1
|
Liu X, Shu Y, Zhu J, Fang H, Su Y, Ma H, Li B, Xu J, Cheng YY, Pan B, Song K. A 3D bioprinted potential colorectal tumor model based on decellularized matrix/gelatin methacryloyl/nanoclay/sodium alginate hydrogel. Int J Biol Macromol 2024; 293:139346. [PMID: 39743054 DOI: 10.1016/j.ijbiomac.2024.139346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Colorectal cancer (CRC) is now the third most common cancer worldwide. However, the development cycle for anticancer drugs is lengthy and the failure rate is high, highlighting the urgent need for new tumor models for CRC-related research. The decellular matrix (dECM) offers numerous cell adhesion sites, proteoglycan and cytokines. Notably, porcine small intestine is rich in capillaries and lymphatic capillaries, which facilitates nutrient absorption. This study, we utilized dECM, along with methylacryloyl gelatin (GelMA), sodium alginate (SA) and nanoclay (NC) to create a hydrogel scaffold through 3D extrusion bioprinting. Human CRC cells (HCT8) were seeded onto the scaffold and their drug resistance was tested using 5-fluorouracil (5-FU). Our findings indicate that dECM enhances the hydrophilic properties, mechanical strength and biocompatibility of the scaffold. Furthermore, compared to traditional two-dimensional (2D) models, the three-dimensional (3D) scaffold supports the long-term growth of tumor spheres. After 2 days of 5-FU treatment, the cell survival rate reaches 88.06 ± 0.51 %. This suggests that our scaffold provides a promising alternative platform for in vitro research on cancer mechanisms, anti-cancer drug screening and new drug development.
Collapse
Affiliation(s)
- Xinyue Liu
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yan Shu
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jingjing Zhu
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Huan Fang
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ya Su
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hailin Ma
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bing Li
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jie Xu
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia.
| | - Bo Pan
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, Liaoning 116023, China.
| | - Kedong Song
- Cancer Hospital of Dalian University of Technology, State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
2
|
Sueters J, de Boer L, Groenman F, Huirne JAF, Smit TH, Zaat SAJ. A sterilization method for human decellularized vaginal matrices. Sci Rep 2024; 14:31728. [PMID: 39738284 DOI: 10.1038/s41598-024-82409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Vaginal reconstruction is necessary for various congenital and acquired conditions, including vaginal aplasia, trauma, tumors, and gender incongruency. Current surgical and non-surgical treatments often result in significant complications. Decellularized vaginal matrices (DVMs) from human tissue offer a promising alternative, but require effective sterilization to ensure safety and functionality. This study aimed to develop a sterilization method for decellularized human vaginal wall scaffolds. Based on our previously implemented decellularization technique with minor modifications, we designed and examined three sterilization methods consisting of (i) chemical decellularization, (ii) decellularization with additional peracetic acid/hydrogen peroxide (PAA/H2O2); (iii) decellularization with antibiotic and antimycotic (AAE) based treatment. Sterilization efficacy was evaluated through controlled contamination with common vaginal microbes and sterility testing subsequent to each sterilization method. The extracellular matrix (ECM) structure was assessed via histological staining. Decellularization alone reduced some added bacterial contaminants but did not achieve complete sterilization. PAA/H2O2-sterilization resulted in severe ECM damage, rendering it unsuitable. The AAE-treatment demonstrated effective sterilization without compromising the ECM structure. Combined decellularization and AAE-based treatment forms a viable sterilization method for human vaginal wall tissue, maintaining ECM integrity and achieving effective micro-organism elimination. This method holds potential for clinical application in vaginal transplantation.
