1
|
Grilc NK, Kristl J, Zupančič Š. Can polymeric nanofibers effectively preserve and deliver live therapeutic bacteria? Colloids Surf B Biointerfaces 2024; 245:114329. [PMID: 39486375 DOI: 10.1016/j.colsurfb.2024.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Probiotics and live therapeutic bacteria (LTB), their strictly regulated therapeutic counterpart, are increasingly important in treating and preventing biofilm-related diseases. This necessitates new approaches to (i) preserve bacterial viability during manufacturing and storage and (ii) incorporate LTB into delivery systems for enhanced therapeutic efficacy. This review explores advances in probiotic and LTB product development, focusing on preservation, protection, and improved delivery. Preservation of bacteria can be achieved by drying methods that decelerate metabolism. These methods introduce stresses affecting viability which can be mitigated with suitable excipients like polymeric or low molecular weight stabilizers. The review emphasizes the incorporation of LTB into polymer-based nanofibers via electrospinning, enabling simultaneous drying, encapsulation, and delivery system production. Optimization of bacterial survival during electrospinning and storage is discussed, as well as controlled LTB release achievable through formulation design using gel-forming, gastroprotective, mucoadhesive, and pH-responsive polymers. Evaluation of the presence of the actual therapeutic strains, bacterial viability and activity by CFU enumeration or alternative analytical techniques is presented as a key aspect of developing effective and safe formulations with LTB. This review offers insights into designing delivery systems, especially polymeric nanofibers, for preservation and delivery of LTB, guiding readers in developing innovative biotherapeutic delivery systems.
Collapse
Affiliation(s)
- Nina Katarina Grilc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Julijana Kristl
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
2
|
Harris CG, Semprini L, Rochefort WE, Fogg KC. Statistical optimization of cell-hydrogel interactions for green microbiology - a tutorial review. RSC SUSTAINABILITY 2024:d4su00400k. [PMID: 39464839 PMCID: PMC11499971 DOI: 10.1039/d4su00400k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
In this tutorial mini-review, we explore the application of Design of Experiments (DOE) as a powerful statistical tool in biotechnology. Specifically, we review the optimization of hydrogel materials for diverse microbial applications related to green microbiology, the use of microbes to promote sustainability. Hydrogels, three-dimensional polymers networks with high water retention capabilities, are pivotal in the immobilization of microorganisms and provide a customizable environment essential for directing microbial fate. We focus on the application of DOE to precisely tailor hydrogel compositions for a range of fungi and bacteria either used for the sustainable production of chemical compounds, or the elimination of hazardous substances. We examine a variety of DOE design strategies such as central composite designs, Box-Behnken designs, and optimal designs, and discuss their strategic implementation across diverse hydrogel formulations. Our analysis explores the integral role of DOE in refining hydrogels derived from a spectrum of polymers, including natural and synthetic polymers. We illustrate how DOE facilitates nuanced control over hydrogel properties that cannot be achieved using a standard one factor at a time approach. Furthermore, this review reveals a conserved finding across different materials and applications: there are significant interactions between hydrogel parameters and cell behavior. This highlights the intricacies of cell-hydrogel interactions and the impact on hydrogel material properties and cellular functions. Lastly, this review not only highlights DOE's efficacy in streamlining the optimization of cell-hydrogel processes but also positions it as a critical tool in advancing our understanding of cell-hydrogel dynamics, potentially leading to innovative advancements in biotechnological applications and bioengineering solutions.
