturtivant A, Callanan A. The use of antifreeze proteins to modify pore structure in directionally frozen alginate sponges for cartilage tissue engineering. Biomed Phys Eng Express 2020; 6:055016. [PMID: 33444247 DOI: 10.1088/2057-1976/aba7aa] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
It is thought that osteoarthritis is one of the world's leading causes of disability, with over 8.75 million people in the UK alone seeking medical treatment in 2013. Although a number of treatments are currently in use, a new wave of tissue engineered structures are being investigated as potential solutions for early intervention. One of the key challenges seen in cartilage tissue engineering is producing constructs that can support the formation of articular cartilage, rather than mechanically inferior fibrocartilage. Some research has suggested that mimicking structural properties of the natural cartilage can be used to enhance this response. Herein directional freezing was used to fabricate scaffolds with directionally aligned pores mimicking the mid-region of cartilage, anti-freeze proteins were used to modify the porous structure, which in turn effected the mechanical properties. Pore areas at the tops of the scaffolds were 180.46 ± 44.17 μm2 and 65.66 ± 36.20 μm2 for the AFP free and the AFP scaffolds respectively, and for the bases of the scaffolds were 91.22 ± 19.05 μm2 and 69.41 ± 21.94 μm2 respectively. Scaffolds were seeded with primary bovine chondrocytes, with viability maintained over the course of the study, and regulation of key genes was observed.
Collapse
Affiliation(s)
- Alexander Sturtivant
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Faraday Building, King's Buildings, EH9 3JL, United Kingdom
| | | |
Collapse
|
33
|
Korpayev S, Toprak Ö, Kaygusuz G, Şen M, Orhan K, Karakeçili A. Regulation of chondrocyte hypertrophy in an osteochondral interface mimicking gel matrix. Colloids Surf B Biointerfaces 2020; 193:111111. [PMID: 32531647 DOI: 10.1016/j.colsurfb.2020.111111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 11/29/2022]
Abstract
Calcified cartilage extracellular matrix (ECM) is a critical interface at the osteochondral junction which plays an important role in maintaining the structural continuity between articular cartilage and subchondral bone. This mineralized network is primarily composed of glycosaminoglycans (GAGs) and collagen type II (col II) and hosts hypertrophic chondrocytes. This work aimed to investigate the effect of gel composition and collagen II content on the behavior and hypertrophic differentiation of ATDC5 cells for regeneration of calcified cartilage tissue. For this purpose, chitosan/collagen type II/nanohydroxyapatite (chi/col II/nHA) composite hydrogels were prepared to mimic the calcified cartilage ECM. ATDC5 cells were encapsulated within the composite gels and the viability, ECM production and hypertrophic gene expression were assessed during culture. All composites were favorable for ATDC5 viability and proliferation, whereas specific ECM production and hypertrophic differentiation were dependent on gel composition. Chitosan: collagen II ratio had an impact on ATDC5 cell fate. Hypertrophic differentiation was best pronounced in chi/col II/nHA 70:30 composition. The results obtained from this study offers a scaffold-based approach for calcified cartilage regeneration and provide an insight for biomimetic design and preparation of more complicated gradient osteochondral units.
Collapse
Affiliation(s)
- Serdar Korpayev
- Ankara University, Biotechnology Institute, 06100, Ankara, Turkey
| | - Özge Toprak
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100, Ankara, Turkey
| | - Gülşah Kaygusuz
- Ankara University, Faculty of Medicine, Department of Pathology, 06100, Ankara, Turkey
| | - Murat Şen
- Hacettepe University, Department of Chemistry, Polymer Chemistry Division, 06800, Beytepe, Ankara, Turkey; Hacettepe University, Institute of Science, Polymer Science and Technology Division, Beytepe, 06800, Ankara, Turkey
| | - Kaan Orhan
- Ankara University, Faculty of Dentistry, Department of DentoMaxillofacial Radiology, 06100, Ankara, Turkey; OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, University of Leuven and Oral &Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Ayşe Karakeçili
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100, Ankara, Turkey.
