1
|
Qin C, Han Z, Jiang Z, Ke JP, Li W, Zhang L, Li D. Chemical profile and in-vitro bioactivities of three types of yellow teas processed from different tenderness of young shoots of Huoshanjinjizhong ( Camellia sinensis var. sinensis). Food Chem X 2024; 24:101809. [PMID: 39310883 PMCID: PMC11414484 DOI: 10.1016/j.fochx.2024.101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/15/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
In the present study, bud yellow tea (BYT), small-leaf yellow tea (SYT) and large-leaf yellow tea (LYT) were produced from the same local "population" variety Huoshanjinjizhong (Camellia sinensis var. sinensis), and the effects of raw material tenderness on the chemical profile and bioactivities of these teas were investigated. The results showed that 11 crucial compounds were screened by headspace solid-phase microextraction-gas chromatography-mass spectrometry from 64 volatiles in these yellow teas, among which the heterocyclic compounds showed the greatest variations. In addition, 43 key compounds including organic acids, flavan-3-ols, amino acids, saccharides, glycosides and other compounds were screened by liquid chromatography-mass spectrometry from 1781 non-volatile compounds. BYT showed the best α-glucosidase inhibitory activity and antioxidant capacity among the selected yellow teas, which might be contributed by the higher content of galloylated catechins. These findings provided a better understanding of the chemical profile and bioactivities of yellow teas.
Collapse
Affiliation(s)
- Chunyin Qin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Jia-Ping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Wen Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
2
|
Lv M, Zheng JJ, Zulu L, Wang Y, Kayama K, Wei R, Su Z. Ultrasonic-assisted aqueous two-phase extraction and purification of polyphenols from hawk tea (Litsea coreana var. lanuginose): Investigating its impact on starch digestion. Food Chem 2024; 464:141727. [PMID: 39454434 DOI: 10.1016/j.foodchem.2024.141727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Hawk tea, a conventional herbal beverage, is renowned for its beneficial properties in enhancing digestion and mitigating hyperglycemic tendencies. However, the extraction methodology for hawk tea polyphenols (HTP) has been understudied thus far, impeding its progress and broader application. To develop an efficient approach for HTP extraction, the present study introduced and optimized the application of ultrasonic-assisted aqueous two-phase extraction. Under optimal extraction conditions, the extraction yield of polyphenols from raw HTP was 7.86 %. During purification, LX-B14 was selected due to the highest adsorption and desorption abilities. Then in an in vitro simulated digestion system, HTP significantly reduced the expected glycemic index, raised the content of resistant starch, and decreased the activities of α-amylase and α-glucosidase, indicating its potential for alleviating starch digestion. Accordingly, the results provide an alternative approach for efficiently obtaining phenolic compounds from hawk tea, facilitating the advanced utilization of HTP within the food industry.
Collapse
Affiliation(s)
- Minze Lv
- Department of Tea Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | | | - Lovemore Zulu
- Department of Plant Nematology, China Agricultural University, Beijing 100000, China
| | - Yuhang Wang
- Department of Tea Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Kayama Kayama
- Department of Tea Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ran Wei
- Department of Tea Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Zhucheng Su
- Department of Tea Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
3
|
Azhagesan A, Rajendran D, Varghese RP, George Priya Doss C, Chandrasekaran N. Assessment of polystyrene nano plastics effect on human salivary α-amylase structural alteration: Insights from an in vitro and in silico study. Int J Biol Macromol 2024; 257:128650. [PMID: 38065455 DOI: 10.1016/j.ijbiomac.2023.128650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/19/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
The study found that the enzyme activity of human salivary α-amylase (α-AHS) was competitively inhibited by nanoplastic polystyrene (PS-NPs), with a half-inhibitory concentration (IC50) of 92 μg/mL, while the maximum reaction rate (Vmax) remained unchanged at 909 μg/mL•min. An increase in the concentration of PS-NPs led to a quenching of α-AHS fluorescence with a slight red shift, indicating a static mechanism. The binding constant (Ka) and quenching constant (Kq) were calculated to be 2.92 × 1011 M-1 and 1.078 × 1019 M-1• S-1 respectively, with a hill coefficient (n) close to one and an apparent binding equilibrium constant (KA) of 1.54 × 1011 M-1. Molecular docking results suggested that the interaction between α-AHS and PS-NPs involved π-anion interactions between the active site Asp197, Asp300 residues, and van der Waals force interactions affecting the Tyr, Trp, and other residues. Fourier transform infrared (FT-IR) and circular dichroism (CD) analyses revealed conformational changes in α-AHS, including a loss of secondary structure α-helix and β-sheet. The study concludes that the interaction between α-AHS and PS-NPs leads to structural and functional changes in α-AHS, potentially impacting human health. This research provides a foundation for further toxicological analysis of MPs/NPs in the human digestive system.