Collapse
Affiliation(s)
- Conor G Harris
- School of Chemical, Biological, and Environmental Engineering, Oregon State University Corvallis OR 97331 USA +1 541-737-1777
| | - Lewis Semprini
- School of Chemical, Biological, and Environmental Engineering, Oregon State University Corvallis OR 97331 USA +1 541-737-1777
| | - Willie E Rochefort
- School of Chemical, Biological, and Environmental Engineering, Oregon State University Corvallis OR 97331 USA +1 541-737-1777
| | - Kaitlin C Fogg
- School of Chemical, Biological, and Environmental Engineering, Oregon State University Corvallis OR 97331 USA +1 541-737-1777
| |
Collapse
|
3
|
Swastha D, Varsha N, Aravind S, Samyuktha KB, Yokesh MM, Balde A, Ayilya BL, Benjakul S, Kim SK, Nazeer RA. Alginate-based drug carrier systems to target inflammatory bowel disease: A review. Int J Biol Macromol 2023:125472. [PMID: 37336375 DOI: 10.1016/j.ijbiomac.2023.125472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory disorder that affects the gastrointestinal tract. IBD has become an increasingly common condition in both developed and developing nations over the last few decades, owing to a variety of factors like a rising population and diets packed with processed and junk foods. While the root pathophysiology of IBD is unknown, treatments are focused on medications aimed to mitigate symptoms. Alginate (AG), a marine-derived polysaccharide, is extensively studied for its biocompatibility, pH sensitivity, and crosslinking nature. This polymer is thoroughly researched in drug delivery systems for IBD treatment, as it is naturally available, non-toxic, cost effective, and can be easily and safely cross-linked with other polymers to form an interconnected network, which helps in controlling the release of drugs over an extended period. There are various types of drug delivery systems developed from AG to deliver therapeutic agents; among them, nanotechnology-based systems and hydrogels are popular due to their ability to facilitate targeted drug delivery, reduce dosage, and increase the therapeutic efficiency. AG-based carrier systems are not only used for the sustained release of drug, but also used in the delivery of siRNA, interleukins, and stem cells for site directed drug delivery and tissue regenerating ability respectively. This review is focussed on pathogenesis and currently studied medications for IBD, AG-based drug delivery systems and their properties for the alleviation of IBD. Moreover, future challenges are also be discoursed to improve the research of AG in the field of biopharmaceuticals and drug delivery.
Collapse
Affiliation(s)
- Dinakar Swastha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Nambolan Varsha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Suresh Aravind
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Kavassery Balasubramanian Samyuktha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Muruganandam Mohaneswari Yokesh
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Bakthavatchalam Loganathan Ayilya
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkhla University, 90112 Hat Yai, Songkhla, Thailand
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 11558, Gyeonggi-do, South Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRMInstitute of Science and Technology, Kattankulathur, Chennai, 603203, Tamilnadu, India.
| |
Collapse
|
4
|
Bassi A, Sharma G, Deol PK, Madempudi RS, Kaur IP. Preclinical Potential of Probiotic-Loaded Novel Gelatin-Oil Vaginal Suppositories: Efficacy, Stability, and Safety Studies. Gels 2023; 9:gels9030244. [PMID: 36975693 PMCID: PMC10048646 DOI: 10.3390/gels9030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The current study describes a suppository base composed of aqueous gelatin solution emulsifying oil globules with probiotic cells dispersed within. The favorable mechanical properties of gelatin to provide a solid gelled structure, and the tendency of its proteins to unravel into long strings that interlace when cooled, lead to a three-dimensional structure that can trap a lot of liquid, which was exploited herein to result in a promising suppository form. The latter maintained incorporated probiotic spores of Bacillus coagulans Unique IS-2 in a viable but non-germinating form, preventing spoilage during storage and imparting protection against the growth of any other contaminating organism (self-preserved formulation). The gelatin-oil-probiotic suppository showed uniformity in weight and probiotic content (23 ± 2.481 × 108 cfu) with favorable swelling (double) followed by erosion and complete dissolution within 6 h of administration, leading to the release of probiotic (within 45 min) from the matrix into simulated vaginal fluid. Microscopic images indicated presence of probiotics and oil globules enmeshed in the gelatin network. High viability (24.3 ± 0.46 × 108), germination upon application and a self-preserving nature were attributed to the optimum water activity (0.593 aw) of the developed composition. The retention of suppositories, germination of probiotics and their in vivo efficacy and safety in vulvovaginal candidiasis murine model are also reported.
Collapse
Affiliation(s)
- Anchal Bassi
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Garima Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Parneet Kaur Deol
- G.H.G. Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana 141104, India
| | | | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| |
Collapse
|
5
|
Liu D, Wei M, Yan W, Xie H, Sun Y, Yuan B, Jin Y. Potential applications of drug delivery technologies against radiation enteritis. Expert Opin Drug Deliv 2023; 20:435-455. [PMID: 36809906 DOI: 10.1080/17425247.2023.2183948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
INTRODUCTION The incidence of abdominal tumors, such as colorectal and prostate cancers, continually increases. Radiation therapy is widely applied in the clinical treatment of patients with abdominal/pelvic cancers, but it often unfortunately causes radiation enteritis (RE) involving the intestine, colon, and rectum. However, there is a lack of suitable treatment options for effective prevention and treatment of RE. AREAS COVERED Conventional clinical drugs for preventing and treating RE are usually applied by enemas and oral administration. Innovative gut-targeted drug delivery systems including hydrogels, microspheres, and nanoparticles are proposed to improve the prevention and curation of RE. EXPERT OPINION The prevention and treatment of RE have not attracted sufficient attention in the clinical practice, especially compared to the treatment of tumors, although RE takes patients great pains. Drug delivery to the pathological sites of RE is a huge challenge. The short retention and weak targeting of conventional drug delivery systems affect the therapeutic efficiency of anti-RE drugs. Novel drug delivery systems including hydrogels, microspheres, and nanoparticles can allow drugs long-term retention in the gut and targeting the inflammation sites to alleviate radiation-induced injury.