Collapse
Affiliation(s)
- Jayson Sueters
- Department of Gynaecology, Amsterdam UMC - Location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Leonie de Boer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC - Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Freek Groenman
- Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development, Amsterdam UMC - Location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Centre of Expertise on Gender Dysphoria, Amsterdam UMC - Location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Judith A F Huirne
- Department of Gynaecology, Amsterdam UMC - Location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Theo H Smit
- Department of Gynaecology, Amsterdam UMC - Location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam UMC - Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sebastian A J Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC - Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Soltanmohammadi F, Mahmoudi Gharehbaba A, Alizadeh E, Javadzadeh Y. Innovative approaches to tissue engineering: Utilizing decellularized extracellular matrix hydrogels for mesenchymal stem cell transport. Int J Biol Macromol 2024; 290:138893. [PMID: 39706433 DOI: 10.1016/j.ijbiomac.2024.138893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
In recent years, the realm of tissue regeneration experienced significant advancements, leading to the development of innovative therapeutic agents. The systemic delivery of mesenchymal stem cells (MSCs) emerged as a promising strategy for promoting tissue regeneration. However, this approach is hindered by hurdles such as poor cell survival, limited cell propagation, and inadequate cell integration. Decellularized extracellular matrix (dECM) hydrogel serves as an innovative carrier that protects MSCs from the detrimental effects of the hostile microenvironment, facilitates their localization and retention at the injection site, and preserves their viability. Regarding its low immunogenicity, low cytotoxicity, high biocompatibility, and its ability to mimic natural extracellular matrix (ECM), this natural hydrogel offers a new avenue for systemic delivery of MSCs. This review digs into the properties of dECM hydrogels (dECMHs), the methods employed for decellularization and the utilization of dECMH as carriers for various types of MSCs for tissue regeneration purposes. This review also sheds light on the benefits of hybrid hydrogels composed of dECMH and other components such as proteins and polysaccharides. By addressing the limitations of conventional hydrogels and enhancing efficacy of cell therapy, dECMH opens new pathways for the future of tissue regeneration.
Collapse
Affiliation(s)
- Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Adel Mahmoudi Gharehbaba
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Effat Alizadeh
- Endocrin Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Chen Z, Wang J, Kankala RK, Jiang M, Long L, Li W, Zou L, Chen A, Liu Y. Decellularized extracellular matrix-based disease models for drug screening. Mater Today Bio 2024; 29:101280. [PMID: 39399243 PMCID: PMC11470555 DOI: 10.1016/j.mtbio.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
In vitro drug screening endeavors to replicate cellular states closely resembling those encountered in vivo, thereby maximizing the fidelity of drug effects and responses within the body. Decellularized extracellular matrix (dECM)-based materials offer a more authentic milieu for crafting disease models, faithfully emulating the extracellular components and structural complexities encountered by cells in vivo. This review discusses recent advancements in leveraging dECM-based materials as biomaterials for crafting cell models tailored for drug screening. Initially, we delineate the biological functionalities of diverse ECM components, shedding light on their potential influences on disease model construction. Further, we elucidate the decellularization techniques and methodologies for fabricating cell models utilizing dECM substrates. Then, the article delves into the research strides made in employing dECM-based models for drug screening across a spectrum of ailments, including tumors, as well as heart, liver, lung, and bone diseases. Finally, the review summarizes the bottlenecks, hurdles, and promising research trajectories associated with the dECM materials for drug screening, alongside their prospective applications in personalized medicine. Together, by encapsulating the contemporary research landscape surrounding dECM materials in cell model construction and drug screening, this review underscores the vast potential of dECM materials in drug assessment and personalized therapy.
