1
|
Bhutia GT, De AK, Bhowmik M, Bera T. Shellac and locust bean gum coacervated curcumin, epigallocatechin gallate nanoparticle ameliorates diabetic nephropathy in a streptozotocin-induced mouse model. Int J Biol Macromol 2024; 271:132369. [PMID: 38750846 DOI: 10.1016/j.ijbiomac.2024.132369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/27/2024]
Abstract
Curcumin and epigallocatechin gallate have the disadvantage of low aqueous solubility and first-pass metabolism, resulting in limited bioavailability. This work aimed to enhance oral bioavailability by forming gastric pH-stable shellac nanoparticles containing curcumin and epigallocatechin gallate using locust bean gum by anti-solvent precipitation (CESL-NP). The nanoparticles were characterized by their particle size, morphology, zeta potential, gastric pH stability, release profile, drug loading, and entrapment efficiency. The findings showed that a network of hydrolyzed shellac, locust bean gum, curcumin, and epigallocatechin gallate successfully entrapped individual particles inside a complex system. The morphological investigation of the CESL-NP formulation using FESEM, TEM, and AFM revealed the presence of spherical particles. FTIR, DSC, and XRD analysis revealed that curcumin and epigallocatechin gallate were amorphous due to their bond interactions with the matrix. Streptozotocin-treated mice, upon treatment with CESL-NP, showed kidney and pancreatic improvements with normalized kidney hypertrophy index and histopathology, maintained biochemical parameters, increased beta cell count, and a 38.68-fold higher blood glucose level inhibition were observed when compared to free-(CUR + EGCG). This research affirms that the shellac-locust bean gum complex shows potential for the sustained oral delivery of curcumin and epigallocatechin gallate, specifically for treating diabetic nephropathy.
Collapse
Affiliation(s)
- Gyamcho Tshering Bhutia
- Laboratory of Nanomedicine, Division of Pharmaceutical Biotech., Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Asit Kumar De
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Manas Bhowmik
- Pharmaceutics Research laboratory II, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Tanmoy Bera
- Laboratory of Nanomedicine, Division of Pharmaceutical Biotech., Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India.
| |
Collapse
|
2
|
Bala R, Madaan R, Chauhan S, Gupta M, Dubey AK, Zahoor I, Brijesh H, Calina D, Sharifi-Rad J. Revitalizing allicin for cancer therapy: advances in formulation strategies to enhance bioavailability, stability, and clinical efficacy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:703-724. [PMID: 37615709 DOI: 10.1007/s00210-023-02675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
The main objective of this review is to highlight the therapeutic potential of allicin, a defense molecule in garlic known for its diverse health benefits, and address the key challenges of its bioavailability and stability. The research further aims to evaluate various formulation strategies and nanotechnology-based delivery systems that can resolve these issues and improve allicin's clinical efficacy, especially in cancer therapy. We conducted a comprehensive review of the available literature and previous studies, focusing on the therapeutic properties of allicin, its bioavailability, stability issues, and novel formulation strategies. We assessed the mechanism of action of allicin in cancer, including its effects on signaling pathways, cell cycle, apoptosis, autophagy, and tumor development. We also evaluated the outcomes of both in vitro and in vivo studies on different types of cancers, such as breast, cervical, colon, lung, and gastric cancer. Despite allicin's significant therapeutic benefits, including cardiovascular, antihypertensive, cholesterol-lowering, antimicrobial, antifungal, anticancer, and immune-modulatory activity, its clinical utility is limited due to poor stability and unpredictable bioavailability. Allicin's bioavailability in the gastrointestinal tract is dependent on the activity of the enzyme alliinase, and its stability can be affected by various conditions like gastric acid and intestinal enzyme proteases. Recent advances in formulation strategies and nanotechnology-based drug delivery systems show promise in addressing these challenges, potentially improving allicin's solubility, stability, and bioavailability. Allicin offers substantial potential for cancer therapy, yet its application is hindered by its instability and poor bioavailability. Novel formulation strategies and nanotechnology-based delivery systems can significantly overcome these limitations, enhancing the therapeutic efficacy of allicin. Future research should focus on refining these formulation strategies and delivery systems, ensuring the safety and efficacy of these new allicin formulations. Clinical trials and long-term studies should be carried out to determine the optimal dosage, assess potential side effects, and evaluate their real-world applicability. The comparative analysis of different drug delivery approaches and the development of targeted delivery systems can also provide further insight into enhancing the therapeutic potential of allicin.
