1
|
Bai W, Zhang L, Lin X, Zhao W, Liu G, Qian M, Li X, Wang H. Structural characterization, antioxidant and immunomodulatory activities of a polysaccharide from a traditional Chinese rice wine, Guangdong Hakka Huangjiu. Int J Biol Macromol 2024; 281:136523. [PMID: 39401636 DOI: 10.1016/j.ijbiomac.2024.136523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Hakka Huangjiu, a traditional Chinese rice wine, boasts a rich history and is known for its immunomodulatory, antibacterial, anti-aging and anti-fatigue effects. However, there is limited research on the primary active components and molecular mechanism of the bioactivity of Hakka Huangjiu. To address this gap, this study assessed the structural characteristics, antioxidant, and immunomodulatory activities of the polysaccharide-1 of Guangdong Hakka Huangjiu (HP1). Structural analysis revealed that HP1 had a low molecular weight polysaccharide of 5550 Da, primarily consisting of glucose (93.2 %), with smaller amounts of xylose, mannuronic acid and galactose. Methylation and NMR analysis suggested that the main glycosidic linkages present in HP1 are α-D-Glcp-(1→, →4)-α-D-Glcp-(1 → and →6) -α-D-Glcp-(1→. Furthermore, HP1 exhibited dose-dependent DPPH·, ABTS+ and OH· scavenging activity. HP1 exhibited significant protection of HepG2 cells from H2O2 damage. Additionally, HP1 induced the release of NO, TNF-α, IL-6 and iNOS in RAW264.7 cells. HP1 treatment significantly increased mRNA expression of TNF-α, IL-6, iNOS, COX-2, IL-1β and TGF-β1. These results suggested that polysaccharides HP1 may have potential as a novel natural antioxidant and immunomodulatory product for use in nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Weidong Bai
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaohui Lin
- School of Biosystems and Food Engineering, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Wenhong Zhao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Gongliang Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Min Qian
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiangluan Li
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
2
|
Wang X, Yang M, Shen Y, Zhang Y, Xiu W, Yu S, Ma Y. Structural characterization and hypoglycemic effect of polysaccharides of Polygonatum sibiricum. J Food Sci 2024; 89:4771-4790. [PMID: 38992877 DOI: 10.1111/1750-3841.17243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
Polygonatum sibiricum polysaccharide (PSP) was extracted and purified from raw material obtained from P. sibiricum. The structural features of PSP were investigated by Congo red, circular dichroism spectrum, high-performance gel permeation chromatography, scanning electron microscope, atomic force microscope, ultraviolet spectroscopy, and Fourier transform infrared spectroscopy analysis. In vitro simulations were conducted to investigate the kinetics of PSP enzyme inhibition. Moreover, a type II diabetes mouse model (T2DM) with streptozotocin-induced insulin resistance was established, and the indexes of lipid quadruple, insulin resistance index, oral glucose tolerance (OGTT), organ index, and pancreatic morphology of model mice were measured. The results showed that PSP mainly consists of monosaccharides, such as mannose, glucose, galactose, xylose, and arabinose. It also has a β-glycosidic bond of a pyranose ring and an irregular reticulated aggregated structure with a triple helix. In vitro enzyme inhibition assays revealed that PSP acts as a reversible competitive inhibitor of α-glucosidase and α-amylase. Furthermore, PSP was found to reduce insulin resistance index, increase OGTT and serum insulin levels, decrease free fatty acid content to improve lipid metabolism, and lower glycated serum protein content to enhance glucose metabolism in T2DM mice, thereby leading to a reduction in blood glucose concentration. Additionally, PSP exhibited reparative effects on the damaged liver tissue cells and pancreatic tissue in T2DM mice. The experiment results provide a preliminary basis for the therapeutic mechanism of PSP about type II diabetes and a theoretical reference for application in food and pharmaceutical development.
