1
|
Mei Z, Kuzhir P, Godeau G. Update on Chitin and Chitosan from Insects: Sources, Production, Characterization, and Biomedical Applications. Biomimetics (Basel) 2024; 9:297. [PMID: 38786507 PMCID: PMC11118814 DOI: 10.3390/biomimetics9050297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Insects, renowned for their abundant and renewable biomass, stand at the forefront of biomimicry-inspired research and offer promising alternatives for chitin and chitosan production considering mounting environmental concerns and the inherent limitations of conventional sources. This comprehensive review provides a meticulous exploration of the current state of insect-derived chitin and chitosan, focusing on their sources, production methods, characterization, physical and chemical properties, and emerging biomedical applications. Abundant insect sources of chitin and chitosan, from the Lepidoptera, Coleoptera, Orthoptera, Hymenoptera, Diptera, Hemiptera, Dictyoptera, Odonata, and Ephemeroptera orders, were comprehensively summarized. A variety of characterization techniques, including spectroscopy, chromatography, and microscopy, were used to reveal their physical and chemical properties like molecular weight, degree of deacetylation, and crystallinity, laying a solid foundation for their wide application, especially for the biomimetic design process. The examination of insect-derived chitin and chitosan extends into a wide realm of biomedical applications, highlighting their unique advantages in wound healing, tissue engineering, drug delivery, and antimicrobial therapies. Their intrinsic biocompatibility and antimicrobial properties position them as promising candidates for innovative solutions in diverse medical interventions.
Collapse
Affiliation(s)
- Zhenying Mei
- Université Côte d’Azur, CNRS UMR 7010 Institut de Physique de Nice, 17 rue Julien Laupêtre, 06200 Nice, France
| | - Pavel Kuzhir
- Université Côte d’Azur, CNRS UMR 7010 Institut de Physique de Nice, 17 rue Julien Laupêtre, 06200 Nice, France
| | - Guilhem Godeau
- Université Côte d’Azur, CNRS UMR 7010 Institut de Physique de Nice, 17 rue Julien Laupêtre, 06200 Nice, France
- Université Côte d’Azur, Institut Méditerranéen du Risque de l’Environnement et du Développement Durable, 9 rue Julien Laupêtre, 06200 Nice, France
| |
Collapse
|
2
|
Pan P, Wang J, Wang X, Kang Y, Yu X, Chen T, Hao Y, Liu W. Physically cross-linked chitosan gel with tunable mechanics and biodegradability for tissue engineering scaffold. Int J Biol Macromol 2024; 257:128682. [PMID: 38070807 DOI: 10.1016/j.ijbiomac.2023.128682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Chitosan, a cationic polysaccharide, exhibits promising potential for tissue engineering applications. However, the poor mechanical properties and rapid biodegradation have been the major limitations for its applications. In this work, an effective strategy was proposed to optimize the mechanical performance and degradation rate of chitosan gel scaffolds by regulating the water content. Physical chitosan hydrogel (HG, with 93.57 % water) was prepared by temperature-controlled cross-linking, followed by dehydration to obtain xerogel (XG, with 2.84 % water) and rehydration to produce wet gel (WG, with 56.06 % water). During this process, changes of water content significantly influenced the water existence state, hydrogen bonding, and the chain entanglements of chitosan in the gel network. The mechanical compression results showed that the chitosan gel scaffolds exhibited tunable compressive strength (0.3128-139 MPa) and compressive modulus (0.2408-1094 MPa). XG could support weights exceeding 65,000 times its own mass while maintaining structural stability. Furthermore, in vitro and in vivo experiments demonstrated that XG and WG exhibited better biocompatibility and resistance to biodegradation compared with HG. Overall, this work contributes to the design and optimization of chitosan scaffolds without additional chemical crosslinkers, which has potential in tissue engineering and further clinical translation.