Collapse
Affiliation(s)
- Zhoujiang Chen
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Ji Wang
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, PR China
| | - Mingli Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563099, Guizhou, PR China
| | - Lianlin Long
- School of Pharmacy, Zunyi Medical University, Zunyi, 563099, Guizhou, PR China
| | - Wei Li
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Liang Zou
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, PR China
| | - Ya Liu
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| |
Collapse
|
5
|
Jia Y, Xu X, Liu Y, Shen H, Sun S, Sun G. Effect of calcium concentration on metastasis of hepatocellular carcinoma cells cultured in alginate gel beads. Colloids Surf B Biointerfaces 2024; 245:114201. [PMID: 39255748 DOI: 10.1016/j.colsurfb.2024.114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
Changes in sodium alginate and calcium ion concentrations have a considerable impact on the structural properties of calcium alginate gel (ALG) beads, consequently influencing the biological characteristics of the cells encapsulated within them. This study aimed to examine the effects of calcium on the metastatic potential of hepatocellular carcinoma (HCC) cells encapsulated in ALG beads. The results showed that the invasion ability of HCC cells significantly increased when they were encapsulated in beads prepared with a calcium concentration of 200 mM compared to those prepared with a calcium concentration of 50 mM. Furthermore, the expression levels of genes related to metastasis were significantly elevated in ALG beads prepared with a calcium concentration of 200 mM. Specifically, the expression of activated matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), and urokinase-type plasminogen activator system proteins was found to be high. Conversely, the expression of phosphatase and tensin homolog deleted on chromosome 10 was observed to be significantly reduced. These findings indicate that manipulating the calcium ion concentration during the fabrication of ALG beads enables the generation of three-dimensional HCC cells with varying metastatic capacities. This model offers a valuable tool for investigating the mechanisms underlying liver cancer metastasis and screening potential therapeutic drugs.
Collapse
Affiliation(s)
- Yunbo Jia
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, China; Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoxi Xu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yang Liu
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, China; Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China; Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hongfei Shen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guangwei Sun
- Innovative Engineering Technology Research Center for Cell Therapy, Shengjing Hospital of China Medical University, Shenyang, China; Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China; Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
6
|
Zheng Y, Wang D, Beeghly G, Fischbach C, Shattuck MD, O'Hern CS. Computational modeling of the physical features that influence breast cancer invasion into adipose tissue. APL Bioeng 2024; 8:036104. [PMID: 38966325 PMCID: PMC11223776 DOI: 10.1063/5.0209019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
Breast cancer invasion into adipose tissue strongly influences disease progression and metastasis. The degree of cancer cell invasion into adipose tissue depends on both biochemical signaling and the mechanical properties of cancer cells, adipocytes, and other key components of adipose tissue. We model breast cancer invasion into adipose tissue using discrete element method simulations of active, cohesive spherical particles (cancer cells) invading into confluent packings of deformable polyhedra (adipocytes). We quantify the degree of invasion by calculating the interfacial area At between cancer cells and adipocytes. We determine the long-time value of At vs the activity and strength of the cohesion between cancer cells, as well as the mechanical properties of the adipocytes and extracellular matrix in which adipocytes are embedded. We show that the degree of invasion collapses onto a master curve as a function of the dimensionless energy scale Ec , which grows linearly with the cancer cell velocity persistence time and fluctuations, is inversely proportional to the system pressure, and is offset by the cancer cell cohesive energy. WhenE c > 1 , cancer cells will invade the adipose tissue, whereas forE c < 1 , cancer cells and adipocytes remain de-mixed. We also show that At decreases when the adipocytes are constrained by the ECM by an amount that depends on the spatial heterogeneity of the adipose tissue.