Collapse
Affiliation(s)
- Xin Wang
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang, China
| | - Mengyuan Yang
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang, China
| | - Ying Shen
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang, China
| | - Yipeng Zhang
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang, China
| | - Weiye Xiu
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang, China
| | - Shiyou Yu
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang, China
| | - Yongqiang Ma
- College of Food Engineering, Harbin University of Commerce, Heilongjiang Provincial Key Laboratory of Cereals and Comprehensive Processing of Cereal Resources, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Liu YJ, Gao KX, Peng X, Wang Y, Wang JY, Hu MB. The great potential of polysaccharides from natural resources in the treatment of asthma: A review. Int J Biol Macromol 2024; 260:129431. [PMID: 38237839 DOI: 10.1016/j.ijbiomac.2024.129431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
Despite significant progress in diagnosis and treatment, asthma remains a serious public health challenge. The conventional therapeutic drugs for asthma often have side effects and unsatisfactory clinical efficacy. Therefore, it is very urgent to develop new drugs to overcome the shortcomings of conventional drugs. Natural polysaccharides provide enormous resources for the development of drugs or health products, and they are receiving a lot of attention from scientists around the world due to their safety, effective anti-inflammatory and immune regulatory properties. Increasing evidence shows that polysaccharides have favorable biological activities in the respiratory disease, including asthma. This review provides an overview of primary literature on the recent advances of polysaccharides from natural resources in the treatment of asthma. The mechanisms and practicability of polysaccharides, including polysaccharides from plants, fungus, bacteria, alga, animals and others are reviewed. Finally, the further research of polysaccharides in the treatment of asthma are discussed. This review can provide a basis for further study of polysaccharides in the treatment of asthma and provides guidance for the development and clinical application of novel asthma treatment drugs.
Collapse
Affiliation(s)
- Yu-Jie Liu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Kui-Xu Gao
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Xi Peng
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Yao Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Jing-Ya Wang
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Mei-Bian Hu
- School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China.
| |
Collapse
|
4
|
Peng D, Tian W, An M, Chen Y, Zeng W, Zhu S, Li P, Du B. Characterization of antidiabetic effects of Dendrobium officinale derivatives in a mouse model of type 2 diabetes mellitus. Food Chem 2023; 399:133974. [DOI: 10.1016/j.foodchem.2022.133974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
|
5
|
Zhang F, Li J, Chang C, Gu L, Su Y, Yang Y. Immunomodulatory Function of Egg White Peptides in RAW264.7 Macrophage Cells and Immunosuppressive Mice Induced by Cyclophosphamide. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Novel Compound Polysaccharides from Chinese Herbal Medicines: Purification, Characterization, and Antioxidant Activities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9973419. [PMID: 35720177 PMCID: PMC9205717 DOI: 10.1155/2022/9973419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
The present study investigated physicochemical properties and antioxidant activities in vivo and in vitro of purified compound polysaccharides (CPs-1) from Chinese herbal medicines, composed of lotus leaf, hawthorn, Fagopyrum tataricum, Lycium barbarum, Semen cassiae, and Poria cocos with the mass ratio of 2 : 4 : 2 : 1 : 1.5 : 1. The HPGPC profile and FT-IR spectra indicated that the average molecular weight of CPs-1 was 38.7 kDa and possessed the α- and β-D-pyranose, respectively. The methylation analysis and NMR spectrum demonstrated that CPs-1 had a →6)-β-D-Glcp-(1→6)-β-D-Glcp(1→ backbone. Furthermore, the antioxidant assays in vitro revealed that CPs-1 displayed high scavenging abilities for DPPH, hydroxyl, and reducing power, as well as ABTS and superoxide scavenging capacity. The antioxidant experiments in vivo revealed that CPs-1 could significantly enhance CAT, SOD, and GSH-Px activities and dramatically reduce MDA levels in liver and serum of high-fat mice. Therefore, CPs-1 could be potentially incorporated into pharmaceutical products or functional foods as a natural antioxidant.