Collapse
Affiliation(s)
- Peng Pan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Jian Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, PR China
| | - Xi Wang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, PR China
| | - Ye Kang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Xinding Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Tiantian Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yulin Hao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Wentao Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, PR China; School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
3
|
Li J, Hao Z, Wang B, Feng X, Mao Z, Sui X. High-tensile chitin films regenerated from cryogenic aqueous phosphoric acid. Carbohydr Polym 2023; 312:120826. [PMID: 37059553 DOI: 10.1016/j.carbpol.2023.120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
The abuse of non-renewable fossil resources and the resulting plastic pollution have posed a great burden on the environment. Fortunately, renewable bio-macromolecules have shown great potential to replace synthetic plastics in fields ranging from biomedical applications, and energy storage to flexible electronics. However, the potential of recalcitrant polysaccharides, such as chitin, in the above-mentioned fields have not been fully exploited because of its poor processability, which is ultimately due to the lack of suitable, economical, and environmentally friendly solvent for it. Herein, we demonstrate an efficient and stable strategy for the fabrication of high-strength chitin films from concentrated chitin solutions in cryogenic 85 wt% aqueous phosphoric acid (aq. H3PO4). The regeneration conditions, including the nature of the coagulation bath and its temperature are important variables affecting the reassembly of chitin molecules and hence the structure and micromorphology of the films. Uniaxial orientation of the chitin molecules by applying tension to the RCh hydrogels further endows the films with enhanced mechanical properties of up to 235 MPa and 6.7 GPa in tensile strength and Young's modulus, respectively.
Collapse
Affiliation(s)
- Jiahao Li
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China
| | - Zhengzheng Hao
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China
| | - Bijia Wang
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China.
| | - Xueling Feng
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China; National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Zhiping Mao
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China; National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiaofeng Sui
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China; Innovation Center for Textile Science and Technology of DHU, Donghua University, Shanghai 201620, People's Republic of China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
4
|
Feng H, Wang Z, Sajab MS, Abdul PM, Ding G. A novel chitinous nanoparticles prepared and characterized with black soldier fly (Hermetia illucens L.) using steam flash explosion treatment. Int J Biol Macromol 2023; 230:123210. [PMID: 36639077 DOI: 10.1016/j.ijbiomac.2023.123210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
This is the first report of the use of steam flash explosion (SFE) to prepare chitinous nanoparticles from black soldier fly (BSF). SFE treatment was performed at a steam pressure of 0.45 to 1.60 MPa with a holding time of 60 s. As the pressure increased, the particle size of the chitinous particles decreased. Under SFE at 1.60 MPa, chitinous nanoparticles with sizes ranging from 59 to 162 nm were produced. SEM, AFM, Raman spectroscopy, FT-IR spectroscopy, 1H NMR, TGA, and DSC were used to characterize the BSF chitin materials. It was demonstrated that SFE treatment deacetylated chitin to obtain chitosan with 91.24 % deacetylation. In addition, the polymer backbone was maintained, and the degree of polymerization of chitosan nanoparticles was reduced. The activity of the cationic groups of chitosan nanoparticles was improved, thereby enhancing the temperature sensitivity of the polymeric material. It can be concluded that the SFE one-step processing method is a simple and efficient way to prepare homogeneous biomaterial nanoparticles. This study has implications for the development of chitosan nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Haiyue Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, PR China
| | - Zifan Wang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou 730030, PR China; Gausu Tech Innovation Center of Animal, Northwest Minzu University, Lanzhou 730030, PR China; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou 730030, PR China
| | - Mohd Shaiful Sajab
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Peer Mohamed Abdul
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Gongtao Ding
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, PR China; Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou 730030, PR China; Gausu Tech Innovation Center of Animal, Northwest Minzu University, Lanzhou 730030, PR China; China-Malaysia National Joint Laboratory, Northwest Minzu University, Lanzhou 730030, PR China.
| |
Collapse
|
5
|
Halochromic and antioxidant capacity of smart films of chitosan/chitin nanocrystals with curcuma oil and anthocyanins. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107119] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Chen YM, Pekdemir S, Bilican I, Koc-Bilican B, Cakmak B, Ali A, Zang LS, Onses MS, Kaya M. Production of natural chitin film from pupal shell of moth: Fabrication of plasmonic surfaces for SERS-based sensing applications. Carbohydr Polym 2021; 262:117909. [PMID: 33838796 DOI: 10.1016/j.carbpol.2021.117909] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/30/2020] [Accepted: 03/02/2021] [Indexed: 12/19/2022]
Abstract
Commercially available types of chitin or chitin isolate are usually in powder form and are nanofibrous in microstructure. However, the surface characteristics of natural chitin in the body of insects are currently understudied. Herein, natural chitin film was successfully produced from bio-waste of insect pupae of the Japanese giant silkworm. Two different surface morphologies of the chitin film were observed. We report for the first time a micropapillary surface structure of chitin which was observed on the dorsal side of the film. To further potential of the micropapillary structured natural chitin in sensing applications, we develop a protocol for generating a nanoscopic film of Ag using thermal evaporation. The Ag-deposited natural chitin films exhibited surface-enhanced Raman scattering (SERS) activity to an extent depending on the structure of the film. In conclusion, materials science has been expanded by addition of a natural, three-dimensional chitin film with utilizable properties.