| |
Collapse
|
34
|
Raj R, Sobhan PK, Pratheesh KV, Anilkumar TV. A cholecystic extracellular matrix-based hybrid hydrogel for skeletal muscle tissue engineering. J Biomed Mater Res A 2020; 108:1922-1933. [PMID: 32319161 DOI: 10.1002/jbm.a.36955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 12/26/2022]
Abstract
Tailoring the properties of extracellular matrix (ECM) based hydrogels by conjugating with synthetic polymers is an emerging method for designing hybridhydrogels for a wide range of tissue engineering applications. In this study, poly(ethylene glycol) diacrylate (PEGDA), a synthetic polymer at variable concentrations (ranging from 0.2 to 2% wt/vol) was conjugated with porcine cholecyst derived ECM (C-ECM) (1% wt/vol) and prepared a biosynthetic hydrogel having enhanced physico-mechanical properties, as required for skeletal muscle tissue engineering. The C-ECM was functionalized with acrylate groups using activated N-hydroxysuccinimide ester-based chemistry and then conjugated with PEGDA via free-radical polymerization in presence of ammonium persulfate and ascorbic acid. The physicochemical characteristics of the hydrogels were evaluated by Fourier transform infrared spectroscopy and environmental scanning electron microscopy. Further, the hydrogel properties were studied by evaluating rheology, swelling, gelation time, percentage gel fraction, in vitro degradation, and mechanical strength. Biocompatibility of the gel formulations were assessed using the C2C12 skeletal myoblast cells. The hydrogel formulations containing 0.2 and 0.5% wt/vol of PEGDA were non-cytotoxic and found suitable for growth and proliferation of skeletal myoblasts. The study demonstrated a method for modulating the properties of ECM hydrogels through conjugation with bio-inert polymers for skeletal muscle tissue engineering applications.
Collapse
Affiliation(s)
- Reshmi Raj
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695012, India
| | - Praveen K Sobhan
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695012, India
| | - Kanakarajan V Pratheesh
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695012, India
| | - Thapasimuthu V Anilkumar
- Division of Experimental Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695012, India
| |
Collapse
|
35
|
Bachmann B, Spitz S, Schädl B, Teuschl AH, Redl H, Nürnberger S, Ertl P. Stiffness Matters: Fine-Tuned Hydrogel Elasticity Alters Chondrogenic Redifferentiation. Front Bioeng Biotechnol 2020; 8:373. [PMID: 32426347 PMCID: PMC7204401 DOI: 10.3389/fbioe.2020.00373] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
Biomechanical cues such as shear stress, stretching, compression, and matrix elasticity are vital in the establishment of next generation physiological in vitro tissue models. Matrix elasticity, for instance, is known to guide stem cell differentiation, influence healing processes and modulate extracellular matrix (ECM) deposition needed for tissue development and maintenance. To better understand the biomechanical effect of matrix elasticity on the formation of articular cartilage analogs in vitro, this study aims at assessing the redifferentiation capacity of primary human chondrocytes in three different hydrogel matrices of predefined matrix elasticities. The hydrogel elasticities were chosen to represent a broad spectrum of tissue stiffness ranging from very soft tissues with a Young’s modulus of 1 kPa up to elasticities of 30 kPa, representative of the perichondral-space. In addition, the interplay of matrix elasticity and transforming growth factor beta-3 (TGF-β3) on the redifferentiation of primary human articular chondrocytes was studied by analyzing both qualitative (viability, morphology, histology) and quantitative (RT-qPCR, sGAG, DNA) parameters, crucial to the chondrotypic phenotype. Results show that fibrin hydrogels of 30 kPa Young’s modulus best guide chondrocyte redifferentiation resulting in a native-like morphology as well as induces the synthesis of physiologic ECM constituents such as glycosaminoglycans (sGAG) and collagen type II. This comprehensive study sheds light onto the mechanobiological impact of matrix elasticity on formation and maintenance of articular cartilage and thus represents a major step toward meeting the need for advanced in vitro tissue models to study both re- and degeneration of articular cartilage.