Collapse
Affiliation(s)
- Dongdong Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Meng Wei
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wenrui Yan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hua Xie
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yingbao Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bochuan Yuan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
6
|
Bauer-Estrada K, Sandoval-Cuellar C, Rojas-Muñoz Y, Quintanilla-Carvajal MX. The modulatory effect of encapsulated bioactives and probiotics on gut microbiota: improving health status through functional food. Food Funct 2023; 14:32-55. [PMID: 36515144 DOI: 10.1039/d2fo02723b] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The gut microbiota can be a determining factor of the health status of the host by its association with some diseases. It is known that dietary intake can modulate this microbiota through the consumption of compounds like essential oils, unsaturated fatty acids, non-digestible fiber, and probiotics, among others. However, these kinds of compounds can be damaged in the gastrointestinal tract as they pass through it to reach the intestine. This is due to the aggressive and changing conditions of this tract. For this reason, to guarantee that compounds arrive in the intestine at an adequate concentration to exert a modulatory effect on the gut microbiota, encapsulation should be sought. In this paper, we review the current research on compounds that modulate the gut microbiota, the encapsulation techniques used to protect the compounds through the gastrointestinal tract, in vitro models of this tract, and how these encapsulates interact with the gut microbiota. Finally, an overview of the regulatory status of these encapsulates is presented. The key findings are that prebiotics are the best modulators of gut microbiota fermentation metabolites. Also, probiotics promote an increase of beneficial gut microorganisms, which in some cases promotes their fermentation metabolites as well. Spray drying, freeze drying, and electrodynamics are notable encapsulation techniques that permit high encapsulation efficiency, high viability, and, together with wall materials, a high degree of protection against gastrointestinal conditions, allowing controlled release in the intestine and exerting a modulatory effect on gut microbiota.
Collapse
|
7
|
Nezamdoost-Sani N, Khaledabad MA, Amiri S, Mousavi Khaneghah A. Alginate and derivatives hydrogels in encapsulation of probiotic bacteria: An updated review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Yu W, Liang Z, Li Q, Liu Y, Liu X, Jiang L, Liu C, Zhang Y, Kang C, Yan J. The pharmacological validation of the Xiao-Jian-Zhong formula against ulcerative colitis by network pharmacology integrated with metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115647. [PMID: 35987415 DOI: 10.1016/j.jep.2022.115647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is pathologically characterized by an immune response accommodative insufficiency and dysbiosis accompanied by persistent epithelial barrier dysfunction, and is divided into ulcerative colitis (UC) and Crohn's disease (CD). Its progression increases the susceptibility to colitis-associated cancer (CAC), as well as other complications. The Xiao-Jian-Zhong (XJZ) formula has a historical application in the clinic to combat gastrointestinal disorders. AIM OF THE STUDY The investigation aimed to explore the molecular and cellular mechanisms of XJZ. MATERIALS AND METHODS Dextran sodium sulfate (DSS) was diluted in drinking water and given to mice for a week to establish murine models of experimental colitis, and the XJZ solution was administered for two weeks. Network pharmacology analysis and weighted gene co-expression network analysis (WGCNA) were utilized to predict the therapeutic role of XJZ against UC and CAC. 16S rRNA sequencing and untargeted metabolomics were conducted utilizing murine feces to examine the changes in the microbiome profile. Biochemical experiments were conducted to confirm the predicted functions. RESULTS XJZ treatment markedly attenuated DSS-induced experimental colitis progression, and the targets were enriched in inflammation, infection, and tumorigenesis, predicted by network pharmacology analysis. Based on The Cancer Genome Atlas (TCGA) database, the XJZ-targets were related to the survival probability in patients with colorectal cancer, underlying a potential therapeutic value in cancer intervention. Moreover, the XJZ therapy successfully rescued the decreased richness and diversity of microbiota, suppressed the potentially pathogenic phenotype of the gut microorganisms, and reversed the declined linoleic acid metabolism and increased cytochrome P450 activity in murine colitis models. Our in-vitro experiments confirmed that the XJZ treatment suppressed Caspase1-dependent pyroptosis and increased peroxisome proliferators-activated receptor-γ(PPAR-γ) expression in the colon, facilitated the alternative activation of macrophages (Mφs), inhibited tumor necrosis factor-α (TNFα)-induced reactive oxygen species (ROS) level in intestinal organoids (IOs), thereby favoring the mucosal healing. CONCLUSION The XJZ formula is efficacious for colitis by a prompt resolution of inflammation and dysbiosis, and by re-establishing a microbiome profile that favors re-epithelization, and prevents carcinogenesis.
