1
|
Khan M, Ahmad S, Alzahrani KA, Khan SB. Development and detailed investigation of metal nanoparticles decorated carbon black/sodium alginate composite beads for catalytic reduction of environmental toxicants and hydrogen production. Int J Biol Macromol 2024; 283:137300. [PMID: 39521228 DOI: 10.1016/j.ijbiomac.2024.137300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/06/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The discharge of environmental pollutants requires intellectual and rapid solutions to convert them into safer products. Simultaneously, the high energy demands underscore the imperative importance of generating sufficient green energy to fulfill human needs. This study focused on metal nanoparticles (MNPs) decoration on polymeric beads (BDs), employing orange peel derived carbon black (OrP) and sodium alginate polymer (Alg). The resulting Alg-OrP-BDs serve as a versatile platform for the adsorption of different metal ions and their treatment with a potent reducing agent (NaBH4) yielding modified BDs catalysts: Ag0@Alg-OrP-BDs, Ni0@Alg-OrP-BDs, Co0@Alg-OrP-BDs, Fe0@Alg-OrP-BDs, and Cu0@Alg-OrP-BDs. These synthesized nanocomposite catalysts were characterized and exhibit remarkable catalytic reduction capabilities against various nitrophenols and dyes. Notably, Cu0@Alg-OrP-BDs emerges as an outstanding catalyst, demonstrating high efficiency in the (>98 %) reduction of 4-nitrophenol and methyl orange with the rates of 1.568 min-1 and 2.185 min-1, respectively. Furthermore, its parametric study was investigated to explore the efficiency of the selected catalyst in detail. Similarly, the Cu0@Alg-OrP-BDs also enhance hydrogen gas production in various conditions, achieving a rate of 1620.37 mL g-1 of catalyst min-1. The purity of the hydrogen was determined using a GC-TCD system. Hence, this study pioneers the development and thorough examination of the Cu0@Alg-OrP-BDs catalyst, showcasing its exceptional activity and recyclability.
Collapse
Affiliation(s)
- Mansoor Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Shahid Ahmad
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Khalid A Alzahrani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
2
|
Tabassum N, Anjum R, Haque P, Hossain MS, Mobarak MB, Quddus MS, Chowdhury F, Rahman L, Islam D, Ahmed S, Mahmud M. Ag-Co ferrite-based magnetic polymeric composite film: a breakthrough in cationic dye remediation for sustainable environment. RSC Adv 2024; 14:36557-36575. [PMID: 39553274 PMCID: PMC11565276 DOI: 10.1039/d4ra06315e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
The deployment of magnetically responsive and polymeric materials to remove dyes that are hazardous in aquatic environments has profoundly revolutionized environmental sustainability. This study focuses on removing the hazardous cationic Malachite Green (MG) dye from solutions, employing a novel magnetic composite film as an adsorbent, designated as Ag0.2Co0.8 Fe2O4 (ACFCeP). The composite was synthesized via solvent casting, incorporating Ag0.2Co0.8 Fe2O4 nanoparticles and CeO2 into a cellulose acetate/polyvinylpyrrolidone (CA/PVP) polymer matrix. The Ag0.2Co0.8Fe2O4 nanoparticles were synthesized by a co-precipitation method. Comprehensive characterization of the synthesized composite was conducted using techniques, such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), and vibrating sample magnetometer (VSM). The Ag-doped cobalt ferrite component retained a strong hysteresis loop within the final composite, even when blended with the CA/PVP polymer, preserving the robust magnetic properties that facilitate the easy removal of the composite post-treatment without secondary pollution. Additionally, the mesoporous structure of the composite effectively aids in the adsorption mechanism. The isothermal study shows that both linear Langmuir isotherm and Freundlich isotherm are well fitted with R 2 values of 0.99 and 0.97, respectively. The linear Langmuir maximum adsorption capacity, q max, is 45.66 mg g-1 at pH 7. The kinetic studies of the composite resemble the pseudo-second-order kinetic model, reaching adsorption equilibrium within 70 min for a 100 ppm MG dye concentration. The composite film exhibits excellent reusability, maintaining high removal efficiency over three cycles. Overall, the ACFCeP composite film showcases excellent dye removal capabilities, a fast adsorption rate, and satisfactory magnetic properties and offers a sustainable solution for environmental pollution, thus contributing to ecosystem preservation through efficient recycling and reuse in dye adsorption applications.
Collapse
Affiliation(s)
- Nafisa Tabassum
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Raamisa Anjum
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Papia Haque
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Md Sahadat Hossain
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Mashrafi Bin Mobarak
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Md Saiful Quddus
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Fariha Chowdhury
- BTRI, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Lutfor Rahman
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Dipa Islam
- BTRI, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Samina Ahmed
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Monika Mahmud
- Institute of Glass and Ceramic Research and Testing (IGCRT), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-i-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| |
Collapse
|
3
|
Islam M, Javed A, Rahman ZU, Al-Ghamdi YO, Khan SA. Antibacterial composite films of oxidized alginate-chitosan-ZnO anchored Cu nanoparticles for the degradation of organic pollutants. Int J Biol Macromol 2024; 278:134764. [PMID: 39153670 DOI: 10.1016/j.ijbiomac.2024.134764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The growing population and urbanization have adversely affected the environment including water. The waste water from industries has affected not only human but also animals. The availability of clean water is one of the foremost needs for living organism. This makes very urgent to find reliable solutions for cleaning waste water. These days catalysis is one the best solutions to remove and degrade organic pollutants. In this work, porous composite polymer films have been designed through facile method which were employed to stabilize zero-valent metal nanoparticles (NPs). The sustainable, environmentally friendly polymer matrix with attached metal NPs was applied for the effective catalytic degradation of both phenolic compounds and organic dyes. The different composite films consist of ZnO NPs embedded in an Oxidized Alginate-Chitosan (OAlg-CS) biomatrix named as OAlg-CS/ZnO with various percentages of ZnO as a support for metallic Cu NPs. The ZnO NPs have been incorporated into OAlg-CS polymer with 10, 15, and 20 wt% and are designated as OAlg-CS/ZnO-10, OAlg-CS/ZnO-15, OAlg-CS/ZnO-20. Various analytical techniques were utilized to investigate the shape, morphology, elemental composition, functional groups and stability of the composite films. All these polymer nanocomposite films were then evaluated for removal of model organic pollutants comprising p-nitrophenol (4-NP), methylene blue (MB), and methyl orange (MO). The Kapp value for 4-NP was 2.19 × 10-1 min-1, 4.68 × 10-1 min-1 for MO and 8.99× 10-1 min-1 for MB. The experimental results demonstrated that OAlg-CS/ZnO-20 films show the highest catalytic activity as compared to OAlg-CS/ZnO, OAlg-CS/ZnO-10, and OAlg-CS/ZnO-15. The order of rate constants for nitrophenol and dyes using OAlg-CS/ZnO-20 was found to be MB ˃ MO ˃ 4-NP, showing the selectivity of these composite films. The prepared composite films were also investigated for their antibacterial activity against Gram-positive and Gram-negative bacteria and all the films exhibited good anti-bacterial activity, with OAlg-CS/ZnO-20 showed the highest anti-bacterial activity.