Collapse
Affiliation(s)
| | - Dong Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Garrett Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Mark D. Shattuck
- Benjamin Levich Institute and Physics Department, City College of New York, New York, New York 10031, USA
| | | |
Collapse
|
7
|
Weng B, Li M, Zhu W, Peng J, Mao X, Zheng Y, Zhang C, Pan S, Mao H, Zhao J. Distinguished biomimetic dECM system facilitates early detection of metastatic breast cancer cells. Bioeng Transl Med 2024; 9:e10597. [PMID: 38193110 PMCID: PMC10771560 DOI: 10.1002/btm2.10597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 01/10/2024] Open
Abstract
Breast cancer is the most prevalent malignant tumor affecting women's health. Bone is the most common distant metastatic organ, worsening the quality of life and increasing the mortality of patients. Early detection of breast cancer bone metastasis is urgent for halting disease progression and improving tumor prognosis. Recently, extracellular matrix (ECM) with biomimetic tissue niches opened a new avenue for tumor models in vitro. Here, we developed a biomimetic decellularized ECM (dECM) system to recapitulate bone niches at different situations, bone mimetic dECM from osteoblasts (BM-ECM) and bone tumor mimetic dECM from osteosarcoma cells (OS-ECM). The two kinds of dECMs exhibited distinct morphology, protein composition, and distribution. Interestingly, highly metastatic breast cancer cells tended to adhere and migrate on BM-ECM, while lowly metastatic breast cancer cells preferred the OS-ECM niche. Epithelial-to-mesenchymal transition was a potential mechanism to initiate the breast cancer cell migration on different biomimetic dECMs. Importantly, in the nude mice model, the dECM system captured metastatic breast cancer cells as early as 10 days after orthotopic transplantation in mammary gland pads, with higher signal on BM-ECM than that on OS-ECM. Collectively, the biomimetic dECM system might be a promising tumor model to distinguish the metastatic ability of breast cancer cells in vitro and to facilitate early detection of metastatic breast cancer cells in vivo, contributing to the diagnosis of breast cancer bone metastasis.
Collapse
Affiliation(s)
- Bowen Weng
- Zhejiang Key Laboratory of PathophysiologySchool of Medicine, Ningbo UniversityNingboZhejiangChina
| | - Mei Li
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Weilai Zhu
- Zhejiang Key Laboratory of PathophysiologySchool of Medicine, Ningbo UniversityNingboZhejiangChina
| | - Jing Peng
- Zhejiang Key Laboratory of PathophysiologySchool of Medicine, Ningbo UniversityNingboZhejiangChina
| | - Xufeng Mao
- Zhejiang Key Laboratory of PathophysiologySchool of Medicine, Ningbo UniversityNingboZhejiangChina
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Yanan Zheng
- Zhejiang Key Laboratory of PathophysiologySchool of Medicine, Ningbo UniversityNingboZhejiangChina
| | - Chi Zhang
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Senhao Pan
- Zhejiang Key Laboratory of PathophysiologySchool of Medicine, Ningbo UniversityNingboZhejiangChina
| | - Haijiao Mao
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Jiyuan Zhao
- Zhejiang Key Laboratory of PathophysiologySchool of Medicine, Ningbo UniversityNingboZhejiangChina
| |
Collapse
|
8
|
Zhang L, Liao W, Chen S, Chen Y, Cheng P, Lu X, Ma Y. Towards a New 3Rs Era in the construction of 3D cell culture models simulating tumor microenvironment. Front Oncol 2023; 13:1146477. [PMID: 37077835 PMCID: PMC10106600 DOI: 10.3389/fonc.2023.1146477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Three-dimensional cell culture technology (3DCC) sits between two-dimensional cell culture (2DCC) and animal models and is widely used in oncology research. Compared to 2DCC, 3DCC allows cells to grow in a three-dimensional space, better simulating the in vivo growth environment of tumors, including hypoxia, nutrient concentration gradients, micro angiogenesis mimicism, and the interaction between tumor cells and the tumor microenvironment matrix. 3DCC has unparalleled advantages when compared to animal models, being more controllable, operable, and convenient. This review summarizes the comparison between 2DCC and 3DCC, as well as recent advances in different methods to obtain 3D models and their respective advantages and disadvantages.