Collapse
Affiliation(s)
- Ananthaselvam Azhagesan
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| | - Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| | - Rinku Polachirakkal Varghese
- Department of Integrative Biology, School of BioSciences & Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| | - C George Priya Doss
- Department of Integrative Biology, School of BioSciences & Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India.
| |
Collapse
|
4
|
Bernardino-Nicanor A, Fernández-Avalos S, Juárez-Goiz JMS, Montañez-Soto JL, González-Cruz L. The In Vitro Inhibitory Activity of Pacaya Palm Rachis versus Dipeptidyl Peptidase-IV, Angiotensin-Converting Enzyme, α-Glucosidase and α-Amylase. PLANTS (BASEL, SWITZERLAND) 2024; 13:400. [PMID: 38337933 PMCID: PMC10856824 DOI: 10.3390/plants13030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
The pacaya palm (Chamaedorea tepejilote Liebm) is an important food that is commonly consumed in Mexico and Central America due to its nutritive value. It is also used as a nutraceutical food against some chronic diseases, such as hypertension and hyperglycemia. However, few reports have indicated its possible potential. For this reason, the goal of this research was to evaluate the effects of the enzymatic activity of the pacaya palm inflorescence rachis on both hypertension and hyperglycemia and the effects of thermal treatments on the enzymatic activity. The enzymatic inhibition of ACE (angiotensin-converting enzyme), DPP-IV (dipeptidyl peptidase-IV), α-glucosidase and α-amylase were evaluated, all with powder extracts of pacaya palm inflorescences rachis. The results indicated that thermally treated rachis showed increased enzymatic inhibitory activity against α-amylase and DPP-IV. However, all rachis, both with and without thermal treatment, showed low- or no enzymatic activity against α-glucosidase and ACE. Apparently, the mechanism of action of the antidiabetic effect of rachis is mediated by the inhibition of α-amylase and DPP-IV and does not contribute with a significant effect on enzymes involved in the hypertension mechanism. Finally, the properties of the extract were modified via the extraction method and the temperature tested.
Collapse
Affiliation(s)
- Aurea Bernardino-Nicanor
- Tecnológico Nacional de México/ IT de Celaya, Antonio-García Cubas Pte #600 Esq. Av. Tecnológico, Celaya, Guanajuato C.P. 38010, Mexico; (A.B.-N.); (S.F.-A.); (J.M.S.J.-G.)
| | - Stephanie Fernández-Avalos
- Tecnológico Nacional de México/ IT de Celaya, Antonio-García Cubas Pte #600 Esq. Av. Tecnológico, Celaya, Guanajuato C.P. 38010, Mexico; (A.B.-N.); (S.F.-A.); (J.M.S.J.-G.)
| | - José Mayolo Simitrio Juárez-Goiz
- Tecnológico Nacional de México/ IT de Celaya, Antonio-García Cubas Pte #600 Esq. Av. Tecnológico, Celaya, Guanajuato C.P. 38010, Mexico; (A.B.-N.); (S.F.-A.); (J.M.S.J.-G.)
| | - José Luis Montañez-Soto
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional del, Instituto Politécnico Nacional, Jiquilpan, Michoacan C.P. 59510, Mexico;
| | - Leopoldo González-Cruz
- Tecnológico Nacional de México/ IT de Celaya, Antonio-García Cubas Pte #600 Esq. Av. Tecnológico, Celaya, Guanajuato C.P. 38010, Mexico; (A.B.-N.); (S.F.-A.); (J.M.S.J.-G.)