Collapse
Affiliation(s)
- Momina Islam
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Aiman Javed
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Zia Ur Rahman
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Youssef O Al-Ghamdi
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan; Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China.
| |
Collapse
|
4
|
Ahmad S, Khan M, Khan SB, Asiri AM. Exploring the potential of surface-modified alginate beads for catalytic removal of environmental pollutants and hydrogen gas generation. Int J Biol Macromol 2024; 277:133697. [PMID: 38996882 DOI: 10.1016/j.ijbiomac.2024.133697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
In this study, hydrogel beads were fabricated using alginate (Algt) polymer containing dispersed nickel phthalocyanine (NTC) nanomaterial. The viscous solution of Algt and NTC was poured dropwise into a divalent Ca2+ ions, resulting in the formation of hydrogel beads known as NTC@Algt-BDs. The surface of the NTC@Algt-BDs was further modified by coating them with different types of metal ions, yielding metal-coated M+/NTC@Algt-BDs. The adsorbed metal ions i.e., Cu+2, Ag+, Ni+2, Co+2, and Fe+3 were subsequently reduced to zero-valent metal nanoparticles (M0) by NaBH4. The prepared beads were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Initially, M0/NTC@Algt-BDs were examined for the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Among them, Cu0/NTC@Algt-BDs catalyst exhibited the highest reduction rate and therefore, investigated for reduction of different nitrophenols (NPs) and dyes, including 2-nitrophenol (2-NP), 2,6-dinitrophenol (2,6-DNP), methyl orange (MO), potassium ferrocyanide (PFC), congo red (CR), and acridine orange (ArO). The highest reduction rates of 2.019 and 1.394 min-1 were observed for MO and 2-NP, respectively. Furthermore, the fabricated catalysts were employed for the efficient production of H2 gas by NaBH4 methanolysis. Among which the Ag0/NTC@Algt-BDs catalyst showed excellent catalytic production of H2 gas, exhibiting the lowest activation energy (Ea) of 25.169 kJ/mol at ambient temperature. Furthermore, the impact of NaBH4 amount, and catalyst dosage on the reduction of 2-NP and H2 gas production was conducted whereas the effect of temperature on methanolysis of NaBH4 for evolution of H2 gas was studied. The amount of H2 gas was confirmed by GC-TCD system. Additionally, the recyclability of the catalyst was investigated, as it garnered significant research interest.
Collapse
Affiliation(s)
- Shahid Ahmad
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mansoor Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Shar Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Bakhsh EM, Akhtar K, Khan SB, Asiri AM, Kamal T, Bilal M, Khan SA. Silver oxide doped iron oxide/alginate nanocomposite coated cotton cloth for selective catalytic reduction of potassium ferricyanide. CHEMOSPHERE 2024; 355:141743. [PMID: 38513958 DOI: 10.1016/j.chemosphere.2024.141743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 02/12/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Silver oxide doped iron oxide (Ag2O-Fe2O3) nanocatalyst was prepared and coated on cotton cloth (CC) as well as wrapped in sodium alginate (Alg) hydrogel. Ag2O-Fe2O3 coated CC (Ag2O-Fe2O3/CC) and Ag2O-Fe2O3 wrapped Alg (Ag2O-Fe2O3/Alg) were utilized as catalysts in reduction reaction of 4-nitrophenol (4-NP), congo red (CR), methylene blue (MB) and potassium ferricyanide (K3[Fe(CN)6]). Ag2O-Fe2O3/CC and Ag2O-Fe2O3/Alg were found to be effective and selective catalyst for the reaction of K3[Fe(CN)6]. Further amount of catalyst, K3[Fe(CN)6] quantity, amount of NaBH4, stability of catalyst and recyclability were optimized for the reaction of K3[Fe(CN)6] reduction. Ag2O-Fe2O3/Alg and Ag2O-Fe2O3/CC were appeared to be the stable catalysts by maintaining high activity during recyclability tests showing highest reaction rate constants (kapp) of 0.3472 and 0.5629 min-1, correspondingly. However, Ag2O-Fe2O3/CC can be easily recovered as compared to Ag2O-Fe2O3/Alg by simply removing from the reaction which is the main advantage of Ag2O-Fe2O3/CC. Moreover, Ag2O-Fe2O3/Alg and Ag2O-Fe2O3/CC were also examined in real samples and found useful for K3[Fe(CN)6] reduction involving real samples. The Ag2O-Fe2O3/CC nanocatalyst is a cost and time saving material for economical reduction of K3[Fe(CN)6] and environmental safety.
Collapse
Affiliation(s)
- Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Muhammad Bilal
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, (Khyber Pakhtunkhwa) , Pakistan
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, 44000, Pakistan
| |
Collapse
|
6
|
Homdi TA, Fagieh TM, Akhtar K, Bakhsh EM, Alhemadan AH, Khan SB. Metal nanoparticles decorated mint-cellulose acetate composite as an efficient catalyst for the reduction of methyl orange. Int J Biol Macromol 2024; 268:131558. [PMID: 38614166 DOI: 10.1016/j.ijbiomac.2024.131558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/16/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Water contamination caused by toxic compounds has emerged as one of the most severe challenges worldwide. Biomass-based nanocomposites offer a sustainable and renewable alternative to conventional materials. In this study, a nanocomposite of mint and cellulose acetate (Mint-CA) was prepared and employed as a supportive material for Cu nanoparticles (CuNPs) and Ag nanoparticles (AgNPs). The selectivity of CuNPs@mint-CA and AgNPs@mint-CA was assessed by comparing their performance in the reduction reaction of various dyes solutions. AgNPs@mint-CA exhibited superior catalytic performance, with a removal of 95.2 % for methyl orange (MO) compared to 68 % with CuNPs@mint-CA. The absorption spectra of MO exhibited a distinct peak at 464 nm. The reduction reaction of MO by AgNPs@mint-CA followed pseudo-first-order-kinetic with a rate constant of k = 0.0063 min-1 (R2 = 0.928). The highest removal of MO was achieved under the following conditions: a catalyst weight of 40 mg, an initial MO concentration of 0.07 mM, the addition of 0.5 mL of 0.1 M NaBH4, and a temperature of 25 °C. Furthermore, the AgNPs@mint-CA catalyst exhibited exceptional reducibility even after five use cycles, highlighting its potential for efficiently removing MO.