Collapse
Affiliation(s)
- Yong-Ming Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, 550025, Guiyang, China
| | - Sami Pekdemir
- ERNAM - Erciyes University Nanotechnology Application and Research Center, 38039, Kayseri, Turkey; Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey
| | - Ismail Bilican
- Department of Electronics and Automation, Technical Vocational School, Aksaray University, 68100, Aksaray, Turkey; Science and Technology Application and Research Center, Aksaray University, Aksaray, 68100, Turkey; UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey
| | - Behlul Koc-Bilican
- Department of Biotechnology and Molecular Biology, Faculty of Science and Letters, Aksaray University, 68100, Aksaray, Turkey
| | - Betul Cakmak
- Department of Biotechnology and Molecular Biology, Faculty of Science and Letters, Aksaray University, 68100, Aksaray, Turkey
| | - Asad Ali
- Department of Agriculture, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Lian-Sheng Zang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, 550025, Guiyang, China.
| | - M Serdar Onses
- ERNAM - Erciyes University Nanotechnology Application and Research Center, 38039, Kayseri, Turkey; Department of Materials Science and Engineering, Erciyes University, Kayseri, 38039, Turkey; UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Turkey.
| | - Murat Kaya
- Department of Biotechnology and Molecular Biology, Faculty of Science and Letters, Aksaray University, 68100, Aksaray, Turkey.
| |
Collapse
|
7
|
Tannic-Acid-Cross-Linked and TiO 2-Nanoparticle-Reinforced Chitosan-Based Nanocomposite Film. Polymers (Basel) 2021; 13:polym13020228. [PMID: 33440770 PMCID: PMC7826602 DOI: 10.3390/polym13020228] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
A chitosan-based nanocomposite film with tannic acid (TA) as a cross-linker and titanium dioxide nanoparticles (TiO2) as a reinforcing agent was developed with a solution casting technique. TA and TiO2 are biocompatible with chitosan, and this paper studied the synergistic effect of the cross-linker and the reinforcing agent. The addition of TA enhanced the ultraviolet blocking and mechanical properties of the chitosan-based nanocomposite film. The reinforcement of TiO2 in chitosan/TA further improved the nanocomposite film's mechanical properties compared to the neat chitosan or chitosan/TA film. The thermal stability of the chitosan-based nanocomposite film was slightly enhanced, whereas the swelling ratio decreased. Interestingly, its water vapor barrier property was also significantly increased. The developed chitosan-based nanocomposite film showed potent antioxidant activity, and it is promising for active food packaging.
Collapse
|
8
|
Zuorro A, Moreno-Sader KA, González-Delgado ÁD. Economic Evaluation and Techno-Economic Sensitivity Analysis of a Mass Integrated Shrimp Biorefinery in North Colombia. Polymers (Basel) 2020; 12:polym12102397. [PMID: 33080966 PMCID: PMC7603195 DOI: 10.3390/polym12102397] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/17/2022] Open
Abstract
The high freshwater consumption requirements in shrimp biorefinery approaches represents one of the major drawbacks of implementing these technologies within the shrimp processing industry. This also affects the costs associated with the plant operation, and consequently, the overall economic performance of the project. The application of mass integration tools such as water pinch analysis can reduce frewshwater consumption by up to 80%, contributing to shrimp biorefinery sustainability. In this work, the economic evaluation and the techno-economic sensitivity analysis for a mass integrated approach for shrimp biorefinery were performed to determine the economic feasibility of the project when located in the North-Colombia region and to identify the critical techno-economic variables affecting the profitability of the process. The integrated approach designed to process 4113.09 tons of fresh shrimp in Colombia reaches a return on investment (%ROI) at 65.88% and a net present value (NPV) at 10.40 MM USD. The process supports decreases of up to 28% in capacity of production and increases of 12% and 11% in the cost of raw materials and variable operating costs without incurring losses, respectively. These findings suggest that the proposed design of the water recycling network coupled to a shrimp biorefinery approach is attractive from an economic point of view.