Collapse
|
7
|
Gao S, Yan S, Zhou Y, Feng Y, Xie X, Guo W, Shen Q, Chen C. Optimisation of enzyme-assisted extraction of Erythronium sibiricum bulb polysaccharide and its effects on immunomodulation. Glycoconj J 2022; 39:357-368. [PMID: 35138526 DOI: 10.1007/s10719-021-10038-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/01/2022]
Abstract
In this study, polysaccharides of Erythronium sibiricum bulb were extracted using enzyme-assisted extraction technology and then optimised by response surface methodology. The characteristics and immunomodulatory activities of the polysaccharide (E1P) were investigated. Setting the yield of polysaccharides as the index, the effects of amylase content, zymolytic time, extraction pH and zymolytic temperature were investigated. The optimal extraction conditions for polysaccharides were as follows: amylase content, 1% weight of pre-treated powder; zymolytic time, 2 h; extraction pH, 7.5; and zymolytic temperature, 55 °C. The yield was predicted to be 61.10%, which agreed with the value obtained in confirmatory experiments (59.71% ± 2.72%). Further research indicated that the primary component of E1P is glucose; however, it also contains a small quantity of galactose and arabinose. In vitro assays showed that E1P and ESBP (another kind of E. sibiricum bulb polysaccharide extracted by water decoction in our previous study) could significantly promote the cellular viability and phagocytosis of RAW264.7 cells without cytotoxicity. Moreover, they could enhance the ability to secrete nitric oxide and cytokines such as TNF-α and IL-1β. However, the immunomodulatory activities of E1P were better than those of ESBP. According to the results of this study, enzyme-assisted extraction represents a new strategy for extracting E. sibiricum bulb polysaccharides with higher yield and better immune activity.
Collapse
Affiliation(s)
- Shanshan Gao
- Pharmacy College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Shujing Yan
- Pharmacy College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Yue Zhou
- Pharmacy College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Yue Feng
- Urumqi Customs District P.R. China, Urumqi, 830011, Xinjiang, China
| | - Xiangyun Xie
- Pharmacy College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Wei Guo
- Pharmacy College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Qi Shen
- Pharmacy College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Chunli Chen
- Pharmacy College, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
8
|
Zhong RF, Yang JJ, Geng JH, Chen J. Structural characteristics, anti-proliferative and immunomodulatory activities of a purified polysaccharide from Lactarius volemus Fr. Int J Biol Macromol 2021; 192:967-977. [PMID: 34655586 DOI: 10.1016/j.ijbiomac.2021.10.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 01/13/2023]
Abstract
Lactarius volemus Fr. is an edible mushroom widely consumed in China. Polysaccharide is an important nutritional component of L. volemus. This research aimed to isolate the polysaccharide from L. volemus and study its structure and bioactivities. A purified polysaccharide was identified and named as LVF-I whose primary structure was proposed considering the comprehensive results of monosaccharide composition, periodate oxidation-smith degradation, methylation analysis, FT-IR and 1D/2D NMR spectroscopy. Then the immunomodulation of LVF-I and its inhibition effect on H1299 and MCF-7 cells were investigated. Results showed that LVF-I (12,894 Da) contained fucose, mannose, glucose and galactose. It had a backbone consisting of →4)-α-D-Glcp-(1→, →6)-β-D-Manp-(1→, →6)-α-D-Galp-(1 → and →4)-β-D-Manp-(1→. And its side chains were branched at C2 of →4)-β-D-Manp-(1 → by →6)-α-D-Galp-(1→, α-D-Glcp-(1→, α-D-Galp-(1 → and α-L-Fucp-(1→. LVF-I (250-1000 μg/mL) could inhibit the proliferation of H1299 and MCF-7 cells, while enhance the proliferative response of splenocyte and the phagocytic ability of RAW264.7. Furthermore, LVF-I (250-1000 μg/mL) significantly induced the secretion of nitric oxide, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) by up-regulating their mRNA expression in macrophages. These results suggested that LVF-I had the potential to be developed as antitumor or immunomodulatory agents by inhibiting the proliferation of tumor cells and stimulating macrophages-mediated immune responses.