Collapse
Affiliation(s)
- Tahani A Homdi
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Taghreed M Fagieh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abeer H Alhemadan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Zhang Y, Kobayashi K, Kusumi R, Kimura S, Kim UJ, Wada M. Catalytic activity of Cu 2O nanoparticles supported on cellulose beads prepared by emulsion-gelation using cellulose/LiBr solution and vegetable oil. Int J Biol Macromol 2024; 265:130571. [PMID: 38467226 DOI: 10.1016/j.ijbiomac.2024.130571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Nanocatalysts tend to aggregate and are difficult to recycle, limiting their practical applications. In this study, an environmentally friendly method was developed to produce cellulose beads for use as supporting materials for Cu-based nanocatalysts. Cellulose beads were synthesized from a water-in-oil emulsion using cellulose dissolved in an LiBr solution as the water phase and vegetable oil as the oil phase. Upon cooling, the gelation of the cellulose solution produced spherical cellulose beads, which were then oxidized to introduce surface carboxyl groups. These beads (diameter: 95-105 μm; specific surface area: 165-225 m2 g-1) have a three-dimensional network of nanofibers (width: 20-30 nm). Furthermore, the Cu2O nanoparticles were loaded onto oxidized cellulose beads before testing their catalytic activity in the reduction of 4-nitrophenol using NaBH4. The apparent reaction rate constant increased with increasing loading of Cu2O nanoparticles and the conversion efficiency was >90 %. The turnover frequency was 376.2 h-1 for the oxidized cellulose beads with the lowest Cu2O loading, indicating a higher catalytic activity compared to those of other Cu-based nanoparticle-loaded materials. In addition to their high catalytic activity, the cellulose beads are reusable and exhibit excellent stability.
Collapse
Affiliation(s)
- Yangyang Zhang
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Kayoko Kobayashi
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Ryosuke Kusumi
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan; Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan.
| | - Satoshi Kimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
| | - Ung-Jin Kim
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| | - Masahisa Wada
- Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
8
|
Mousa H, Abd El-Hay SS, El Sheikh R, Gouda AA, El-Ghaffar SA, El-Aal MA. Development of environmentally friendly catalyst Ag-ZnO@cellulose acetate derived from discarded cigarette butts for reduction of organic dyes and its antibacterial applications. Int J Biol Macromol 2024; 258:128890. [PMID: 38134996 DOI: 10.1016/j.ijbiomac.2023.128890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
The release of harmful organic dyes from different industries besides its degradation products is a major contributor to environmental contamination. The catalytic reduction of these organic pollutants using nanocomposites based on polymeric material presents potential advantages for the environment. In this study, novel nanocomposite based on cellulose acetate (CA)-derived from discharged cigarette butts and zinc oxide nanoparticles (ZnO NPs) was prepared utilizing a very simple and low-cost solution blending method and used as support for silver nanoparticles (Ag NPs). A simple reduction method was used to anchor different percentages of Ag NPs on the ZnO@CA nanocomposite surface via utilizing sodium borohydride as a reducing agent. The Ag-ZnO@CA nanocomposite was characterized using X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The TEM analysis showed spherical Ag NPs, with an average diameter of ∼17.6 nm, were uniformly anchored on the ZnO@CA nanocomposite surface. The prepared nanocomposites were evaluated as catalysts for the reduction of organic dyes in water. It was found that 10 % Ag-ZnO@CA nanocomposite showed a remarkable reduction of Rhodamine B (RhB), Rhodamine 6G (Rh6G), Methylene Blue (MB), and Sunset Yellow (SY) dyes in short time. In the presence of this nanocomposite, the rate constant, kapp values for RhB, Rh6G, MB, and SY were 0.3498 min-1, 1.51 min-1, 0.2292 min-1, and 0.733 min-1, respectively. This nanocomposite was recovered and reused in five successive cycles, with a negligible loss of its activity. Furthermore, the nanocomposites demonstrated moderate antibacterial activity toward Staphylococcus aureus and Escherichia coli. Thus, this study directed attention on recycling of waste material to a valuable nanocomposite and its applications in environmental protection.
Collapse
Affiliation(s)
- Heba Mousa
- Department of Special Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Soad S Abd El-Hay
- Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Ragaa El Sheikh
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ayman A Gouda
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | | | - Mohamed Abd El-Aal
- Catalysis and Surface Chemistry Lab, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
9
|
Akhtar K, Khan MSJ, Bakhsh EM, Kamal T, Asiri AM, Khan SB. Chitosan hydrogel anchored phthalocyanine supported metal nanoparticles: Bifunctional catalysts for pollutants reduction and hydrogen production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121524. [PMID: 37003583 DOI: 10.1016/j.envpol.2023.121524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Metal nanoparticles possess high catalytic activity in various organic transformation reactions. A catalyst must be recovered and re-used effectively and economically to lower the overall reaction cost. The recovery of a catalyst remains a challenge due to their extreme small size. In this research work, catalytic metal nanoparticles were synthesized on Zn-phthalocyanine (ZnPc) and chitosan hydrogel (CH) composite which acts as catalyst support. The ZnPc-CH support facilitate the easy recovery of the loaded metal nanoparticles. Metal nanoparticles (M0) based on Cu0, Ag0, Ni0, Co0 and Fe0 were decorated inside and on ZnPc-CH hydrogel surface. The developed M0@ZnPc-CH were utilized for the enhanced selective reduction of toxins and hydrogen production by methanolysis and hydrolysis of NaBH4. Effective catalytic reduction and hydrogen generation was successfully achieved with Co0@ZnPc-CH and ZnPc-CH. Under optimized conditions, Co0@ZnPc-CH showed complete reduction of 4-nitrophenol (4-NP) in 8.0 min with the fast 4-NP reduction kinetics (K = 0.611 min-1). Among the developed catalysts, ZnPc-CH showed fast H2 generation with high H2 generation rate (HGR = 4100 mLg-1min-1) under optimized conditions. Metal leaching from Co0@ZnPc-CH was negligible during recycling of the catalyst, suggesting that it could be implemented to 4-NP treatment from real water samples. Similarly, ZnPc-CH could produce same quantity of H2 throughout 4 continuous cycles of durability testing without any deactivation and leaching and ZnPc-CH showed high stability, indicating the effectiveness of the catalyst to be applied for H2 production on large scale.
Collapse
Affiliation(s)
- Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Mohammad Sherjeel Javed Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Department of Chemistry, Bacha Khan University, Charsadda, P.O. Box 24420, KP, Pakistan
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Tahseen Kamal
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Center of Excellence for Advanced Materials, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia; Center of Excellence for Advanced Materials, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
10
|
Tang X, Lei Y, Yu C, Wang C, Zhang P, Lu H. Highly-efficient degradation of organic pollutants by oxalic acid modified sludge biochar: Mechanism and pathways. CHEMOSPHERE 2023; 325:138409. [PMID: 36925015 DOI: 10.1016/j.chemosphere.2023.138409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The application of sludge biochar (SC) materials as efficient catalysts for organic pollutants mineralization via advanced oxidation process meets the good strategy of "make waste profitable". The catalytic oxidations of methyl orange (MO) and pyrene by oxalic acid modified sludge biochar (SC-OA) with and without H2O2 were carried out. The analysis of Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), electronic paramagnetic resonance spectrometer (EPR) and free radical quenching experiment were performed and the definite relationships between persistent free radicals (PFRs) type and specific reactive oxygen species (ROS) were made clear. It is suggested for the first time that carbon-centered type PFRs in SC-OA without H2O2 could form O2•- and •OH from COOH groups, while oxygen-centered type PFRs induced H2O2 to produce •OH. The degradation intermediates of MO and pyrene were identified and the transformation pathways were proposed. SC-OA, possessing good sustainable utilization and clean catalytic property, is expected to be popularized and applied in the mineralization of organic pollutants, especially in the in-situ remediation of contaminated soil where is no continuous supply of H2O2.