Collapse
Affiliation(s)
- Long Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiqi Liao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shimin Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yukun Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pengrui Cheng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinjun Lu
- Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Tosca EM, Ronchi D, Facciolo D, Magni P. Replacement, Reduction, and Refinement of Animal Experiments in Anticancer Drug Development: The Contribution of 3D In Vitro Cancer Models in the Drug Efficacy Assessment. Biomedicines 2023; 11:biomedicines11041058. [PMID: 37189676 DOI: 10.3390/biomedicines11041058] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
In the last decades three-dimensional (3D) in vitro cancer models have been proposed as a bridge between bidimensional (2D) cell cultures and in vivo animal models, the gold standards in the preclinical assessment of anticancer drug efficacy. 3D in vitro cancer models can be generated through a multitude of techniques, from both immortalized cancer cell lines and primary patient-derived tumor tissue. Among them, spheroids and organoids represent the most versatile and promising models, as they faithfully recapitulate the complexity and heterogeneity of human cancers. Although their recent applications include drug screening programs and personalized medicine, 3D in vitro cancer models have not yet been established as preclinical tools for studying anticancer drug efficacy and supporting preclinical-to-clinical translation, which remains mainly based on animal experimentation. In this review, we describe the state-of-the-art of 3D in vitro cancer models for the efficacy evaluation of anticancer agents, focusing on their potential contribution to replace, reduce and refine animal experimentations, highlighting their strength and weakness, and discussing possible perspectives to overcome current challenges.
Collapse
|
10
|
McInnes AD, Moser MAJ, Chen X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J Funct Biomater 2022; 13:jfb13040240. [PMID: 36412881 PMCID: PMC9680265 DOI: 10.3390/jfb13040240] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The multidisciplinary fields of tissue engineering and regenerative medicine have the potential to revolutionize the practise of medicine through the abilities to repair, regenerate, or replace tissues and organs with functional engineered constructs. To this end, tissue engineering combines scaffolding materials with cells and biologically active molecules into constructs with the appropriate structures and properties for tissue/organ regeneration, where scaffolding materials and biomolecules are the keys to mimic the native extracellular matrix (ECM). For this, one emerging way is to decellularize the native ECM into the materials suitable for, directly or in combination with other materials, creating functional constructs. Over the past decade, decellularized ECM (or dECM) has greatly facilitated the advance of tissue engineering and regenerative medicine, while being challenged in many ways. This article reviews the recent development of dECM for tissue engineering and regenerative medicine, with a focus on the preparation of dECM along with its influence on cell culture, the modification of dECM for use as a scaffolding material, and the novel techniques and emerging trends in processing dECM into functional constructs. We highlight the success of dECM and constructs in the in vitro, in vivo, and clinical applications and further identify the key issues and challenges involved, along with a discussion of future research directions.
Collapse
Affiliation(s)
- Adam D. McInnes
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-5435
| | - Michael A. J. Moser
- Department of Surgery, Health Sciences Building, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
11
|
Khafaga AF, Mousa SA, Aleya L, Abdel-Daim MM. Three-dimensional (3D) cell culture: a valuable step in advancing treatments for human hepatocellular carcinoma. Cancer Cell Int 2022; 22:243. [PMID: 35908054 PMCID: PMC9339175 DOI: 10.1186/s12935-022-02662-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignant cancer and the third most frequent cause of tumour-related mortality worldwide. Currently, several surgical and medical therapeutic strategies are available for HCCs; however, the interaction between neoplastic cells and non-neoplastic stromal cells within the tumour microenvironment (TME) results in strong therapeutic resistance of HCCs to conventional treatment. Therefore, the development of novel treatments is urgently needed to improve the survival of patients with HCC. The first step in developing efficient chemotherapeutic drugs is the establishment of an appropriate system for studying complex tumour culture and microenvironment interactions. Three-dimensional (3D) culture model might be a crucial bridge between in vivo and in vitro due to its ability to mimic the naturally complicated in vivo TME compared to conventional two-dimensional (2D) cultures. In this review, we shed light on various established 3D culture models of HCC and their role in the investigation of tumour-TME interactions and HCC-related therapeutic resistance.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt.