Collapse
Affiliation(s)
- Rajni Bala
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Malika Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ankit Kumar Dubey
- iGlobal Research and Publishing Foundation, New Delhi, India
- Institute of Scholars, Chikmagalur, India
| | - Ishrat Zahoor
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Hemavathi Brijesh
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
3
|
Upaganlawar A, Polshettiwar S, Raut S, Tagalpallewar A, Pande V. Effective Cancer Management: Inimitable Role of Phytochemical Based Nano- Formulations. Curr Drug Metab 2022; 23:869-881. [PMID: 36065928 DOI: 10.2174/1389200223666220905162245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Global cancer statistics defines the severity of disease even after significant research worldwide. PROBLEM Failure of the currently available treatment approaches, including surgery, radiation therapy and traditional chemotherapy. AIM The aim of this review is to discuss the role of phytochemical based nano-formulations for treatment of cancer. DISCUSSION In the past few decades, phytochemicals have gained popularity for acting as a potential anticancer treatment with low systemic toxicity, especially in terms of cell cycle control and cancer cell killing. Natural resources, with their immense structural variety, serve as a vital source of fresh, therapeutically useful new chemical entities for the treatment of cancer. Vinca alkaloids (VCR), vinblastine, vindesine, vinorelbine, taxanes (PTX), podophyllotoxin and its derivatives (etoposide (ETP), teniposide, camptothecin (CPT) and its derivatives (topotecan, irinotecan), anthracyclines (doxorubicin, daunorubicin, epirubicin, idarubicin, as natural products or their derivatives account for half of all anticancer drugs approved worldwide, and they have been developed utilising the knowledge learned from the natural small molecules or macromolecules. Trabectedin, an epothilone derivative, ixabepilone, and temsirolimus, three new anticancer medications launched in 2007, were derived from microbial origins. Current therapy regimens require selective drug targeting to enhance efficacy against cancer cells while normal cells remain unharmed. Modified medications and systems for drug delivery based on nanotechnology are in the process of being explored and launched in the industry for enhanced therapy and management of cancer, along with promising outcomes. Many obstacles related to cancer cell drug delivery can be overcome by using nano-particulate drug carriers, including enhancing the stability and solubility of the drug, prolonging half-lives of the drug in the blood, decreasing side effects to undesired organs, and increasing medication concentration at the desired site. The scientific initiatives and studies concerning the use of nanotechnology for some selective compounds derived from plants are discussed in this review article. CONCLUSION The present review highlights the phytochemical-based nanoformulations and their strategies in the development of novel systems of drug delivery such as nano-liposomes, functionalized nanoparticles (NPs), and polymer nano-conjugates, SNEDDS (Self nano emulsifying drug delivery system) as this review paper depicts, as well as their rewards over conventional systems of drug delivery, as evidenced by improved biological activity depicted in their in vitro and in vivo anticancer assays.
Collapse
Affiliation(s)
- Aman Upaganlawar
- SNJBs SSDJ College of Pharmacy, Neminagar, Chandwad, Maharashtra, India
| | - Satish Polshettiwar
- School of Pharmacy Dr.Vishwanath Karad MIT World Peace University, Survey No. 124, Kothrud, Pune, Maharashtra 411038, India
| | - Sushil Raut
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune-India
| | - Amol Tagalpallewar
- School of Pharmacy Dr.Vishwanath Karad MIT World Peace University, Survey No. 124, Kothrud, Pune, Maharashtra 411038, India
| | - Vishal Pande
- N. N. Sattha College of Pharmacy, Ahmednagar, Maharashtra, India
| |
Collapse
|
4
|
GAO X, JIA Y, CHEN Z, SANTHANAM RK, ZHANG M, HE C, CHEN H. Synthesis of hydrogels based on nanocellulose from garlic straw and regulating the release of allicin and its cytotoxicity. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.43422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xudong GAO
- Tianjin University, China; General Hospital of Northern Theater Command, China
| | | | | | | | - Min ZHANG
- Tianjin University of Science and Technology, China
| | | | | |
Collapse
|
5
|
Sarvizadeh M, Hasanpour O, Naderi Ghale-Noie Z, Mollazadeh S, Rezaei M, Pourghadamyari H, Masoud Khooy M, Aschner M, Khan H, Rezaei N, Shojaie L, Mirzaei H. Allicin and Digestive System Cancers: From Chemical Structure to Its Therapeutic Opportunities. Front Oncol 2021; 11:650256. [PMID: 33987085 PMCID: PMC8111078 DOI: 10.3389/fonc.2021.650256] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Digestive system cancer tumors are one of the major causes of cancer-related fatalities; the vast majority of them are colorectal or gastric malignancies. Epidemiological evidence confirmed that allium-containing food, such as garlic, reduces the risk of developing malignancies. Among all compounds in garlic, allicin has been most researched, as it contains sulfur and produces many second degradation compounds, such as sulfur dioxide, diallyl sulfide (DAS), diallyl trisulfide (DATS), and diallyl disulfide (DADS) in the presence of enzymatic reactions in gastric juice. These substances have shown anti-inflammatory, antidiabetic, antihypertensive, antifungal, antiviral, antibacterial, and anticancer efficacy, including gastrointestinal (GI) cancers, leukemia, and skin cancers. Herein, we summarize the therapeutic potential of allicin in the treatment of GI cancers.