Collapse
Affiliation(s)
- Xuejiao Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Yuanyuan Lei
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Congya Yu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Pengpeng Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Huixia Lu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| |
Collapse
|
11
|
Akhtar K, Bakhsh EM, Khan SB, Khan M, Asiri AM. SnLa 2O 5 wrapped carboxymethyl cellulose mixed calcium alginate nanocomposite beads for efficient reduction of pollutants. Int J Biol Macromol 2023; 233:123564. [PMID: 36754261 DOI: 10.1016/j.ijbiomac.2023.123564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
In this project, lanthanum oxide doped tin oxide (SnLa2O5) nanomaterial was prepared and characterized morphologically and physiochemically by different techniques. The catalytic performance of SnLa2O5 was assessed toward catalytic reduction of 4-nitrophenol (4-NP), methyl orange (MO), congo red (CR), methylene blue (MB) and potassium ferricyanide (K3[Fe(CN)6]). SnLa2O5 was found to be efficient for K3[Fe(CN)6] in the presence of NaBH4, which reduced in only 8.0 min. SnLa2O5 was further wrapped in carboxymethyl cellulose mixed calcium alginate (CMC-Alg) hydrogel beads because the powder catalyst cannot be simply recovered from reaction media to recycle and use again. SnLa2O5 wrapped CMC-Alg (SnLa2O5/CMC-Alg) was assessed for detail analysis of K3[Fe(CN)6] reduction. The effect of NaBH4, K3[Fe(CN)6] concentration and amount of catalyst was optimized using SnLa2O5/CMC-Alg. The amount of catalyst has positive impact on catalytic reduction of K3[Fe(CN)6]. The kinetic study revealed that K3[Fe(CN)6] reduction by SnLa2O5 and SnLa2O5/CMC-Alg was fast, which completed in 8.0 and 4.0 min with rate constant of 0.4283 min-1 and 0.7461 min-1, respectively. These findings indicated that the developed SnLa2O5/CMC-Alg is best and proficient nanocatalyst for K3[Fe(CN)6] reduction. The efficiency along with cost-effective and simple treatment route of the developed nanocatalyst have prospect to compete and replace the reputable commercial catalysts.
Collapse
Affiliation(s)
- Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mansoor Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
12
|
Prasad C, Madkhali N, Jeong SG, Malkappa K, Choi HY, Govinda V. Recent advances in the hybridization of cellulose and semiconductors: Design, fabrication and emerging multidimensional applications: A review. Int J Biol Macromol 2023; 233:123551. [PMID: 36740107 DOI: 10.1016/j.ijbiomac.2023.123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Cellulose is a plentiful, biodegradable, renewable, and natural polymer in the world that can be widely utilized in the production of polymer nanocomposites. Cellulose is developed in nanomaterials owing to its remarkable inherent features of low density, non-toxicity, and affordability, as well as the amazing sample characteristics of strength and thermal stability. Recently, there has been a lot of interest in organic-inorganic composites because of their adaptable qualities. Cellulose and semiconductors have exciting properties, and new combinations of both materials may result in efficient functional hybrid composites with distinct properties. Lately, a huge study was reported on cellulose and semiconductor-based nanocomposites. In this review, we summarize the present research development in the preparation methods, structure, features, and possible applications of multifunctional cellulose and semiconductor-based nanocomposites. The cellulose/semiconductor based nanocomposites have massive potential applications in the areas of photodegradation of organic dyes, hydrogen production, metal removal, biomedical, and sensor applications. It is also assumed that this article will promote additional investigation and will establish innovative capabilities to enhance novel cellulose and semiconductor based nanocomposites with new and exciting applications.
Collapse
Affiliation(s)
- Cheera Prasad
- Department of Fashion and Textiles, Dong-A University, Busan 49315, Republic of Korea
| | - Nawal Madkhali
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Seong-Geun Jeong
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Kuruma Malkappa
- Department of Fashion and Textiles, Dong-A University, Busan 49315, Republic of Korea
| | - Hyeong Yeol Choi
- Department of Fashion and Textiles, Dong-A University, Busan 49315, Republic of Korea.
| | - V Govinda
- Department of Chemistry, Gayatri Vidya Parishad College for Degree and PG Courses (A), Rushikonda campus, Visakhapatnam 530045, India
| |
Collapse
|
13
|
Ullah K, Khan S, Khan M, Rahman ZU, Al-Ghamdi YO, Mahmood A, Hussain S, Khan SB, Khan SA. A bioresource catalyst system of alginate-starch-activated carbon microsphere templated Cu nanoparticles: Potentials in nitroarenes hydrogenation and dyes discoloration. Int J Biol Macromol 2022; 222:887-901. [PMID: 36179868 DOI: 10.1016/j.ijbiomac.2022.09.226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 11/18/2022]
Abstract
The evolution and development of solid-matrix are considered a backbone for supporting and stabilizing of metal nanoparticles (NPs) and are the soul of the catalytic system. In the current study, the alginate-starch microsphere (Alg-St) was cross-linked using CaCl2 as a cross-linker. In addition, the Alg-St microsphere was blended with different percentages of activated carbon (AC). The microspheres adsorbed Cu+2 was reduced to zero-valent copper NPs through NaBH4 and used as a dip-catalyst. The supported Cu NPs cum NaBH4 system was used as dip-catalyst for the hydrogenation of 4-nitrophenol (4NP), 2-nitroanilline (2NA), and degradation of methylene blue (MB) and Congo red (CR) dyes. Among the different kinetics models, the experimental data were well-fitted in the zero-order kinetic model. Moreover pH, and recyclability were studied for 4NP, where the best activity was achieved at pH 7.0 for 4NP. No leaching was observed after 3rd cycle in the catalyst.