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.,Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| |
Collapse
|
12
|
Lin Z, Rao Z, Chen J, Chu H, Zhou J, Yang L, Quan D, Bai Y. Bioactive Decellularized Extracellular Matrix Hydrogel Microspheres Fabricated Using a Temperature-Controlling Microfluidic System. ACS Biomater Sci Eng 2022; 8:1644-1655. [PMID: 35357124 DOI: 10.1021/acsbiomaterials.1c01474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogel microspheres have drawn great attention as functional three-dimensional (3D) microcarriers for cell attachment and growth, which have shown great potential in cell-based therapies and biomedical research. Hydrogels derived from a decellularized extracellular matrix (dECM) retain the intrinsic physical and biological cues from the native tissues, which often exhibit high bioactivity and tissue-specificity in promoting tissue regeneration. Herein, a novel two-stage temperature-controlling microfluidic system was developed which enabled production of pristine dECM hydrogel microspheres in a high-throughput manner. Porcine decellularized peripheral nerve matrix (pDNM) was used as the model raw dECM material for continuous generation of pDNM microgels without additional supporting materials or chemical crosslinking. The sizes of the microspheres were well-controlled by tuning the feed ratios of water/oil phases into the microfluidic device. The resulting pDNM microspheres (pDNM-MSs) were relatively stable, which maintained a spherical shape and a nanofibrous ultrastructure for at least 14 days. Schwann cells and PC12 cells preseeded on the pDNM-MSs not only showed excellent viability and an adhesive property, but also promoted cell extension compared to the commercially available gelatin microspheres. Moreover, primary neural stem/progenitor cells attached well to the pDNM-MSs, which further facilitated their proliferation. The successfully fabricated dECM hydrogel microspheres provided a highly bioactive microenvironment for 3D cell culture and functionalization, which showed promising potential in versatile biomedical applications.
Collapse
Affiliation(s)
- Zudong Lin
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, 132 Waihuan West Road, HEMC, Guangzhou 510006, China
| | - Zilong Rao
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, 132 Waihuan West Road, HEMC, Guangzhou 510006, China
| | - Jiaxin Chen
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, 132 Waihuan West Road, HEMC, Guangzhou 510006, China
| | - Hanyu Chu
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, 132 Waihuan West Road, HEMC, Guangzhou 510006, China
| | - Jing Zhou
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, 132 Waihuan West Road, HEMC, Guangzhou 510006, China
| | - Liqun Yang
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, 132 Waihuan West Road, HEMC, Guangzhou 510006, China
| | - Daping Quan
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, 132 Waihuan West Road, HEMC, Guangzhou 510006, China.,Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, 132 Waihuan West Road, HEMC, Guangzhou 510006, China
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, 132 Waihuan West Road, HEMC, Guangzhou 510006, China
| |
Collapse
|
13
|
Castro F, Leite Pereira C, Helena Macedo M, Almeida A, José Silveira M, Dias S, Patrícia Cardoso A, José Oliveira M, Sarmento B. Advances on colorectal cancer 3D models: The needed translational technology for nanomedicine screening. Adv Drug Deliv Rev 2021; 175:113824. [PMID: 34090966 DOI: 10.1016/j.addr.2021.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is a heterogeneous and molecularly complex disease, associated with high mortality worldwide, exposing the urgent need for novel therapeutic approaches. Their development and translation to the clinic have been hampered, partially due to the absence of reliable cellular models that resemble key features of the human disease. While traditional 2D models are not able to provide consistent and predictive responses about the in vivo efficiency of the formulation, animal models frequently fail to recapitulate cancer progression and to reproduce adverse effects. On its turn, multicellular 3D systems, by mimicking key genetic, physical and mechanical cues of the tumor microenvironment, constitute a promising tool in cancer research. In addition, they constitute more physiological and relevant environment for anticancer drugs screening and for predicting patient's response towards personalized approaches, bridging the gap between simplified 2D models and unrepresentative animal models. In this review, we provide an overview of CRC 3D models for translational research, with focus on their potential for nanomedicines screening.