Collapse
Affiliation(s)
- Rui-Fang Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jing-Juan Yang
- School of Chinese Material medica, Yunnan University of Chinese medicine, Kunming 650500, China
| | - Jia-Huan Geng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
9
|
Hao J, Ye L, Meng G, Song Y, Fu J, Wu X. The protective effect and crucial biological pathways analysis of Trametes lactinea mycelium polysaccharides on acute alcoholic liver injury in mice based on transcriptomics and metabonomics. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Chen C, Xie X, Li X. Immunomodulatory effects of four polysaccharides purified from Erythronium sibiricum bulb on macrophages. Glycoconj J 2021; 38:517-525. [PMID: 34117963 DOI: 10.1007/s10719-021-10005-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/21/2021] [Accepted: 06/02/2021] [Indexed: 01/08/2023]
Abstract
Four neutral polysaccharides (ESBP1-1, ESBP1-2, ESBP2-1 and ESBP3-1) were successfully purified from the water extracted crude polysaccharides of Erythronium sibiricum bulbs through the combination of DEAE Sepharose CL-6B and Sephadex G-100 chromatography; their average molecular weights were 1.3 × 104, 1.7 × 104, 9.4 × 105 and 4.1 × 105 Da, respectively. Monosaccharide component analysis indicated that ESBP1-1 and ESBP1-2 were mainly composed of glucose (Glc). ESBP2-1 was composed of Glc, galactose (Gal) and arabinose, with a molar ratio of 24.3:1.1:1, whereas ESBP3-1 comprised Glc and Gal at a molar ratio of 14.8:1. In-vitro study showed that all of the four polysaccharides were able to considerably promote the proliferation and neutral red phagocytosis of RAW 264.7 macrophage cell. They could also stimulate the production of the cell lines' secretory molecules [nitric oxide, tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)] in a dose-dependent manner. However, ESBP1-2 was not included in IL-1β. Overall, these results suggested that polysaccharides from E. sibiricum bulbs can be developed as immunomodulatory ingredients for complementary medicines or functional foods. However, further animal or clinical studies are required.
Collapse
Affiliation(s)
- Chunli Chen
- Pharmacy College, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China.
| | - Xiangyun Xie
- Pharmacy College, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China
| | - Xue Li
- Supervision and Testing Center for Quality and Safety of Agri-products of Xinjiang Uygur Autonomous Region, 157 Shengli Road, Urumqi, 830049, China
| |
Collapse
|
11
|
Zhang X, Wang L, Xie F, Yaseen A, Chen B, Zhang GL, Wang MK, Shen XF, Li F. A polysaccharide TKP-2-1 from Tamarindus indica L: Purification, structural characterization and immunomodulating activity. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
12
|
Geum NG, Eo HJ, Kim HJ, Park GH, Son HJ, Jeong JB. Immune-enhancing activity of Hydrangea macrophylla subsp. serrata leaves through TLR4/ROS-dependent activation of JNK and NF-κB in RAW264.7 cells and immunosuppressed mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
13
|
He N, Zhai X, Zhang X, Zhang X, Wang X. Extraction, purification and characterization of water-soluble polysaccharides from green walnut husk with anti-oxidant and anti-proliferative capacities. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
14
|
Chen X, Fang D, Zhao R, Gao J, Kimatu BM, Hu Q, Chen G, Zhao L. Effects of ultrasound-assisted extraction on antioxidant activity and bidirectional immunomodulatory activity of Flammulina velutipes polysaccharide. Int J Biol Macromol 2019; 140:505-514. [DOI: 10.1016/j.ijbiomac.2019.08.163] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/11/2019] [Accepted: 08/18/2019] [Indexed: 01/07/2023]
|
15
|
Ma S, Liu X, Cheng B, Jia Z, Hua H, Xin Y. Chemical characterization of polysaccharides isolated from scrophularia ningpoensis and its protective effect on the cerebral ischemia/reperfusin injury in rat model. Int J Biol Macromol 2019; 139:955-966. [DOI: 10.1016/j.ijbiomac.2019.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/12/2019] [Accepted: 08/05/2019] [Indexed: 12/22/2022]
|
16
|
Cheng XD, Wu QX, Zhao J, Su T, Lu YM, Zhang WN, Wang Y, Chen Y. Immunomodulatory effect of a polysaccharide fraction on RAW 264.7 macrophages extracted from the wild Lactarius deliciosus. Int J Biol Macromol 2019; 128:732-739. [DOI: 10.1016/j.ijbiomac.2019.01.201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
|
17
|
Zheng Q, Li W, Liang S, Zhang H, Yang H, Li M, Zhang Y. Effects of ultrasonic treatment on the molecular weight and anti-inflammatory activity of oxidized konjac glucomannan. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2018.1541195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qiaoran Zheng
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Wenfeng Li
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Shan Liang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Heng Zhang
- Ya’an Polytechnic College, Drug Control Institutions, SiChuan, China