| |
Collapse
|
5
|
Sun Y, Cao Q, Huang Y, Lu T, Ma H, Chen X. Mechanistic study on the inhibition of α-amylase and α-glucosidase using the extract of ultrasound-treated coffee leaves. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:63-74. [PMID: 37515816 DOI: 10.1002/jsfa.12890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Our previous studies have shown that ultrasound-treated γ-aminobutyric acid (GABA)-rich coffee leaves have higher angiotensin-I-converting enzyme inhibitory activity than their untreated counterpart. However, whether they have antidiabetic activity remains unknown. In this study, we aimed to investigate the inhibitory activities of coffee leaf extracts (CLEs) prepared with ultrasound (CLE-U) or without ultrasound (CLE-NU) pretreatment on α-amylase and α-glucosidase. Subsequently, we evaluated the binding interaction between CLE-U and both enzymes using multi-spectroscopic and in silico analyses. RESULTS Ultrasound pretreatment increased the inhibitory activities of CLE-U against α-amylase and α-glucosidase by 21.78% and 25.13%, respectively. CLE-U reversibly inhibits both enzymes, with competitive inhibition observed for α-amylase and non-competitive inhibition for α-glucosidase. The static quenching of CLE-U against both enzymes was primarily driven by hydrogen bond and van der Waals interactions. The α-helices of α-amylase and α-glucosidase were increased by 1.8% and 21.3%, respectively. Molecular docking results showed that the key differential compounds, including mangiferin, 5-caffeoylquinic acid, rutin, trigonelline, GABA, caffeine, glutamate, and others, present in coffee leaves interacted with specific amino acid residues located at the active site of α-amylase (ASP197, GLU233, and ASP300). The binding of α-glucosidase and these bioactive components involved amino acid residues, such as PHE1289, PRO1329, and GLU1397, located outside the active site. CONCLUSION Ultrasound-treated coffee leaves are potential anti-diabetic substances, capable of preventing diabetes by inhibiting the activities of α-amylase and α-glucosidase, thus delaying starch digestion. Our study provides valuable information to elucidate the possible antidiabetic capacity of coffee leaves through the inhibition of α-amylase and α-glucosidase activities. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qingwei Cao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Tingting Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, People's Republic of China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, People's Republic of China
| |
Collapse
|
6
|
Liu L, Wang Z, Yap PL, Zhang Q, Ni Y, Losic D. Inhibition of α-glucosidase activity by curcumin loaded on ZnO@rGO nanocarrier for potential treatment of diabetes mellitus. LUMINESCENCE 2024; 39:e4668. [PMID: 38286596 DOI: 10.1002/bio.4668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/15/2023] [Accepted: 11/22/2023] [Indexed: 01/31/2024]
Abstract
Curcumin (Cur) is an acidic polyphenol with some effects on α-glucosidase (α-Glu), but Cur has disadvantages such as being a weak target, lacking passing the blood-brain barrier and having low bioavailability. To enhance the curative effect of Cur, the hybrid composed of ZnO nanoparticles decorated on rGO was used to load Cur (ZnO@rGO-Cur). The use of the multispectral method and enzyme inhibition kinetics analysis certify the inhibitory effect and interaction mechanism of ZnO@rGO-Cur with α-Glu. The static quenching of α-Glu with both Cur and ZnO@rGO-Cur is primarily driven by hydrogen bond and van der Waals interactions. The conformation-changing ability by binding to the neighbouring phenolic hydroxyl group of Cur increased their ability to alter the secondary structure of α-Glu, resulting in the inhibition of enzyme activity. The inhibition constant (Ki, Cur > Kis,ZnO@rGO-Cur ) showed that the inhibition effect of ZnO@rGO-Cur on α-Glu was larger than that of Cur. The CCK-8 experiments proved that ZnO@rGO nanocomposites have good biocompatibility. These results suggest that the therapeutic potential of ZnO@rGO-Cur composite is an emerging nanocarrier platform for drug delivery systems for the potential treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Linghong Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Zhu Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| | - Qiulan Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Yongnian Ni
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Hassane Hamadou A, Zhang J, Li H, Chen C, Xu B. Modulating the glycemic response of starch-based foods using organic nanomaterials: strategies and opportunities. Crit Rev Food Sci Nutr 2023; 63:11942-11966. [PMID: 35900010 DOI: 10.1080/10408398.2022.2097638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Traditionally, diverse natural bioactive compounds (polyphenols, proteins, fatty acids, dietary fibers) are used as inhibitors of starch digestive enzymes for lowering glycemic index (GI) and preventing type 2 diabetes mellitus (T2DM). In recent years, organic nanomaterials (ONMs) have drawn a great attention because of their ability to overcome the stability and solubility issues of bioactive. This review aimed to elucidate the implications of ONMs in lowering GI and as encapsulating agents of enzymes inhibitors. The major ONMs are presented. The mechanisms underlying the inhibition of enzymes, the stability within the gastrointestinal tract (GIT) and safety of ONMs are also provided. As a result of encapsulation of bioactive in ONMs, a more pronounced inhibition of enzymes was observed compared to un-encapsulated bioactive. More importantly, the lower the size of ONMs, the higher their inhibitory effects due to facile binding with enzymes. Additionally, in vivo studies exhibited the potentiality of ONMs for protection and sustained release of insulin for GI management. Overall, regulating the GI using ONMs could be a safe, robust and viable alternative compared to synthetic drugs (acarbose and voglibose) and un-encapsulated bioactive. Future researches should prioritize ONMs in real food products and evaluate their safety on a case-by-case basis.