Collapse
Affiliation(s)
- Kaleem Ullah
- Department of Chemistry, University of Swabi, Anbar, Swabi 23561, Pakistan
| | - Salman Khan
- Department of Chemistry, University of Swabi, Anbar, Swabi 23561, Pakistan
| | - Musa Khan
- Department of Chemistry, University of Swabi, Anbar, Swabi 23561, Pakistan
| | - Zia Ur Rahman
- Department of Chemistry, University of Swabi, Anbar, Swabi 23561, Pakistan
| | - Youssef O Al-Ghamdi
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Azhar Mahmood
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Shah Hussain
- Department of Chemistry, Government Postgraduate College, Nowshera 24100, Khyber-Pakhtunkhwa, Pakistan
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Shahid Ali Khan
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology (NUST), Islamabad 44000, Pakistan.
| |
Collapse
|
14
|
Bhatia P, Nath M. Ag nanoparticles anchored on NiO octahedrons (Ag/NiO composite): An efficient catalyst for reduction of nitro substituted phenols and colouring dyes. CHEMOSPHERE 2022; 290:133188. [PMID: 34906527 DOI: 10.1016/j.chemosphere.2021.133188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
The development of an efficient sustainable catalyst for effective removal of hazardous chemicals, viz. nitrophenols and organic dyes, from wastewater is a challenging task. Herein, facile synthesis of Ag/NiO composites by anchoring Ag nanoparticles (NPs) on NiO octahedrons with different amounts of Ag NPs (AN-5% (5% Ag), AN-10% (10% Ag) and AN-15% (15% Ag)) has been demonstrated. SEM (scanning electron microscopic) and TEM (transmission electron spectroscopic) images ensured the proper anchoring of spherical Ag NPs (particle size = 16.54 ± 1.88 nm) on octahedron particles of NiO, which was also ensured by XPS (X-ray photoelectron spectroscopy) analysis. Moreover, the resulting composites have an average surface area (49-52 m2g‒1) and pore size (2.39-2.26 nm). All three synthesized Ag/NiO composites (100 μL) catalyzed the complete reduction of para-np (4-nitrophenol: 0.1587 mM) within 2-3 min in the presence of 0.04 M NaBH4. Among them, AN-5% has been chosen because of the lowest anchored Ag (5%) to obtain the optimized catalyst's amount (50 μL) and concentration of para-np (0.1587 mM). AN-5% also exhibited excellent catalytic activity towards different nitro substituted phenols, viz. ortho-np (2-nitrophenol), meta-np (3-nitrophenol), para-np (4-nitrophenol) and tri-np (2,4,6-trinitrophenol). AN-5% displayed ∼100% catalytic efficiency for reducing meta-np in 2 min with the apparent first order rate constant (kapp) and normalized rate constant (Knor) as 1.99 s-1 and 398.14 s-1 g-1, respectively. Additionally, AN-5% (29.41 μg mL-1) reduced >95% of the colouring dyes (10 ppm) such as CONG-R (congo red: 95% in 6 min), METH-O (methyl orange: 97.5% in 7 min), METH-B (methylene blue: 98.3% in 10 min) and RHOD-B (rhodamine B: 99.2% in 5 min). AN-5% not only demonstrated catalytic reduction towards individual pollutants, but also showed excellent activity for reduction of the mixtures of nitrophenols/dyes and for treatment of simulated industrial effluent samples (EFF1, EFF2) and a real industrial sample (textile dye-bath effluent). AN-5% can also be reused up to several cycles with almost same efficiency and followed the Langmuir-Hinshelwood apparent first order kinetics model.
Collapse
Affiliation(s)
- Pooja Bhatia
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Mala Nath
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
15
|
Azmi A, Lau KS, Chin SX, Zakaria S, Chia CH. Regenerated cellulose membrane incorporating photocatalytic zinc oxide as a bifunctional membrane for decoloration of methylene blue. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Azima Azmi
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology Universiti Kebangsaan Malaysia Bangi Malaysia
| | - Kam Sheng Lau
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology Universiti Kebangsaan Malaysia Bangi Malaysia
| | - Siew Xian Chin
- ASASIpintar Program, Pusat GENIUS@Pintar Negara Universiti Kebangsaan Malaysia Bangi Malaysia
| | - Sarani Zakaria
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology Universiti Kebangsaan Malaysia Bangi Malaysia
| | - Chin Hua Chia
- Materials Science Program, Department of Applied Physics, Faculty of Science and Technology Universiti Kebangsaan Malaysia Bangi Malaysia
| |
Collapse
|
16
|
Copper/Nickel-Decorated Olive Pit Biochar: One Pot Solid State Synthesis for Environmental Remediation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Developing micro- and nanomaterials for environmental pollution remediation is currently a pertinent topic. Among the plethora of strategies, designing supported nanocatalysts for the degradation of pollutants has achieved prominence. In this context, we are addressing one of the UN Sustainable Development Goals by valorizing agrowaste as a source of biochar, which serves as a support for bimetallic nanocatalysts. Herein, olive pit powder particles were impregnated with copper and nickel nitrates and pyrolyzed at 400 °C. The resulting material consists of bimetallic CuNi-decorated biochar. CuNi nanocatalysts were found to be as small as 10 nm and very well dispersed over biochar with zero valent copper and nickel and the formation of copper–nickel solid solutions. The biochar@CuNi (B@CuNi) exhibited typical soft ferromagnet hysteresis loops with zero remanence and zero coercivity. The biochar@CuNi was found to be an efficient catalyst of the reduction in methyl orange (MO) dye, taken as a model pollutant. In sum, the one-pot method devised in this work provides unique CuNi-decorated biochar and broadens the horizons of the emerging topic of biochar-supported nanocatalysts.
Collapse
|
17
|
Copper oxide doped composite nanospheres decorated graphite pencil toward efficient hydrogen evolution electrocatalysis. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Ali Khan S, Bakhsh EM, Asiri AM, Bahadar Khan S. Synthesis of zero-valent Au nanoparticles on chitosan coated NiAl layered double hydroxide microspheres for the discoloration of dyes in aqueous medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119370. [PMID: 33412468 DOI: 10.1016/j.saa.2020.119370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/28/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The catalyst activity of the nano Au was largely dependent on the particle size and the structure of the supported matrix to avoid particle agglomeration. Chitosan (CS) and CS coated layered double hydroxide of NiAl (LDH) microsphere were designed through a simple and an economic casting method. The CS and LDH microsphere were used for the impregnation and support of Au NPs and represented as Au/CS and Au/LDH and used for the sole and concurrent discoloration of methylene blue (MB) and rhodamine B (RB) dyes. The aim of the incorporation of NiAl-LDH to the CS host polymer is to increase the binding capacity of CS with Au NPs to make it more stable. The Au/LDH displaying stronger catalyst activity for both dyes discoloration, while found highly selective for MB dye. The high catalyst activity of Au/LDH is due to their small crystallite size which is 1.02 nm compared to 6.75 nm in Au/CS derived from Scherer's equation. The kapp value based on zero-order kinetics was higher with Au/LDH against MB and RB dyes which are 3.5 × 10-1 and 1.4 × 10-1 min-1 respectively.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | - Esraa M Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia 21589
| | - Abdullah M Asiri
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia 21589; Center of Excellence for Advanced Materials, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia 21589, Saudi Arabia.