| | - Hui Yang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Min Li
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Yan Zhang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| |
Collapse
|
18
|
Yang Y, Chen J, Lei L, Li F, Tang Y, Yuan Y, Zhang Y, Wu S, Yin R, Ming J. Acetylation of polysaccharide from Morchella angusticeps peck enhances its immune activation and anti-inflammatory activities in macrophage RAW264.7 cells. Food Chem Toxicol 2019; 125:38-45. [DOI: 10.1016/j.fct.2018.12.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/28/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
|
19
|
Cui M, Wu J, Wang S, Shu H, Zhang M, Liu K, Liu K. Characterization and anti-inflammatory effects of sulfated polysaccharide from the red seaweed Gelidium pacificum Okamura. Int J Biol Macromol 2019; 129:377-385. [PMID: 30742920 DOI: 10.1016/j.ijbiomac.2019.02.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/24/2018] [Accepted: 02/07/2019] [Indexed: 12/20/2022]
Abstract
In the present study, crude polysaccharides were extracted from Gelidium pacificum Okamura, and further purified to obtain the sulfated polysaccharide with molecular weight of 28,807 Da. Its monosaccharide composition mainly consisted of xylose (7.1%), galactose (59.7%) and galacturonic acid (19.76%). And the sulfate ester content of the sulfated polysaccharide was estimated as 8.8%. Structure analysis showed that the sulfated polysaccharide comprised of 1,4-linked-α-D-Galp3S, 1,2-linked-α-D-Xylp and 1,3-linked-β-D-GalpA residues, respectively. Its anti-inflammatory effects were investigated in LPS-stimulated human monocytic (THP-1) cells. The sulfated polysaccharide at a concentration of 5 μg/mL fully protected the THP-1 cells against LPS-stimulated cytotoxicity. Furthermore, the addition of sulfated polysaccharide resulted in a significant reduction of NO production in LPS-treated cells, and this effect appeared to be dose-related. The sulfated polysaccharide (5 μg/mL) significantly suppressed the mRNA and protein expression of toll-like receptor-4 (TLR-4), myeloid differentiation factor (MyD88) and tumor necrosis factor receptor-associated factor-6 (TRAF-6) in LPS-stimulated THP-1 cells. These results showed the sulfated polysaccharide not only provided a good protection against LPS-induced cell toxicity, but also exerted an anti-inflammatory effect via the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Mingxiao Cui
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Junwen Wu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shuyue Wang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hongmei Shu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min Zhang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China.
| | - Kewu Liu
- Heilongjiang Forest By-product and Speciality Institute, Mudanjiang 157011, China.
| |
Collapse
|
20
|
Zhai X, Zhu C, Zhang Y, Sun J, Alim A, Yang X. Chemical characteristics, antioxidant capacities and hepatoprotection of polysaccharides from pomegranate peel. Carbohydr Polym 2018; 202:461-469. [DOI: 10.1016/j.carbpol.2018.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/23/2018] [Accepted: 09/05/2018] [Indexed: 01/12/2023]
|
21
|
Dong Z, Li C, Huang Q, Zhang B, Fu X, Liu RH. Characterization of a novel polysaccharide from the leaves of Moringa oleifera and its immunostimulatory activity. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
22
|
Composition characterization, antioxidant capacities and anti-proliferative effects of the polysaccharides isolated from Trametes lactinea (Berk.) Pat. Int J Biol Macromol 2018; 115:114-123. [PMID: 29655889 DOI: 10.1016/j.ijbiomac.2018.04.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022]
Abstract
This study was designed to investigate the chemical characterization and bioactivity of the Trametes lactinea (Berk.) Pat polysaccharides (TLP). The crude TLP was fractionated into two fractions, namely TLP-1 and TLP-2 with Cellulose DEAE-52 and Sephadex G-150. HPLC and FT-IR analysis showed that TLP-1 and TLP-2 were heteropolysaccharides mainly composed of glucose with the average molecular weights of 443.19kDa and 388.83kDa, respectively. TLP-1 from water elution possessed of higher reducing power and scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, superoxide radical and hydroxyl radical than TLP-2 eluted by 0.1M of NaCl. In comparison with TLP-2, TLP-1 showed stronger growth inhibition against human hepatoblastoma HepG-2 cells and caused higher LDH leakage. However, TLP-1 showed lower growth inhibition against normal hepatocyte L-02 cells and lower LDH leakage than TLP-2. Flow cytometric analysis showed that TLP-1 had a stimulatory effect on apoptosis of HepG-2 cells. These findings suggested that the polysaccharides, especially TLP-1 could contribute to the potential anticancer effects of T. lactinea (Berk.) Pat, which might be valuable as a natural antioxidant source applied in both healthy medicine and food industry for health benefits.