Collapse
Affiliation(s)
- Barbara Bachmann
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria.,AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Competence Center MechanoBiology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sarah Spitz
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Schädl
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Andreas H Teuschl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Heinz Redl
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Sylvia Nürnberger
- AUVA Research Centre, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Division of Trauma-Surgery, Department of Orthopedics and Trauma-Surgery, Medical University of Vienna, Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
36
|
Korpayev S, Kaygusuz G, Şen M, Orhan K, Oto Ç, Karakeçili A. Chitosan/collagen based biomimetic osteochondral tissue constructs: A growth factor-free approach. Int J Biol Macromol 2020; 156:681-690. [PMID: 32320808 DOI: 10.1016/j.ijbiomac.2020.04.109] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/20/2022]
Abstract
Tissue engineering approach offers alternative strategies to develop multi-layered/multi-component osteochondral mimetic constructs to meet the requirements of the heterogeneous and layered structure of native osteochondral tissue. Herein, an iterative overlaying process to fabricate a multi-layered scaffold with a gradient composition and layer specific structure have been developed by combining the natural extracellular matrix (ECM) components-chitosan, type I collagen, type II collagen, nanohydroxyapatite- of the osteochondral tissue in biomimetic compositions. Subchondral bone layer was prepared by using freeze-drying method to obtain 3D porous scaffolds. The calcified cartilage and cartilage layers were prepared by thermal gelation method in the hydrogel form. Osteochondral scaffolds fabricated by iterative overlaying of each distinct layer exhibited a porous, continuous gradient structure and supported cell proliferation in a co-culture of MC3T3-E1 preosteoblasts and ATDC5 chondrocytes. Histology and biochemical analysis showed enhanced extracellular matrix production and demonstrated collagen and glycosaminoglycan deposition. Expression of genes specific for bone, calcified cartilage and cartilage were improved in the osteochondral scaffold. Overall, these findings suggest that iterative overlaying of freeze-dried scaffolds and hydrogel matrices prepared by using ECM components in biomimetic ratios to fabricate gradient, multi-layered structures can be a promising strategy without the need for growth factors.
Collapse
Affiliation(s)
- Serdar Korpayev
- Ankara University, Biotechnology Institute, 06100 Ankara, Turkey
| | - Gülşah Kaygusuz
- Ankara University, Faculty of Medicine, Department of Pathology, 06100 Ankara, Turkey
| | - Murat Şen
- Hacettepe University, Department of Chemistry, Polymer Chemistry Division, 06800, Beytepe, Ankara, Turkey; Hacettepe University, Institute of Science, Polymer Science and Technology Division, Beytepe, 06800 Ankara, Turkey
| | - Kaan Orhan
- Ankara University, Faculty of Dentistry, Department of Dentomaxillofacial Radiology, 06100, Ankara Turkey; OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, University of Leuven and Oral &Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Çağdaş Oto
- Ankara University, Faculty of Veterinary Medicine, Department of Basic Science, 06110 Ankara, Turkey
| | - Ayşe Karakeçili
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100 Ankara, Turkey.
| |
Collapse
|
37
|
Wahba MI. Enhancement of the mechanical properties of chitosan. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:350-375. [PMID: 31766978 DOI: 10.1080/09205063.2019.1692641] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Chitosan (CS) has been investigated for copious applications in the biomedical, industrial and environmental fields owing to its diverse advantageous traits. Nevertheless, CS exhibits debilitated mechanical stability. This debilitated mechanical stability constitutes an obstacle to nearly all of CS's applications. Hence, in this review we discussed different approaches that could be adopted in order to escalate the mechanical properties of CS. Chemical cross-linking was among these approaches where CS was chemically cross-linked with various agents, such as glutaraldehyde, vanillin, and genipin. Different plasticizers were also incorporated with CS. Moreover, nano-materials were added to CS so as to form nano-composites of enhanced mechanical properties. Porogens were also employed to increase the surface area available for the CS's physical and chemical cross-linking processes. Other reports attempted to modify the fabrication conditions and gelling system of CS as a means of producing mechanically stable CS gels.