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia 21589.
| |
Collapse
|
19
|
Heidari H, Aliramezani F. Reductant‐Free and In‐Situ Green Synthesis of Ag Nanoparticles on Fe
3
O
4
@Nanocellulose and Their Catalytic Activity for the Reduction of Dyes. ChemistrySelect 2021. [DOI: 10.1002/slct.202004579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hannaneh Heidari
- Department of Chemistry, Faculty of Physics and Chemistry Alzahra University Tehran Iran
| | - Fatemeh Aliramezani
- Department of Chemistry, Faculty of Physics and Chemistry Alzahra University Tehran Iran
| |
Collapse
|
20
|
Khan SB, Kamal T, Asiri AM, Bakhsh EM. Iron doped nanocomposites based efficient catalyst for hydrogen production and reduction of organic pollutant. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Huang Y, Xie L, Zhuo K, Zhou H, Zhang Y. Simultaneous catalytic reduction of p-nitrophenol and hydrogen production on MIL-101(Fe)-based composites. NEW J CHEM 2021. [DOI: 10.1039/d0nj05874b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MIL-101(Fe)-based composite materials and their application for the generation of H2 by the catalytic reduction of nitro organics are reported in this study.
Collapse
Affiliation(s)
- Yixuan Huang
- College of Chemistry
- Chemical Engineering and Environment
- Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology
- Minnan Normal University
- Zhangzhou
| | - Liyan Xie
- Fujian Province Key Laboratory of Ecology-Toxicological Effect & Control for Emerging Contaminants
- Putian University
- Putian
- P. R. China
| | - Kangji Zhuo
- College of Chemistry
- Chemical Engineering and Environment
- Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology
- Minnan Normal University
- Zhangzhou
| | - Hao Zhou
- College of Chemistry
- Chemical Engineering and Environment
- Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology
- Minnan Normal University
- Zhangzhou
| | - Yanhui Zhang
- College of Chemistry
- Chemical Engineering and Environment
- Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology
- Minnan Normal University
- Zhangzhou
| |
Collapse
|
22
|
Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. Int J Biol Macromol 2020; 164:2477-2496. [DOI: 10.1016/j.ijbiomac.2020.08.074] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
|
23
|
Maslamani N, Khan SB, Danish EY, Bakhsh EM, Zakeeruddin SM, Asiri AM. Carboxymethyl cellulose nanocomposite beads as super-efficient catalyst for the reduction of organic and inorganic pollutants. Int J Biol Macromol 2020; 167:101-116. [PMID: 33220377 DOI: 10.1016/j.ijbiomac.2020.11.074] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/01/2020] [Accepted: 11/11/2020] [Indexed: 01/15/2023]
Abstract
Carboxymethyl cellulose/copper oxide-nickel oxide (CMC/CuO-NiO) nanocomposite beads were prepared by facile, simple and environmentally friendly method. Initially, CuO-NiO was prepared and applied for the catalytic reduction of 4-nitrophenol (4-NP). The results showed that CuO-NiO demonstrate high catalytic activity toward the reduction of 4-NP to 4-aminophenol (4-AP) with a rate constant of 2.97 × 10-2 s-1. Further, CuO-NiO were well-dispersed in the polymeric matrix of carboxymethyl cellulose to prepare CMC/CuO-NiO beads. CMC/CuO-NiO nanocomposite beads were also applied to catalyze the reduction of potassium ferrocyanide (K3Fe (CN)6), 4-NP, Congo red (CR) and Eosin yellow (EY) in the presence of sodium borohydride. Experimental data indicated that CMC/CuO-NiO nanocomposite has higher catalytic activity and high rate constant compared to CuO-NiO. The rate constant found to be 6.88 × 10-2, 6.27 × 10-2, 1.89 × 10-2 and 2.43 × 10-2 for K3Fe(CN)6, 4-NP, CR and EY, respectively, using 5 mg CMC/CuO-NiO beads. FE-SEM, EDX, FTER, XRD and XPS were used to characterize the nanocomposites. CMC/CuO-NiO beads catalytically reduced up to 95-99% of K3Fe(CN)6, 4-NP, CR and EY within 40, 60, 120 and 120 s. CMC/CuO-NiO beads were found more selective for the reduction of 4-NP. The catalytic reduction performance of CMC/CuO-NiO beads was optimized by studying the influence of different parameters on the catalytic reduction of 4-NP. Hence, the effective and super catalytic performance toward the reduction of different organic and inorganic pollutants makes CMC/CuO-NiO beads a smart material and suitable for numerous scientific and industrial applications and may be used as an alternative to high-cost commercial catalysts.
Collapse
Affiliation(s)
- Nujud Maslamani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Ekram Y Danish
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Shaik M Zakeeruddin
- Laboratory for Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Khan SA, Bakhsh EM, Akhtar K, Khan SB. A template of cellulose acetate polymer-ZnAl/C layered double hydroxide composite fabricated with Ni NPs: Applications in the hydrogenation of nitrophenols and dyes degradation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118671. [PMID: 32650247 DOI: 10.1016/j.saa.2020.118671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/07/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
In this work, cellulose acetate polymer (CA) sheet and 2% ZnAl grafted on activated carbon grown in the form of layered double hydroxide (ZnAl/C-LDH) incorporated into CA polymer (CA-ZA2) 5 wt% (CA-ZA5) and 10 wt% of ZnAl/C-LDH (CA-ZA10) sheets were synthesized by simple casting method. All the stated sheets were fabricated with zero-valent Ni nanoparticles by adsorption of Ni+2 ions followed by subsequent reduction with NaBH4 and named as CA@Ni, CA-ZA2@Ni, CA-ZA5@Ni, and CA-ZA10@Ni NPs. The synthesized Ni NPs were investigated through FESEM, FTIR, XRD and EDS techniques. These supported and stabilized Ni NPs were largely used for the reduction of 4-nitrophenol (PNP), and 2-nitrophenol (ONP) in the presence of NaBH4 which act as a reducing agent. Similarly, the catalytic efficiency was also assessed against the removal of dyes. The linear relationship and Kapp were obtained from pseudo-first-order kinetics. The rate constant Kapp of CA@Ni NPs for the reduction of PNP is 1.5 × 10-1 and CA-ZA2@Ni (Kapp = 2.6 × 10-1), CA-ZA5@Ni (Kapp = 3.2 × 10-1), and CA-ZA10@Ni is 5.7 × 10-1 min-1. The highest rate constant for PNP reduction was observed with CA-ZA10@Ni NPs. The rate of CR removal with ZA10@Ni NPs is 2.05 × 10-1 while the adjacent R2 is 0.9013. Similarly, the rate constant and adjacent R2 values were calculated for the degradation of other dyes and nitrophenols.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Department of Chemistry, University of Swabi, Swabi Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
25
|
Ali S, Ali H, Siddique M, Gulab H, Haleem MA, Ali J. Exploring the biosynthesized gold nanoparticles for their antibacterial potential and photocatalytic degradation of the toxic water wastes under solar light illumination. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Danish EY, Bakhsh EM, Akhtar K. Design of chitosan nanocomposite hydrogel for sensitive detection and removal of organic pollutants. Int J Biol Macromol 2020; 159:276-286. [DOI: 10.1016/j.ijbiomac.2020.05.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
|
27
|
Biogenic Preparation and Characterization of ZnO Nanoparticles from Natural Polysaccharide Azadirachta indica .L. (neem gum) and its Clinical Implications. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01863-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Metal nanoparticles containing chitosan wrapped cellulose nanocomposites for catalytic hydrogen production and reduction of environmental pollutants. Carbohydr Polym 2020; 242:116286. [DOI: 10.1016/j.carbpol.2020.116286] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