Collapse
Affiliation(s)
| | - Jiyao Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haiteng Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chao Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Xu H, Hao Z, Zhang J, Liu H, Deng C, Yu Z, Zheng M, Liu Y, Zhou Y, Xiao Y. Influence pathways of nanocrystalline cellulose on the digestibility of corn starch: Gelatinization, structural properties, and α-amylase activity perspective. Carbohydr Polym 2023; 314:120940. [PMID: 37173023 DOI: 10.1016/j.carbpol.2023.120940] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
This work focused on the pathways by which NCC regulated the digestibility of corn starch. The addition of NCC changed the viscosity of the starch during pasting, improved the rheological properties and short-range order of the starch gel, and finally formed a compact, ordered, and stable gel structure. In this respect, NCC affected the digestion process by changing the properties of the substrate, which reduced the degree and rate of starch digestion. Moreover, NCC induced changes in the intrinsic fluorescence, secondary conformation, and hydrophobicity of α-amylase, which lowered its activity. Molecular simulation analyses suggested that NCC bonded with amino acid residues (Trp 58, Trp 59, and Tyr 62) at the active site entrance via hydrogen bonding and van der Waals forces. In conclusion, NCC decreased CS digestibility by modifying the gelatinization and structural properties of starch and inhibiting α-amylase activity. This study provides new insights into the mechanisms by which NCC regulates starch digestibility, which could be beneficial for the development of functional foods to tackle type 2 diabetes.
Collapse
Affiliation(s)
- Huajian Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Zongwei Hao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Jinglei Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Huixia Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Changyue Deng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
9
|
Inhibition mechanisms of wounded okra on the α-glucosidase/α-amylase. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Construction of functional soybean peptide–cyclodextrin carboxylate nanoparticles and their interaction with porcine pancreatic α-amylase. Food Res Int 2022; 162:112054. [DOI: 10.1016/j.foodres.2022.112054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022]
|
11
|
Zhang X, Rehman RU, Wang S, Ji Y, Li J, Liu S, Wang H. Blue honeysuckle extracts retarded starch digestion by inhibiting glycosidases and changing the starch structure. Food Funct 2022; 13:6072-6088. [PMID: 35550649 DOI: 10.1039/d2fo00459c] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Blue honeysuckle rich in anthocyanins can inhibit starch-digesting enzyme activity. This study evaluated the inhibitory effect and mechanism of blue honeysuckle extract (BHE) on glycosidases (α-amylase and α-glucosidase). BHE was a mixed glycosidase inhibitor with an IC50 of 2.36 ± 0.14 and 0.06 ± 0.01 for α-amylase and α-glucosidase, respectively. Fourier transform infrared (FTIR) spectroscopy, multi-fluorescence spectroscopy, and isothermal titration calorimetry (ITC) confirmed that BHE caused the secondary structure change and static fluorescence quenching of glycosidases, and the interaction was an enthalpy-driven exothermic reaction. Molecular docking proved that the main anthocyanin monomers in BHE interacted with glycosidases through hydrogen bonds and van der Waals forces. Moreover, BHE changed the starch structure and prevented starch from being digested by glycosidases. In vivo, BHE and starch-BHE complexes effectively slowed postprandial hyperglycemia. This research provided a theoretical basis for BHE in antidiabetic healthy food research and development.