Collapse
Affiliation(s)
- Antonio Zuorro
- Department of Chemical Engineering, Materials & Environment, Sapienza-University of Rome, Piazzale Aldo Moro, 00185 Rome, Italy
- Correspondence: (A.Z.); (Á.D.G.-D.)
| | - Kariana Andrea Moreno-Sader
- Chemical Engineering Department, Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), University of Cartagena, Avenida del Consulado St. 30, Cartagena de Indias 130015, Colombia;
| | - Ángel Darío González-Delgado
- Chemical Engineering Department, Nanomaterials and Computer Aided Process Engineering Research Group (NIPAC), University of Cartagena, Avenida del Consulado St. 30, Cartagena de Indias 130015, Colombia;
- Correspondence: (A.Z.); (Á.D.G.-D.)
| |
Collapse
|
9
|
Natural β-chitin-protein complex film obtained from waste razor shells for transdermal capsaicin carrier. Int J Biol Macromol 2020; 155:508-515. [DOI: 10.1016/j.ijbiomac.2020.03.232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/07/2023]
|
10
|
Surface properties of chitin-glucan nanopapers from Agaricus bisporus. Int J Biol Macromol 2020; 148:677-687. [PMID: 31954796 DOI: 10.1016/j.ijbiomac.2020.01.141] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
The structural component of fungal cell walls comprises of chitin covalently bonded to glucan; this constitutes a native composite material (chitin-glucan, CG) combining the strength of chitin and the toughness of glucan. It has a native nano-fibrous structure in contrast to nanocellulose, for which further nanofibrillation is required. Nanopapers can be manufactured from fungal chitin nanofibrils (FChNFs). FChNF nanopapers are potentially applicable in packaging films, composites, or membranes for water treatment due to their distinct surface properties inherited from the composition of chitin and glucan. Here, chitin-glucan nanofibrils were extracted from common mushroom (Agaricus bisporus) cell walls utilizing a mild isolation procedure to preserve the native quality of the chitin-glucan complex. These extracts were readily disintegrated into nanofibre dimensions by a low-energy mechanical blending, thus making the extract dispersion directly suitable for nanopaper preparation using a simple vacuum filtration process. Chitin-glucan nanopaper morphology, mechanical, chemical, and surface properties were studied and compared to chitin nanopapers of crustacean (Cancer pagurus) origin. It was found that fungal extract nanopapers had distinct physico-chemical surface properties, being more hydrophobic than crustacean chitin.
Collapse
|
11
|
Basseri H, Bakhtiyari R, Hashemi SJ, Baniardelani M, Shahraki H, Hosainpour L. Antibacterial/Antifungal Activity of Extracted Chitosan From American Cockroach (Dictyoptera: Blattidae) and German Cockroach (Blattodea: Blattellidae). JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1208-1214. [PMID: 31139829 DOI: 10.1093/jme/tjz082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 06/09/2023]
Abstract
We investigated bactericidal and fungicidal properties of chitosan extracted from adults and nymphs from both German cockroach, Blattella germanica (Blattodea: Blattellidae) and American cockroach, Periplaneta americana (Dictyoptera: Blattidae). The cuticle of adults and nymphs extracted from both cockroaches were dried and ground. The powders were demineralized and deproteinized followed by deacetylation using NaOH. Finally, the chitosan yields were examined for antibacterial and antifungal activities. The degree of deacetylation (DD) was different between adults and nymph stages. The antimicrobial effect of American cockroach chitosan (ACC) and German cockroach chitosan (GCC) was tested against four bacteria and four fungi. The extracted chitosans from American cockroach, Periplaneta americana and German Cockroach, Blattella germanica suppressed the growth of Gram-negative/positive bacteria except Micrococcus luteus. The growth of Aspergillus flavus and Aspergillus niger were notability inhibited by the extracted chitosans. The antimicrobial effect of the chitosan depended on the cockroach species, with chitosan of the American cockroach showing more inhibitory effect. This difference may be due to differences in the structure of chitin between the two cockroach species.
Collapse
Affiliation(s)
- Hamidreza Basseri
- Department of Medical Entomology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ronak Bakhtiyari
- Department of Pathology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Jamal Hashemi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Baniardelani
- Department of Medical Entomology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Shahraki
- Department of Medical Entomology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Laila Hosainpour
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Production of novel chia-mucilage nanocomposite films with starch nanocrystals; An inclusive biological and physicochemical perspective. Int J Biol Macromol 2019; 133:663-673. [DOI: 10.1016/j.ijbiomac.2019.04.146] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/14/2019] [Accepted: 04/22/2019] [Indexed: 11/15/2022]
|
13
|
Saravana PS, Ho TC, Chae SJ, Cho YJ, Park JS, Lee HJ, Chun BS. Deep eutectic solvent-based extraction and fabrication of chitin films from crustacean waste. Carbohydr Polym 2018; 195:622-630. [DOI: 10.1016/j.carbpol.2018.05.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/11/2018] [Accepted: 05/05/2018] [Indexed: 10/16/2022]
|