Collapse
Affiliation(s)
- Wei Yu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Zhenghao Liang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Qi Li
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Yanzhi Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Xincheng Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Lu Jiang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Chen Liu
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Yijia Zhang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Cai Kang
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| | - Jing Yan
- Department of Physiology, Jining Medical University, Jining City, Shandong province, China.
| |
Collapse
|
9
|
Liu J, Hao D, Guo Z, Yu L, Li T, Mei K, Li X, Chen J, Wu Q. Multi-unit pellet drug delivery system of Danggui Decoction extracts for chemoprevention of IBD-associated colorectal cancer in rats. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Amiri S, Nezamdoost-Sani N, Mostashari P, McClements DJ, Marszałek K, Mousavi Khaneghah A. Effect of the molecular structure and mechanical properties of plant-based hydrogels in food systems to deliver probiotics: an updated review. Crit Rev Food Sci Nutr 2022; 64:2130-2156. [PMID: 36121429 DOI: 10.1080/10408398.2022.2121260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Probiotic products' economic value and market popularity have grown over time as more people discover their health advantages and adopt healthier lifestyles. There is a significant societal and cultural interest in these products known as foods or medicines. Products containing probiotics that claim to provide health advantages must maintain a "minimum therapeutic" level (107-106 CFU/g) of bacteria during their entire shelf lives. Since probiotic bacteria are susceptible to degradation and reduction by physical and chemical conditions (including acidity, natural antimicrobial agents, nutrient contents, redox potential, temperature, water activity, the existence of other bacteria, and sensitivity to metabolites), the most challenging problem for a food manufacturer is ensuring probiotic cells' survival and stability enhancement throughout the manufacturing stage. Currently, the use of plant-based hydrogels for improved and targeted probiotic delivery has gained substantial attention as a potential approach to overcoming the mentioned restrictions. To achieve the best possible results from hydrogels, whether used as a coating for encapsulated probiotics (with the goal of stomach protection) or as carriers for direct encapsulation of live microorganisms should be applied kind of procedures that ensure high bacterial survival during hydrogels application. This paper summarizes polysaccharides, proteins, and lipid-based hydrogels as carriers of encapsulated probiotics in delivery systems, reviews their structures, analyzes their advantages and disadvantages, studies their mechanical characteristics, and draws comparisons between them. The discussion then turns to how the criterion affects encapsulation, applications, and future possibilities.
Collapse
Affiliation(s)
- Saber Amiri
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Narmin Nezamdoost-Sani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Parisa Mostashari
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Warsaw, Poland
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Warsaw, Poland
| |
Collapse
|
11
|
Natural polysaccharides and proteins applied to the development of gastroresistant multiparticulate systems for anti-inflammatory drug delivery – A systematic review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Holkem AT, Silva MPD, Favaro-Trindade CS. Probiotics and plant extracts: a promising synergy and delivery systems. Crit Rev Food Sci Nutr 2022; 63:9561-9579. [PMID: 35445611 DOI: 10.1080/10408398.2022.2066623] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a current interest in healthy diets and supplements, indicating the relevance of novel delivery systems for plant extracts rich in bioactive compounds and probiotics. This simultaneous delivery system can be prospective for health. In this sense, investigating foods rich in bioactive compounds or supplemented by them for incorporating probiotics and some approaches to improve probiotic survivability, such as the choice of resistant probiotic strains or microencapsulation, is valuable. This review addresses a brief discussion about the role of phenolic compounds, chlorophyll and carotenoids from plants and probiotics in gut health, indicating the benefits of this association. Also, an overview of delivery systems used in recent studies is shown, considering their advantages for incorporation in food matrices. Delivery systems containing compounds recovered from plants can reduce probiotic oxidative stress, improving survivability. However, investigating the beneficial concentration of some bioactive compounds from plant extracts is relevant due to their antimicrobial potential. In addition, further clinical trials and toxicological studies of plant extracts are pertinent to ensure safety. Thus, the recovery of extracts from plants emerges as an alternative to providing multiple compounds with antioxidant potential, increasing the preservation of probiotics and allowing the fortification or enrichment of food matrices.