Collapse
Affiliation(s)
- Xinyue Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Rizwan-Ur Rehman
- Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore 546602, Pakistan
| | - Songxue Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yanglin Ji
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jing Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Suwen Liu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
12
|
Zhao J, Wang Z, Karrar E, Xu D, Sun X. Inhibition Mechanism of Berberine on α‐Amylase and α‐Glucosidase in Vitro. STARCH-STARKE 2022. [DOI: 10.1002/star.202100231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jinjin Zhao
- Synergetic Innovation Center of Food Safety and Nutrition State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Zhangtie Wang
- Synergetic Innovation Center of Food Safety and Nutrition State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Emad Karrar
- Synergetic Innovation Center of Food Safety and Nutrition State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Deping Xu
- Synergetic Innovation Center of Food Safety and Nutrition State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Xiulan Sun
- Synergetic Innovation Center of Food Safety and Nutrition State Key Laboratory of Food Science and Technology International Joint Research Laboratory for Lipid Nutrition and Safety School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| |
Collapse
|
13
|
Zhao Y, Wang M, Zhang J, Xiong C, Huang G. The mechanism of delaying starch digestion by luteolin. Food Funct 2021; 12:11862-11871. [PMID: 34734615 DOI: 10.1039/d1fo02173g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the mechanisms of the delay of starch digestion by luteolin were revealed by studying the luteolin-PPA (porcine pancreatic α-amylase) interaction and luteolin-starch interaction. The luteolin-PPA interaction was investigated by inhibitory kinetics analysis, fluorescence quenching, circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy and molecular docking. The results of the inhibitory kinetics revealed that luteolin was a mixed-type inhibitor of PPA and that the inhibitory action was reversible. Fluorescence spectroscopy (including fluorescence quenching and thermodynamics) and molecular docking analyses indicated that hydrogen bonds and hydrophobic forces were the main forces between PPA and luteolin. CD and FT-IR spectroscopy analyses showed that the interaction between luteolin and PPA changed the secondary structure of PPA and induced a decline in its activity. In addition, the luteolin-starch interaction was also studied using UV-visible absorption and X-ray diffraction analyses. These indicated that luteolin could bind with PPA, and that hydrogen bonds and van der Waals forces may be present. Overall, luteolin delayed starch digestion not only by binding with PPA but also by binding with starch. Thus, luteolin has the potential to prevent and control diabetes by being added into starch-based food to delay starch digestion.
Collapse
Affiliation(s)
- Yiling Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Ming Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Chunhong Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
14
|
Omeprazole inhibits α-glucosidase activity and the formation of nonenzymatic glycation products: Activity and mechanism. J Biosci Bioeng 2021; 133:110-118. [PMID: 34802943 DOI: 10.1016/j.jbiosc.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
In this study, the inhibitory effect and mechanism of omeprazole on α-glucosidase and nonenzymatic glycation were investigated in vitro by using multi-spectroscopic methods and molecular docking. Enzyme kinetic results showed that omeprazole inhibited α-glucosidase in a reversible and noncompetitive manner (IC50= 0.595 ± 0.003 mM). The results from fluorescence quenching and thermomechanical analyses signified that omeprazole reduced the fluorescence intensity of α-glucosidase by forming an omeprazole-α-glucosidase complex primarily driven by hydrogen bonds. Molecular docking further confirmed that hydrogen bonds and hydrophobic forces were the major driving forces for omeprazole binding to α-glucosidase. The nonenzymatic glycation assays revealed that omeprazole had a moderate inhibition against the formation of fructosamine, dicarbonyl compounds, and advanced glycation end products (AGEs). This study provides a new inhibitor of both α-glucosidase and nonenzymatic glycation and provides a practicable candidate for treating diabetes and its complications.
Collapse
|
15
|
Wu M, Yang Q, Wu Y, Ouyang J. Inhibitory effects of acorn (Quercus variabilis Blume) kernel-derived polyphenols on the activities of α-amylase, α-glucosidase, and dipeptidyl peptidase IV. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
Hsieh HJ, Lin JA, Chen KT, Cheng KC, Hsieh CW. Thermal treatment enhances the α-glucosidase inhibitory activity of bitter melon (Momordica charantia) by increasing the free form of phenolic compounds and the contents of Maillard reaction products. J Food Sci 2021; 86:3109-3121. [PMID: 34146408 DOI: 10.1111/1750-3841.15798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/02/2023]
Abstract
Inhibition of α-glucosidase can slow carbohydrate metabolism, which is known as an effective strategy for diabetes treatment. The aim of this study is to evaluate the effect of thermal treatment (50, 60, and 70℃) for 15 days on the α-glucosidase inhibitory activity of bitter melon. The results show that the bitter melon heated at 70℃ for 12 days had the best α-glucosidase inhibitory effect. However, the amount of free polyphenols, 5-hydroxymethyl-2-furfural (5-HMF), and the browning degree of bitter melon generally increased with the time (15 days) and temperature of the thermal treatment, which is positively related to their antioxidant and α-glucosidase inhibitory activities. In conclusion, aged bitter melon shows great α-glucosidase inhibitory activity, which may be related to the increased free form of the involved phenolic compounds and Maillard reaction products. This suggests that thermal processing may be a good way to enhance the application of bitter melon for diabetes treatment. PRACTICAL APPLICATION: The thermal processing of bitter melon provides an application for diabetes treatment. This study demonstrated that heat-treated bitter melon can lower the blood glucose level; therefore, it can be used as a potential anti-hyperglycemic and functional food.