Collapse
Affiliation(s)
- Marwa I Wahba
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Giza, Egypt.,Centre of Scientific Excellence-Group of Advanced Materials and Nanobiotechnology, National Research Centre, Giza, Egypt
| |
Collapse
|
38
|
Pérez-Madrigal MM, Shaw JE, Arno MC, Hoyland JA, Richardson SM, Dove AP. Robust alginate/hyaluronic acid thiol-yne click-hydrogel scaffolds with superior mechanical performance and stability for load-bearing soft tissue engineering. Biomater Sci 2019; 8:405-412. [PMID: 31729512 DOI: 10.1039/c9bm01494b] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydrogels based on hyaluronic acid (HA) exhibit great potential as tissue engineering (TE) scaffolds as a consequence of their unique biological features. Herein, we examine how the advantages of two natural polymers (i.e. HA and alginate) are combined with the efficiency and rapid nature of the thiol-yne click chemistry reaction to obtain biocompatible matrices with tailored properties. Our injectable click-hydrogels revealed excellent mechanical performance, long-term stability, high cytocompatibility and adequate stiffness for the targeted application. This simple approach yielded HA hydrogels with characteristics that make them suitable for applications as 3D scaffolds to support and promote soft tissue regeneration.
Collapse
Affiliation(s)
| | - Joshua E Shaw
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Maria C Arno
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK.
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK and NIHR Manchester Biomedical Research Centre, Central Manchester Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Andrew P Dove
- School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
39
|
Pandit AH, Mazumdar N, Ahmad S. Periodate oxidized hyaluronic acid-based hydrogel scaffolds for tissue engineering applications. Int J Biol Macromol 2019; 137:853-869. [DOI: 10.1016/j.ijbiomac.2019.07.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
|
40
|
Kaviani A, Zebarjad SM, Javadpour S, Ayatollahi M, Bazargan-Lari R. Fabrication and characterization of low-cost freeze-gelated chitosan/collagen/hydroxyapatite hydrogel nanocomposite scaffold. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2019. [DOI: 10.1080/1023666x.2018.1562477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alireza Kaviani
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran
| | - Seyed Mojtaba Zebarjad
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran
| | - Sirus Javadpour
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran
| | - Maryam Ayatollahi
- Bone and Joint Disease Research Center, Shiraz University Of Medical Science, Shiraz, Iran
| | - Reza Bazargan-Lari
- Department of Materials Science and Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
41
|
A novel injectable in situ forming gel based on carboxymethyl hexanoyl chitosan/hyaluronic acid polymer blending for sustained release of berberine. Carbohydr Polym 2019; 206:664-673. [DOI: 10.1016/j.carbpol.2018.11.050] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/28/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022]
|
42
|
Lee K, Chen Y, Li X, Wang Y, Kawazoe N, Yang Y, Chen G. Solution viscosity regulates chondrocyte proliferation and phenotype during 3D culture. J Mater Chem B 2019; 7:7713-7722. [DOI: 10.1039/c9tb02204j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chondrocytes are cultured in a 3D biphasic gelatin solution/hydrogel system. Solution viscosity affects chondrocyte functions. High viscosity is more beneficial for cell phenotype maintenance, while low viscosity is more beneficial for proliferation.
Collapse
Affiliation(s)
- Kyubae Lee
- Research Center for Functional Materials
- National Institute for Materials Science
- Ibaraki
- Japan
- Department of Materials Science and Engineering
| | - Yazhou Chen
- Research Center for Functional Materials
- National Institute for Materials Science
- Ibaraki
- Japan
- Department of Materials Science and Engineering
| | - Xiaomeng Li
- Research Center for Functional Materials
- National Institute for Materials Science
- Ibaraki
- Japan
- School of Mechanics and Engineering Science
| | - Yongtao Wang
- Research Center for Functional Materials
- National Institute for Materials Science
- Ibaraki
- Japan
- Department of Materials Science and Engineering
| | - Naoki Kawazoe
- Research Center for Functional Materials
- National Institute for Materials Science
- Ibaraki
- Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science
- University of Tsukuba
- Ibaraki 305-8571
- Japan
| | - Guoping Chen
- Research Center for Functional Materials
- National Institute for Materials Science
- Ibaraki
- Japan
- Department of Materials Science and Engineering
| |
Collapse
|
43
|
Shariatinia Z. Pharmaceutical applications of chitosan. Adv Colloid Interface Sci 2019; 263:131-194. [PMID: 30530176 DOI: 10.1016/j.cis.2018.11.008] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 01/06/2023]
Abstract