Collapse
Affiliation(s)
- Mahshad Sarvizadeh
- Nutrition and Endocrine Research Centre, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Hasanpour
- School of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Rezaei
- Department of Diabetes, Obesity and Metabolism, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Nima Rezaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Layla Shojaie
- Department of Medicine, Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Talib WH, Alsalahat I, Daoud S, Abutayeh RF, Mahmod AI. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules 2020; 25:E5319. [PMID: 33202681 PMCID: PMC7696819 DOI: 10.3390/molecules25225319] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the main causes of death globally and considered as a major challenge for the public health system. The high toxicity and the lack of selectivity of conventional anticancer therapies make the search for alternative treatments a priority. In this review, we describe the main plant-derived natural products used as anticancer agents. Natural sources, extraction methods, anticancer mechanisms, clinical studies, and pharmaceutical formulation are discussed in this review. Studies covered by this review should provide a solid foundation for researchers and physicians to enhance basic and clinical research on developing alternative anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| | - Izzeddin Alsalahat
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Reem Fawaz Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan; (I.A.); (S.D.); (R.F.A.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan;
| |
Collapse
|
7
|
Yadav H, Maiti S. Research progress in galactomannan-based nanomaterials: Synthesis and application. Int J Biol Macromol 2020; 163:2113-2126. [DOI: 10.1016/j.ijbiomac.2020.09.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
|
8
|
Choo S, Chin VK, Wong EH, Madhavan P, Tay ST, Yong PVC, Chong PP. Review: antimicrobial properties of allicin used alone or in combination with other medications. Folia Microbiol (Praha) 2020; 65:451-465. [DOI: 10.1007/s12223-020-00786-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
|
9
|
Argüello-García R, de la Vega-Arnaud M, Loredo-Rodríguez IJ, Mejía-Corona AM, Melgarejo-Trejo E, Espinoza-Contreras EA, Fonseca-Liñán R, González-Robles A, Pérez-Hernández N, Ortega-Pierres MG. Activity of Thioallyl Compounds From Garlic Against Giardia duodenalis Trophozoites and in Experimental Giardiasis. Front Cell Infect Microbiol 2018; 8:353. [PMID: 30374433 PMCID: PMC6196658 DOI: 10.3389/fcimb.2018.00353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Fresh aqueous extracts (AGEs) and several thioallyl compounds (TACs) from garlic have an important antimicrobial activity that likely involves their interaction with exposed thiol groups at single aminoacids or target proteins. Since these groups are present in Giardia duodenalis trophozoites, in this work we evaluated the anti-giardial activity of AGE and several garlic's TACs. In vitro susceptibility assays showed that AGE affected trophozoite viability initially by a mechanism impairing cell integrity and oxidoreductase activities while diesterase activities were abrogated at higher AGE concentrations. The giardicidal activities of seven TACs were related to the molecular descriptor HOMO (Highest Occupied Molecular Orbital) energy and with their capacity to modify the -SH groups exposed in giardial proteins. Interestingly, the activity of several cysteine proteases in trophozoite lysates was inhibited by representative TACs as well as the cytopathic effect of the virulence factor giardipain-1. Of these, allicin showed the highest anti-giardial activity, the lower HOMO value, the highest thiol-modifying activity and the greatest inhibition of cysteine proteases. Allicin had a cytolytic mechanism in trophozoites with subsequent impairment of diesterase and oxidoreductase activities in a similar way to AGE. In addition, by electron microscopy a marked destruction of plasma membrane and endomembranes was observed in allicin-treated trophozoites while cytoskeletal elements were not affected. In further flow cytometry analyses pro-apoptotic effects of allicin concomitant to partial cell cycle arrest at G2 phase with the absence of oxidative stress were observed. In experimental infections of gerbils, the intragastric administration of AGE or allicin decreased parasite numbers and eliminated trophozoites in experimentally infected animals, respectively. These data suggest a potential use of TACs from garlic against G. duodenalis and in the treatment of giardiasis along with their additional benefits in the host's health.
Collapse
Affiliation(s)
- Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mariana de la Vega-Arnaud
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Iraís J. Loredo-Rodríguez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Adriana M. Mejía-Corona
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Elizabeth Melgarejo-Trejo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eulogia A. Espinoza-Contreras
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rocío Fonseca-Liñán
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Arturo González-Robles
- Departamento de Infectómica y Patogénesis Experimental, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Nury Pérez-Hernández
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - M. Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
10
|
Hathout RM, Metwally AA, El-Ahmady SH, Metwally ES, Ghonim NA, Bayoumy SA, Erfan T, Ashraf R, Fadel M, El-Kholy AI, Hardy JG. Dual stimuli-responsive polypyrrole nanoparticles for anticancer therapy. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|