Collapse
Affiliation(s)
- Hsin-Jung Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jer-An Lin
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| | - Kai-Ting Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Department of Optometry, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
17
|
Huang Y, Wu P, Ying J, Dong Z, Chen XD. Mechanistic study on inhibition of porcine pancreatic α-amylase using the flavonoids from dandelion. Food Chem 2020; 344:128610. [PMID: 33221105 DOI: 10.1016/j.foodchem.2020.128610] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 10/10/2020] [Accepted: 11/07/2020] [Indexed: 11/18/2022]
Abstract
This study was designed to investigate quantitatively the inhibition and molecular mechanism of pancreatic α-amylase exhibited by flavonoids from dandelion to reveal its potential use in relieving postprandial hyperglycemia. The results show that the flavonoids reversibly inhibited the α-amylase in a non-competitive manner with Michaelis-Menten constant (Km) and half-inhibitory concentration (IC50) value of 10.51 and 0.0067 mg/mL, respectively. The flavonoids present a strong ability to quench the intrinsic fluorescence of α-amylase through static quenching by forming a complex. The values of the binding site (n) at different temperatures were found to be approximately the unity, indicating the presence of a single class of molecular binding of the dandelion flavonoids on α-amylase. The positive values of enthalpy and entropy change reveal that the binding was predominately driven by hydrophobic interactions. This study suggests a benefit of incorporating the dandelion flavonoids in making functional foods in managing the diet of the diabetes.
Collapse
Affiliation(s)
- Yanmei Huang
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Wu
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jian Ying
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Zhizhong Dong
- Nutrition & Health Research Institute, COFCO Corporation, Beijing 102209, China; Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing 102209, China
| | - Xiao Dong Chen
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
18
|
Li S, Yin L, Yi J, Zhang LM, Yang L. Insight into interaction mechanism between theaflavin-3-gallate and α-glucosidase using spectroscopy and molecular docking analysis. J Food Biochem 2020; 45:e13550. [PMID: 33150631 DOI: 10.1111/jfbc.13550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
To elucidate the α-glucosidase (α-GC) inhibitory mechanism of theaflavin-3-gallate (TF-3-G), their interaction mechanism was investigated using spectroscopy and molecular docking analysis. The inhibition ratio of TF-3-G against α-GC was determined to be 92.3%. Steady fluorescence spectroscopy showed that TF-3-G effectively quenched the intrinsic fluorescence of α-GC through static quenching, forming a stable complex through hydrophobic interactions. Formation of the TF-3-G/α-GC complex was also confirmed by resonance light scattering spectroscopy. Synchronous fluorescence spectroscopy and circular dichroism spectroscopy indicated that the secondary structure of α-GC was changed by TF-3-G. Molecular docking was used to simulate TF-3-G/α-GC complex formation, showing that TF-3-G might be inserted into the hydrophobic region around the active site of ɑ-GC, and bind with the catalytic Asp215 and Asp352 residues. The ɑ-GC inhibitory mechanism of TF-3-G was mainly attributed to the change in ɑ-GC secondary structure caused by the complex formation. PRACTICAL APPLICATIONS: α-Glucosidase (α-GC) can hydrolyze the glycosidic bonds of starch and oligosaccharides in food and release glucose. Therefore, the inhibition of α-GC activity has been used to treat postprandial hyperglycemia and type 2 diabetes mellitus. Theaflavin-3-gallate (TF-3-G), a flavonoid found in the fermentation products of black tea, exhibits strong inhibition of α-GC activity. However, the α-GC inhibitory mechanism of TF-3-G is unclear. This study aids understanding of this mechanism, and proposed a possibly basic theory for improving the medicinal value of TF-3-G in diabetes therapy.
Collapse
Affiliation(s)
- Siyuan Li
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Lin Yin
- Department of Polymer and Material Science, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Juzhen Yi
- Department of Polymer and Material Science, School of Chemistry, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, China
| | - Li-Ming Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, China
| | - Liqun Yang
- Department of Polymer and Material Science, School of Chemistry, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
Wang M, Chen J, Ye X, Liu D. In vitro inhibitory effects of Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves proanthocyanidins on pancreatic α-amylase and their interaction. Bioorg Chem 2020; 101:104029. [PMID: 32615466 DOI: 10.1016/j.bioorg.2020.104029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/07/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
Chinese bayberry leaves proanthocyanidins (BLPs) belongs to the prodelphinidin category with potent EGCG unit, whose inhibition effect on α-amylase and their interaction were investigated by in vitro digestion and enzyme kinetic analysis, multi fluorescence spectroscopies (fluorescence quenching, synchronous fluorescence, and three-dimensional fluorescence), circular dichroism spectra, Fourier transform infrared spectroscopy and in silico modelling. The results revealed that BLPs was a mixed inhibitor to α-amylase with the IC50 value of 3.075 ± 0.073 μg/mL. BLPs could lead to a static fluorescence quenching of α-amylase, mainly by means of interacting with amino acids (mainly Try and Tyr residues) in one site on α-amylase molecule under the action of hydrogen bonding and/or Van der Waals force. This interaction further induced the change of secondary conformational structure, functional group structure and hydrophobicity of α-amylase, thus resulting in lowering activity. Molecular docking simulated that this binding occurred in a cavity on the surface of the α-amylase molecule, and BLPs trimer showed a relatively high binding energy. The present study provided a new insight of BLPs as an α-amylase inhibitor, which could be considered in anti-diabetic therapy.