Chitosan (CS) is a linear polysaccharide which is achieved by deacetylation of chitin, which is the second most plentiful compound in nature, after cellulose. It is a linear copolymer of β-(1 → 4)-linked 2-acetamido-2-deoxy-β-d-glucopyranose and 2-amino-2-deoxy-β-d-glucopyranose. It has appreciated properties such as biocompatibility, biodegradability, hydrophilicity, nontoxicity, high bioavailability, simplicity of modification, favorable permselectivity of water, outstanding chemical resistance, capability to form films, gels, nanoparticles, microparticles and beads as well as affinity to metals, proteins and dyes. Also, the biodegradable CS is broken down in the human body to safe compounds (amino sugars) which are easily absorbed. At present, CS and its derivatives are broadly investigated in numerous pharmaceutical and medical applications including drug/gene delivery, wound dressings, implants, contact lenses, tissue engineering and cell encapsulation. Besides, CS has several OH and NH2 functional groups which allow protein binding. CS with a deacetylation degree of ~50% is soluble in aqueous acidic environment. While CS is dissolved in acidic medium, its amino groups in the polymeric chains are protonated and it becomes cationic which allows its strong interaction with different kinds of molecules. It is believed that this positive charge is responsible for the antimicrobial activity of CS through the interaction with the negatively charged cell membranes of microorganisms. This review presents properties and numerous applications of chitosan-based compounds in drug delivery, gene delivery, cell encapsulation, protein binding, tissue engineering, preparation of implants and contact lenses, wound healing, bioimaging, antimicrobial food additives, antibacterial food packaging materials and antibacterial textiles. Moreover, some recent molecular dynamics simulations accomplished on the pharmaceutical applications of chitosan were presented.
Collapse
|
44
|
Jiang T, Kai D, Liu S, Huang X, Heng S, Zhao J, Chan BQY, Loh XJ, Zhu Y, Mao C, Zheng L. Mechanically cartilage-mimicking poly(PCL-PTHF urethane)/collagen nanofibers induce chondrogenesis by blocking NF-kappa B signaling pathway. Biomaterials 2018; 178:281-292. [PMID: 29945065 PMCID: PMC6301151 DOI: 10.1016/j.biomaterials.2018.06.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/26/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022]
Abstract
Cartilage cannot self-repair and thus regeneration is a promising approach to its repair. Here we developed new electrospun nanofibers, made of poly (ε-caprolactone)/polytetrahydrofuran (PCL-PTHF urethane) and collagen I from calf skin (termed PC), to trigger the chondrogenic differentiation of mesenchymal stem cells (MSCs) and the cartilage regeneration in vivo. We found that the PC nanofibers had a modulus (4.3 Mpa) lower than the PCL-PTHF urethane nanofibers without collagen I from calf skin (termed P) (6.8 Mpa) although both values are within the range of the modulus of natural cartilage (1-10 MPa). Both P and PC nanofibers did not show obvious difference in the morphology and size. Surprisingly, in the absence of the additional chondrogenesis inducers, the softer PC nanofibers could induce the chondrogenic differentiation in vitro and cartilage regeneration in vivo more efficiently than the stiffer P nanofibers. Using mRNA-sequence analysis, we found that the PC nanofibers outperformed P nanofibers in inducing chondrogenesis by specifically blocking the NF-kappa B signaling pathway to suppress inflammation. Our work shows that the PC nanofibers can serve as building blocks of new scaffolds for cartilage regeneration and provides new insights on the effect of the mechanical properties of the nanofibers on the cartilage regeneration.
Collapse
Affiliation(s)
- Tongmeng Jiang
- Department of Bone and Joint Surgery & Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), A*STAR, 3 Research Link, Singapore 117602, Singapore
| | - Sijia Liu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China; School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Xianyuan Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Shujun Heng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Department of Bone and Joint Surgery & Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| | - Benjamin Qi Yu Chan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), A*STAR, 3 Research Link, Singapore 117602, Singapore; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore; Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore 168751, Singapore
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300, USA
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300, USA; School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
45
|
Karabiyik Acar O, Kayitmazer AB, Torun Kose G. Hyaluronic Acid/Chitosan Coacervate-Based Scaffolds. Biomacromolecules 2018; 19:1198-1211. [DOI: 10.1021/acs.biomac.8b00047] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ozge Karabiyik Acar
- Department of Genetics and Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
| | | | - Gamze Torun Kose
- Department of Genetics and Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
| |
Collapse
|