|
29
|
Ismail M, Akhtar K, Khan MI, Kamal T, Khan MA, M Asiri A, Seo J, Khan SB. Pollution, Toxicity and Carcinogenicity of Organic Dyes and their Catalytic Bio-Remediation. Curr Pharm Des 2020; 25:3645-3663. [PMID: 31656147 DOI: 10.2174/1381612825666191021142026] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022]
Abstract
Water pollution due to waste effluents of the textile industry is seriously causing various health problems in humans. Water pollution with pathogenic bacteria, especially Escherichia coli (E. coli) and other microbes is due to the mixing of fecal material with drinking water, industrial and domestic sewage, pasture and agricultural runoff. Among the chemical pollutants, organic dyes due to toxic nature, are one of the major contaminants of industrial wastewater. Adequate sanitation services and drinking quality water would eliminate 200 million cases of diarrhea, which results in 2.1 million less deaths caused by diarrheal disease due to E. coli each year. Nanotechnology is an excellent platform as compared to conventional treatment methods of water treatment and remediation from microorganisms and organic dyes. In the current study, toxicity and carcinogenicity of the organic dyes have been studied as well as the remediation/inactivation of dyes and microorganism has been discussed. Remediation by biological, physical and chemical methods has been reviewed critically. A physical process like adsorption is cost-effective, but can't degrade dyes. Biological methods were considered to be ecofriendly and cost-effective. Microbiological degradation of dyes is cost-effective, eco-friendly and alternative to the chemical reduction. Besides, certain enzymes especially horseradish peroxidase are used as versatile catalysts in a number of industrial processes. Moreover, this document has been prepared by gathering recent research works related to the dyes and microbial pollution elimination from water sources by using heterogeneous photocatalysts, metal nanoparticles catalysts, metal oxides and enzymes.
Collapse
Affiliation(s)
- Muhammad Ismail
- Department of Chemistry, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Kalsoom Akhtar
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - M I Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Tahseen Kamal
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Murad A Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.,Center of Excellence for Advanced Materials Research, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Jongchul Seo
- Department of Packaging, Yonsei University, 1 Yonseidae-gil, Wonju, Kangwon-do 26493, South Korea
| | - Sher B Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.,Center of Excellence for Advanced Materials Research, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
30
|
Ali HSM, Khan SA. Stabilization of Various Zero-Valent Metal Nanoparticles on a Superabsorbent Polymer for the Removal of Dyes, Nitrophenol, and Pathogenic Bacteria. ACS OMEGA 2020; 5:7379-7391. [PMID: 32280879 PMCID: PMC7144176 DOI: 10.1021/acsomega.9b04410] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/11/2020] [Indexed: 05/04/2023]
Abstract
In this work, a superabsorbent polymer, sodium polyacrylate, also known as water ball (WB), loaded with Ni, Cu, and Ag zero-valent metal nanoparticles (MNPs) was applied for environmental remediation. WBs loaded with Ni, Cu, and Ag NPs were evaluated for their catalytic performance against the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and decolorization of methyl orange (MO), Congo red (CR), and methylene blue (MB) dyes. The apparent rate constants (K app) for the reduction of 4-NP to 4-AP in the presence of Ni, Cu, and Ag NPs were 2.1 × 10-1, 2.9 × 10-1, and 4.6 × 10-1 min-1, respectively, indicating the strongest activity of WB loaded with Ag NPs as compared to the other two catalysts. Similarly, WB loaded with Ag NPs showed the highest K app values compared to the other two catalysts. Among all of the bacteria studied, except Providencia stuartii and Streptococcus mutans, the zone of inhibition of Ag was higher as compared to that of the Ni and Cu NPs, however, slightly low from that of the reference standard tetracycline TE30. Furthermore, the synthesized catalysts were extensively characterized through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS) analyses.
Collapse
Affiliation(s)
- Hani S.
H. Mohammed Ali
- Department
of Biological Sciences, Faculty of Science, King Abdulaziz University, KSA, Jeddah 21589, Saudi Arabia
| | - Shahid Ali Khan
- Department
of Chemistry, University of Swabi, Swabi Anbar23561, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
31
|
Khan SA, Khan N, Irum U, Farooq A, Asiri AM, Bakhsh EM, Khan SB. Cellulose acetate-Ce/Zr@Cu 0 catalyst for the degradation of organic pollutant. Int J Biol Macromol 2020; 153:806-816. [PMID: 32145236 DOI: 10.1016/j.ijbiomac.2020.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 01/29/2023]
Abstract
In the present work, Cu nanoparticles were stabilized on ceria/zirconia (Ce/Zr@Cu0), cellulose acetate (CA@Cu0), and a thin film of cellulose acetate embedded ceria/zirconia (CA-Ce/Zr) designated as CA-Ce/Zr@Cu0. In the presence of a reducing agent, all the catalysts revealed excellent catalytic efficiency in aqueous media for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and degradation of cationic dyes methylene blue (MB) and rhodamine B (RB). Different order of equations were applied to determine the adjacent R2 value and rate constant. Adjacent R2 values for MB are 9.470, 9.422 and 9.050 and its kapp values per minutes are 1.7 × 10-1, 8.3 × 10-2, and 6. 7 × 10-1 with Ce/Zr@Cu0, CA@Cu0, and CA-Ce/Zr@Cu0 derived from the pseudo 1st order kinetics, while in the absence of catalyst the R2 and kapp for MB degradation in the presence of NaBH4 is 0.8643 and 3.4 × 10-3 respectively. Furthermore, regression models, ANOVA and correlation coefficients suggested that all the data are highly significant. The synthesized catalysts were applied for the simultaneous reduction/degradation of mixture of 4-NP-MB, 4-NP-RB and 4-NP-MB-RB mixture to check the practical applicability. Catalytic recyclability of CA-Ce/Zr@Cu0 catalyst dropped till 5th cycle which is due to the leaching of Cu0 NPs.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Noureen Khan
- Department of Chemistry, Sardar Bahadur Khan University, Quetta, Balochistan, Pakistan
| | - Uzma Irum
- Department of Chemistry, Sardar Bahadur Khan University, Quetta, Balochistan, Pakistan
| | - Aliya Farooq
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Pakistan
| | - Abdullah M Asiri
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
32
|
Jamila N, Khan N, Hwang IM, Saba M, Khan F, Amin F, Khan SN, Atlas A, Javed F, Minhaz A, Ullah F. Characterization of natural gums via elemental and chemometric analyses, synthesis of silver nanoparticles, and biological and catalytic applications. Int J Biol Macromol 2020; 147:853-866. [DOI: 10.1016/j.ijbiomac.2019.09.245] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022]
|
33
|