Collapse
Affiliation(s)
- Mengting Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou 310058, People's Republic of China.
| | - Jianchu Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou 310058, People's Republic of China.
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou 310058, People's Republic of China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou 310058, People's Republic of China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, People's Republic of China.
| |
Collapse
|
20
|
Zhang Y, Yang Z, Liu G, Wu Y, Ouyang J. Inhibitory effect of chestnut (Castanea mollissima Blume) inner skin extract on the activity of α-amylase, α-glucosidase, dipeptidyl peptidase IV and in vitro digestibility of starches. Food Chem 2020; 324:126847. [PMID: 32344340 DOI: 10.1016/j.foodchem.2020.126847] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/04/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
This study aimed to investigate the inhibitory effect of chestnut inner skin extract (CISE) on the activity of postprandial blood sugar-related enzymes. In total, 12 flavonoids were identified by HPLC-TOF-MS. CISE showed strong and weak inhibition on α-amylase and α-glucosidase, with the IC50 of 27.2 and 2.3 μg/mL, respectively. The inhibition modes of CISE against α-amylase and α-glucosidase were mixed-type and non-competitive type, respectively. Epicatechin gallate noncompetitively inhibited α-amylase, α-glucosidase and dipeptidyl peptidase IV (DPP-IV). Analysis by ultraviolet-visible spectroscopy, fluorescence spectroscopy and circular dichroism suggested that flavonoids altered the hydrophobicity and microenvironment of these enzymes. CISE decreased the starch bioavailability by reducing the enzymatic hydrolysis rate and increasing the fraction of undigested starch. The extract reduced the rapidly digestible starch and increased the resistant starch after incorporation into A-, B- or C- crystallinity starch. Thus, the chestnut inner skin is a useful resource for regulating postprandial blood sugar level.
Collapse
Affiliation(s)
- Yuyang Zhang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Zhenglei Yang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Gege Liu
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Beijing Center for Physical and Chemical Analysis, Beijing Food Safety Analysis and Testing Engineering Research Center, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Process and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
21
|
Freitas D, Boué F, Benallaoua M, Airinei G, Benamouzig R, Le Feunteun S. Lemon juice, but not tea, reduces the glycemic response to bread in healthy volunteers: a randomized crossover trial. Eur J Nutr 2020; 60:113-122. [PMID: 32201919 DOI: 10.1007/s00394-020-02228-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/09/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE The inhibition of enzymes that hydrolyze starch during digestion could constitute an opportunity to slow down the release, and ultimately the uptake, of starch-derived glucose. Simple dietary approaches consisting in pairing starch-rich foods with beverages that have the capacity to inhibit such enzymes could be an effective and easily implementable strategy. The objective of this work was to test the impact of black tea and lemon juice on the glycemic response to bread and subsequent energy intake in healthy adults. METHODS A randomized crossover study was conducted with equal portions of bread (100 g) and 250 ml of water, black tea or lemon juice. Capillary blood glucose concentrations were monitored during 180 min using the finger-prick method. Ad libitum energy intake was assessed 3 h later. RESULTS Tea had no effect on the glycemic response. Lemon juice significantly lowered the mean blood glucose concentration peak by 30% (p < 0.01) and delayed it more than 35 min (78 vs. 41 min with water, p < 0.0001). None of the tested beverages had an effect on ad libitum energy intake. CONCLUSION These results are in agreement with previous in vitro studies showing that lowering the pH of a meal can slow down starch digestion through premature inhibition of salivary α-amylase. Furthermore, the effect of lemon juice was similar to what has been repeatedly observed with vinegar and other acidic foods. Including acidic beverages or foods in starchy meals thus appears to be a simple and effective strategy to reduce their glycemic impact.