Collapse
|
23
|
Luo B, Dong LM, Xu QL, Zhang Q, Liu WB, Wei XY, Zhang X, Tan JW. Characterization and immunological activity of polysaccharides from Ixeris polycephala. Int J Biol Macromol 2018; 113:804-812. [PMID: 29501843 DOI: 10.1016/j.ijbiomac.2018.02.165] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 01/15/2023]
Abstract
A water-soluble polysaccharide, named KMCP, was isolated and purified from edible plant Ixeris polycephala by using DEAE-52 cellulose chromatography. Its structure was determined by chemical analysis, methylation analysis, and NMR analysis, coupled with characterization by scanning electron spectroscopy (SEM). The resulting data indicated that KMCP was an arabinogalactan, with an average molecular weight of 1.95×106Da, which was mainly composed of arabinose and galactose in a relative molar ratio of 28.1% and 70.3%, respectively. The structure of KMPC was characterized as 72.5% of (1→4)-β-Galp residues interspersed with 27.5% of (1→4,6)-β-Galp residues in the main chain, and the branches were composed of (1→5)-α-Araf moieties or α-Araf (1→5) α-Araf (1→disaccharide moieties attached at O-6 of the (1→4,6)-β-Galp residues. KMCP was revealed to be capable of exhibiting macrophage-mediated innate immune responses via enhancing phagocytosis of macrophages and increasing production of NO, activating NF-κB signaling pathway and promoting the mice spleen cells proliferation in a dose-dependent manner within the test concentrations (10.0-200.0μg/mL). These results suggested that KMCP could potentially be an effective and safe immunomodulator valuable to be utilized in pharmacological fields or in the development of functional foods.
Collapse
Affiliation(s)
- Bi Luo
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Mei Dong
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Qiao-Lin Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China.
| | - Qiang Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Bin Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Yi Wei
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Wen Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
Shu G, Jiang S, Mu J, Yu H, Duan H, Deng X. Antitumor immunostimulatory activity of polysaccharides from Panax japonicus C. A. Mey: Roles of their effects on CD4+ T cells and tumor associated macrophages. Int J Biol Macromol 2018; 111:430-439. [PMID: 29317237 DOI: 10.1016/j.ijbiomac.2018.01.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/18/2017] [Accepted: 01/03/2018] [Indexed: 01/05/2023]
Abstract
In this study, chemical properties of polysaccharides from rhizomes of Panax japonicus C. A. Mey (PSPJ) were investigated and the antitumor immunostimulatory activity of PSPJ was assessed in mice bearing H22 hepatoma cells. Chemical properties of PSPJ were determined by GC, FT-IR, 1H NMR and 13C NMR analysis. Furthermore, we showed that PSPJ repressed H22 tumor growth in vivo with undetectable toxic effects on tumor-bearing mice. PSPJ upregulated host thymus/spleen indexes and ConA/LPS-induced splenocyte proliferation. Cytotoxic activities of natural killer and CD8+ T cells against H22 hepatoma cells were also elevated. Tumor transplantation led to substantial apoptosis of CD4+ T cells and dysregulation of the cytokine profile secreted by CD4+ T cells. These abnormalities were alleviated by PSPJ in a dose-dependent manner. In tumor-associated macrophages (TAMs), PSPJ reduced the production of immunosuppressive factors such as TGF-β, IL-10 and PEG2. In addition, M2-like polarization of TAMs was also considerably declined in response to PSPJ. Our findings clearly demonstrated the antitumor immunostimulatory activity of PSPJ and supported considering PSPJ as an adjuvant reagent in clinical treatment of malignant diseases.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, PR China
| | - Shanqing Jiang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, PR China
| | - Jun Mu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, PR China
| | - Huifan Yu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, PR China
| | - Huan Duan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, PR China
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, PR China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan, PR China.
| |
Collapse
|