Efficient removal of oil pollutant via simultaneous adsorption and photocatalysis using La–N–TiO2–cellulose/SiO2 difunctional aerogel composite. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-019-04064-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Albukhari SM, Ismail M, Akhtar K, Danish EY. Catalytic reduction of nitrophenols and dyes using silver nanoparticles @ cellulose polymer paper for the resolution of waste water treatment challenges. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.058] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Khan SA, Khan SB, Farooq A, Asiri AM. A facile synthesis of CuAg nanoparticles on highly porous ZnO/carbon black-cellulose acetate sheets for nitroarene and azo dyes reduction/degradation. Int J Biol Macromol 2019; 130:288-299. [DOI: 10.1016/j.ijbiomac.2019.02.114] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/19/2019] [Indexed: 11/16/2022]
|
36
|
Bao Y, Shao L, Xing G, Qi C. Cobalt, nickel and iron embedded chitosan microparticles as efficient and reusable catalysts for Heck cross-coupling reactions. Int J Biol Macromol 2019; 130:203-212. [DOI: 10.1016/j.ijbiomac.2019.02.143] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 11/17/2022]
|
37
|
Denrah S, Sarkar M. Design of experiment for optimization of nitrophenol reduction by green synthesized silver nanocatalyst. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
38
|
Ismail M, Khan M, Khan SB, Akhtar K, Khan MA, Asiri AM. Catalytic reduction of picric acid, nitrophenols and organic azo dyes via green synthesized plant supported Ag nanoparticles. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.030] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Chen CY, Tsai TH, Chang CH, Tseng CF, Lin SY, Chung YC. Airlift bioreactor system for simultaneous removal of hydrogen sulfide and ammonia from synthetic and actual waste gases. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:694-701. [PMID: 29465296 DOI: 10.1080/10934529.2018.1439855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The effectiveness of an airlift reactor system in simultaneously removing hydrogen sulfide (H2S) and ammonia (NH3) from synthetic and actual waste gases was investigated. The effects of various parameters, including the ratio of inoculum dilution, the gas concentration, the gas retention time, catalyst addition, the bubble size, and light intensity, on H2S and NH3 removal were investigated. The results revealed that optimal gas removal could be achieved by employing an activated inoculum, using a small bubble stone, applying reinforced fluorescent light, adding Fe2O3 catalysts, and applying a gas retention time of 20 s. The shock loading did not substantially affect the removal efficiency of the airlift bioreactor. Moreover, more than 98.5% of H2S and 99.6% of NH3 were removed in treating actual waste gases. Fifteen bands or species were observed in a profile from denaturing gradient gel electrophoresis during waste gas treatment. Phylogenetic analysis revealed the phylum Proteobacteria to be predominant. Six bacterial strains were consistently present during the entire operating period; however, only Rhodobacter capsulatus, Rhodopseudomonas palustris, and Arthrobacter oxydans were relatively abundant in the system. The photosynthetic bacteria R. capsulatus and R. palustris were responsible for H2S oxidation, especially when the reinforced fluorescent light was used. The heterotrophic nitrifier A. oxydans was responsible for NH3 oxidation. To our knowledge, this is the first report on simultaneous H2S and NH3 removal using an airlift bioreactor system. It clearly demonstrates the effectiveness of the system in treating actual waste gases containing H2S and NH3.
Collapse
Affiliation(s)
- Chih-Yu Chen
- a Department of Tourism and Leisure , Hsing Wu University , Taipei , Taiwan
| | - Teh-Hua Tsai
- b Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , Taipei , Taiwan
| | - Chih-Hao Chang
- c Department of Biological Science and Technology , China University of Science and Technology , Taipei , Taiwan
| | - Chih-Fang Tseng
- c Department of Biological Science and Technology , China University of Science and Technology , Taipei , Taiwan
| | - Shih-Yun Lin
- c Department of Biological Science and Technology , China University of Science and Technology , Taipei , Taiwan
| | - Ying-Chien Chung
- c Department of Biological Science and Technology , China University of Science and Technology , Taipei , Taiwan
| |
Collapse
|
40
|
Green synthesis of plant supported Cu Ag and Cu Ni bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.058] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Khan SA, Bello BA, Khan JA, Anwar Y, Mirza MB, Qadri F, Farooq A, Adam IK, Asiri AM, Khan SB. Albizia chevalier based Ag nanoparticles: Anti-proliferation, bactericidal and pollutants degradation performance. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 182:62-70. [PMID: 29621690 DOI: 10.1016/j.jphotobiol.2018.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022]
Abstract
The eco-friendly biosynthesis of silver nanoparticles (AgNps) from bark extract of Albizia chevalier are reported here for their anti-proliferative, antibacterial and pollutant degradation potentials. The synthesized AgNps were characterized by FTIR spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X-rays spectrometry (EDS) and X-ray diffraction studies. The TEM and FESEM images show a monodispersed spherical shaped particles of approximately 30 nm. Crystalline peaks were obtained for the synthesized AgNps in XRD spectrum. The AgNps were investigated for in vitro anticancer and antibacterial activities and its potential to degrade 4-nitrophenol (4-NP) and congo red dye (CR). The MTT results shows a significant dose-dependent antiproliferation effect of the AgNps on the cell lines HepG2, MDA-MB-231 and MFC7. The effect was found more pronounced in MDA-MB-231 as compared to MFC-7 cell lines. The antibacterial results indicated 99 and 95% killing of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) respectively, after 24 h of incubation with the AgNps. The AgNps were found to speed up the reductive degradation of 4-NP and CR dye, which give an alternative route for the removal of toxic organic pollutants from the wastewater. The synthesized AgNps were not only used as a bactericidal and anticancer agent, but also effectively used for the reductive degradation of carcinogenic compounds which are listed as the priority pollutants. Therefore, AgNps have the potential for the treatment of various cancers, bacterial infections and for industrial detoxification of wastewater.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan; Center of Excellence for Advanced Materials Research (CEAMR), King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Bello Aminu Bello
- Department of Biochemistry, King Abdul-Aziz University, Jeddah, Saudi Arabia; Department of Biochemistry, Federal University Dutse, P.M.B. 7156, Dutse, Jigawa State, Nigeria
| | | | - Yasir Anwar
- Department of Biological sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Muqtadir Baig Mirza
- Department of Biological sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Fareed Qadri
- Department of Biological sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Aliya Farooq
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Pakistan
| | - Ibrahim Khalil Adam
- Department of Biochemistry, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Abdullah Muhammad Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdul-Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|