Collapse
Affiliation(s)
- Daniela Freitas
- UMR SayFood, Université Paris-Saclay, INRAE, AgroParisTech, 78850, Thiverval-Grignon, France.,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - François Boué
- UMR SayFood, Université Paris-Saclay, INRAE, AgroParisTech, 78850, Thiverval-Grignon, France
| | - Mourad Benallaoua
- CEFRED (centre d'exploration fonctionnelle et de rééducation digestive), Service de gastro-entérologie, Hôpital Avicenne, Bobigny Cedex, France
| | - Gheorghe Airinei
- CEFRED (centre d'exploration fonctionnelle et de rééducation digestive), Service de gastro-entérologie, Hôpital Avicenne, Bobigny Cedex, France
| | - Robert Benamouzig
- CEFRED (centre d'exploration fonctionnelle et de rééducation digestive), Service de gastro-entérologie, Hôpital Avicenne, Bobigny Cedex, France
| | - Steven Le Feunteun
- UMR SayFood, Université Paris-Saclay, INRAE, AgroParisTech, 78850, Thiverval-Grignon, France. .,INRAE, Agrocampus Ouest, UMR STLO, 35042, Rennes, France.
| |
Collapse
|
22
|
Jiang L, Wang Z, Wang X, Wang S, Cao J, Liu Y. Exploring the inhibitory mechanism of piceatannol on α-glucosidase relevant to diabetes mellitus. RSC Adv 2020; 10:4529-4537. [PMID: 35495253 PMCID: PMC9049079 DOI: 10.1039/c9ra09028b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/08/2020] [Indexed: 11/25/2022] Open
Abstract
Due to their association with type 2 diabetes mellitus treatment, α-glucosidase inhibitors have attracted increasing attention of researchers. In this study, we systemically investigated the kinetics and inhibition mechanism of piceatannol on α-glucosidase. Enzyme kinetics analyses showed that piceatannol exhibited strong inhibition on α-glucosidase in a non-competitive manner. Spectroscopy analyses indicated that piceatannol could bind with α-glucosidase to form complexes via high affinity. Further, computational molecular dynamics and molecular docking studies validated that the binding of piceatannol was outside the catalytic site of α-glucosidase, which would induce conformational changes of α-glucosidase and block the entrance of substrate, causing declines in α-glucosidase activities. Our results provide useful information not only for the inhibition mechanism of piceatannol against α-glucosidase but also for a novel target site for developing novel α-glucosidase inhibitors as potential therapeutic agents in the treatment of type 2 diabetes mellitus. The non-competitive inhibition of piceatannol on α-glucosidase. A combination of dynamic and static process with one binding site. The involvement of hydrophobic interactions and hydrogen bonding. Dietary recommendations for diabetes or potential antidiabetic drug.![]()
Collapse
Affiliation(s)
- Lili Jiang
- School of Life and Pharmaceutical Sciences
- Dalian University of Technology
- Panjin 124221
- China
| | - Zhen Wang
- School of Life and Pharmaceutical Sciences
- Dalian University of Technology
- Panjin 124221
- China
| | - Xiaoyu Wang
- School of Life and Pharmaceutical Sciences
- Dalian University of Technology
- Panjin 124221
- China
| | - Shujuan Wang
- School of Life and Pharmaceutical Sciences
- Dalian University of Technology
- Panjin 124221
- China
| | - Jun Cao
- Department of Occupational and Environmental Health
- Dalian Medical University
- Dalian 116044
- China
| | - Yong Liu
- School of Life and Pharmaceutical Sciences
- Dalian University of Technology
- Panjin 124221
- China
| |
Collapse
|
23
|
Freitas D, Le Feunteun S. Inhibitory effect of black tea, lemon juice, and other beverages on salivary and pancreatic amylases: What impact on bread starch digestion? A dynamic in vitro study. Food Chem 2019; 297:124885. [DOI: 10.1016/j.foodchem.2019.05.159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 11/27/2022]
|
24
|
Adrar NS, Madani K, Adrar S. Impact of the inhibition of proteins activities and the chemical aspect of polyphenols-proteins interactions. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Nambirajan G, Karunanidhi K, Ganesan A, Rajendran R, Kandasamy R, Elangovan A, Thilagar S. Evaluation of antidiabetic activity of bud and flower of Avaram Senna (Cassia auriculata L.) In high fat diet and streptozotocin induced diabetic rats. Biomed Pharmacother 2018; 108:1495-1506. [DOI: 10.1016/j.biopha.2018.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022] Open
|
26
|
Effect of Tea/Tea Extracts on α‐Glucan Hydrolysis by Enzymes In Vitro and In Vivo − With Parallel Impacts on Health. STARCH-STARKE 2018. [DOI: 10.1002/star.201700339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|