Collapse
Affiliation(s)
- Augusto Tasch Holkem
- Department of Biomedical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Marluci Palazzolli da Silva
- Department of Food Engineering, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Carmen Silvia Favaro-Trindade
- Department of Food Engineering, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| |
Collapse
|
13
|
Shen CL, Wang R, Ji G, Elmassry MM, Zabet-Moghaddam M, Vellers H, Hamood AN, Gong X, Mirzaei P, Sang S, Neugebauer V. Dietary supplementation of gingerols- and shogaols-enriched ginger root extract attenuate pain-associated behaviors while modulating gut microbiota and metabolites in rats with spinal nerve ligation. J Nutr Biochem 2022; 100:108904. [PMID: 34748918 PMCID: PMC8794052 DOI: 10.1016/j.jnutbio.2021.108904] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
Neuroinflammation is a central factor in neuropathic pain (NP). Ginger is a promising bioactive compound in NP management due to its anti-inflammatory property. Emerging evidence suggests that gut microbiome and gut-derived metabolites play a key role in NP. We evaluated the effects of two ginger root extracts rich in gingerols (GEG) and shogaols (SEG) on pain sensitivity, anxiety-like behaviors, circulating cell-free mitochondrial DNA (ccf-mtDNA), gut microbiome composition, and fecal metabolites in rats with NP. Sixteen male rats were divided into four groups: sham, spinal nerve ligation (SNL), SNL+0.75%GEG in diet, and SNL+0.75%SEG in diet groups for 30 days. Compared to SNL group, both SNL+GEG and SNL+SEG groups showed a significant reduction in pain- and anxiety-like behaviors, and ccf-mtDNA level. Relative to the SNL group, both SNL+GEG and SNL+SEG groups increased the relative abundance of Lactococcus, Sellimonas, Blautia, Erysipelatoclostridiaceae, and Anaerovoracaceae, but decreased that of Prevotellaceae UCG-001, Rikenellaceae RC9 gut group, Mucispirillum and Desulfovibrio, Desulfovibrio, Anaerofilum, Eubacterium siraeum group, RF39, UCG-005, Lachnospiraceae NK4A136 group, Acetatifactor, Eubacterium ruminantium group, Clostridia UCG-014, and an uncultured Anaerovoracaceae. GEG and SEG had differential effects on gut-derived metabolites. Compared to SNL group, SNL+GEG group had higher level of 1'-acetoxychavicol acetate, (4E)-1,7-Bis(4-hydroxyphenyl)-4-hepten-3-one, NP-000629, 7,8-Dimethoxy-3-(2-methyl-3-buten-2-yl)-2H-chromen-2-one, 3-{[4-(2-Pyrimidinyl)piperazino]carbonyl}-2-pyrazinecarboxylic acid, 920863, and (1R,3R,7R,13S)-13-Methyl-6-methylene-4,14,16-trioxatetracyclo[11.2.1.0∼1,10∼.0∼3,7∼]hexadec-9-en-5-one, while SNL+SEG group had higher level for (±)-5-[(tert-Butylamino)-2'-hydroxypropoxy]-1_2_3_4-tetrahydro-1-naphthol and dehydroepiandrosteronesulfate. In conclusion, ginger is a promising functional food in the management of NP, and further investigations are necessary to assess the role of ginger on gut-brain axis in pain management.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Technical University Health Sciences Center, Lubbock, Texas; Center of Excellence for Integrative Health, Texas Technical University Health Sciences Center, Lubbock, Texas; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Technical University Health Sciences Center, Lubbock, Texas.
| | - Rui Wang
- Department of Pathology, Texas Technical University Health Sciences Center, Lubbock, Texas
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Technical University Health Sciences Center, Lubbock, Texas
| | - Moamen M Elmassry
- Department of Biological Sciences, Texas Technical University, Lubbock, Texas
| | | | - Heather Vellers
- Department of Kinesiology and Sport Management, Texas Technical University, Lubbock, Texas
| | - Abdul N Hamood
- Department of Immunology and Molecular Microbiology, Texas Technical University Health Sciences Center, Lubbock, Texas; Department of Surgery, Texas Technical University Health Sciences Center, Lubbock, Teaxs
| | - Xiaoxia Gong
- Center for Biotechnology and Genomics, Texas Technical University, Lubbock, Texas
| | - Parvin Mirzaei
- Center for Biotechnology and Genomics, Texas Technical University, Lubbock, Texas
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post Harvest Technologies, North Carolina A&T State University, North Carolina Research Campus, Kannapolis, North Carolina
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Technical University Health Sciences Center, Lubbock, Texas; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Technical University Health Sciences Center, Lubbock, Texas; Department of Pharmacology and Neuroscience, Texas Technical University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
14
|
Seifert A, Kashi Y, Livney YD. Delivery to the gut microbiota: A rapidly proliferating research field. Adv Colloid Interface Sci 2019; 274:102038. [PMID: 31683191 DOI: 10.1016/j.cis.2019.102038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022]
Abstract
The post genomic era has brought breakthroughs in our understanding of the complex and fascinating symbiosis we have with our co-evolving microbiota, and its dramatic impact on our physiology, physical and mental health, mood, interpersonal communication, and more. This fast "proliferating" knowledge, particularly related to the gut microbiota, is leading to the development of numerous technologies aimed to promote our health via prudent modulation of our gut microbiota. This review embarks on a journey through the gastrointestinal tract from a biomaterial science and engineering perspective, and focusses on the various state-of-the-art approaches proposed in research institutes and those already used in various industries and clinics, for delivery to the gut microbiota, with emphasis on the latest developments published within the last 5 years. Current and possible future trends are discussed. It seems that future development will progress toward more personalized solutions, combining high throughput diagnostic omic methods, and precision interventions.
Collapse
Affiliation(s)
- Adi Seifert
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Yechezkel Kashi
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav D Livney
- Biotechnology & Food Engineering Department, Technion, Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
15
|
Alginate and Probiotics Synergistically Reversed Dextran Sulfate Sodium Salt (DSS)-Induced Gut Barrier Damage. Macromol Res 2019. [DOI: 10.1007/s13233-019-7122-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Deol PK, Khare P, Bishnoi M, Kondepudi KK, Kaur IP. Coadministration of ginger extract-Lactobacillus acidophilus (cobiotic) reduces gut inflammation and oxidative stress via downregulation of COX-2, i-NOS, and c-Myc. Phytother Res 2018; 32:1950-1956. [PMID: 29876980 DOI: 10.1002/ptr.6121] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/11/2022]
Abstract
Aim of the study was to evaluate a combination of ginger extract (GE; antioxidant, anti-inflammatory) and Lactobacillus acidophilus (LAB; probiotic), in DMH-DSS-induced inflammation-driven colon cancer, in Wistar rats. Effect of varying GE concentration on growth of LAB was assessed in vitro. Colonic histology and permeability, oxidative stress, serum proinflammatory cytokines, expression of selected genes, gut bacteria, and SCFA determination of gut content was monitored after treatment with agents alone or in combination, postdisease induction. Significant increase in LAB CFU was observed following 48 and 96 hr of incubation with GE; 0.4% w/v GE showed the best results and was used in the cobiotic. Cobiotic administration significantly reversed the DMH-DSS-induced colonic histological alterations. Significant (p < .05) reduction in lipid peroxidation and increase in antioxidant levels (catalase and SOD) was observed in cobiotic group, whereas individual agents did not show any effect. Restoration of colonic permeability, decrease in serum inflammatory burden, and downregulation of COX-2, iNOS, and c-Myc expression on treatment with cobiotic was significantly (p < .05) better than individual agents. Neither LAB nor cobiotic administration produced any change in gut bacteria nor SCFA levels, probably due to loss of LAB viability under adverse gut conditions. Study concludes that presented cobiotic has a promising therapeutic potential, which can be improved by a smartly designed formulation.
Collapse
Affiliation(s)
- Parneet Kaur Deol
- University Institute of Pharmaceutical Sciences, Panjab University Chandigarh, Chandigarh, India
- G.H.G. Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Pragyanshu Khare
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | | | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University Chandigarh, Chandigarh, India
| |
Collapse
|