Collapse
|
14
|
Jung M, Han Y, Woo C, Ki CS. Pulmonary tissue-mimetic hydrogel niches for small cell lung cancer cell culture. J Mater Chem B 2021; 9:1858-1866. [PMID: 33533364 DOI: 10.1039/d0tb02609c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although small cell lung cancer (SCLC) is characterized by early metastasis and high resistance to most anti-cancer therapeutics, resulting in poor prognosis, surgical treatment is unavailable for most patients. Instead, clinical treatment for SCLC patients relies largely on chemotherapy. Therefore, an analysis platform supporting research into the physiology of SCLC cells and novel anti-cancer drugs is strongly needed. Decellularized extracellular matrix (dECM) hydrogel is a promising candidate cell-culture system that could provide a tissue-specific environment. However, dECM-based hydrogels have limited property control, poor mechanical properties, and loss of components during decellularization. In this study, porcine decellularized lung tissue and hyaluronic acid (HA) were hybridized via photopolymerization to form a pulmonary tissue-mimetic hydrogel. dECM solution was obtained by decellularization and pepsin digestion. The dECM and HA were then modified with methacrylic moieties, which produced dECM-methacrylate (dECM-MA) and HA methacrylate (HA-MA). dECM-MA/HA-MA hydrogels were fabricated by photopolymerization using a photoinitiator under UV light irradiation. The mechanical properties of the dECM-based hydrogel were compared with those of native tissue. SCLC cells (NCI-H69) were encapsulated in multiple types of dECM-based hydrogels, and they exhibited higher cell proliferation, drug resistance, and CD44 expression in the presence of dECM-MA and HA-MA than in the control condition.
Collapse
Affiliation(s)
- Mijung Jung
- Department of Agriculture, Forestry and Bioresources, Seoul National Univerisity, Seoul 08826, Republic of Korea.
| | - Yoobin Han
- Department of Agriculture, Forestry and Bioresources, Seoul National Univerisity, Seoul 08826, Republic of Korea.
| | - Changhee Woo
- Department of Agriculture, Forestry and Bioresources, Seoul National Univerisity, Seoul 08826, Republic of Korea.
| | - Chang Seok Ki
- Department of Agriculture, Forestry and Bioresources, Seoul National Univerisity, Seoul 08826, Republic of Korea. and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
Tao M, Ao T, Mao X, Yan X, Javed R, Hou W, Wang Y, Sun C, Lin S, Yu T, Ao Q. Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal. Bioact Mater 2021; 6:2927-2945. [PMID: 33732964 PMCID: PMC7930362 DOI: 10.1016/j.bioactmat.2021.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Sterilization is the process of killing all microorganisms, while disinfection is the process of killing or removing all kinds of pathogenic microorganisms except bacterial spores. Biomaterials involved in cell experiments, animal experiments, and clinical applications need to be in the aseptic state, but their physical and chemical properties as well as biological activities can be affected by sterilization or disinfection. Decellularized matrix (dECM) is the low immunogenicity material obtained by removing cells from tissues, which retains many inherent components in tissues such as proteins and proteoglycans. But there are few studies concerning the effects of sterilization or disinfection on dECM, and the systematic introduction of sterilization or disinfection for dECM is even less. Therefore, this review systematically introduces and analyzes the mechanism, advantages, disadvantages, and applications of various sterilization and disinfection methods, discusses the factors influencing the selection of sterilization and disinfection methods, summarizes the sterilization and disinfection methods for various common dECM, and finally proposes a graphical route for selecting an appropriate sterilization or disinfection method for dECM and a technical route for validating the selected method, so as to provide the reference and basis for choosing more appropriate sterilization or disinfection methods of various dECM. Asepsis is the prerequisite for the experiment and application of biomaterials. Sterilization or disinfection affects physic-chemical properties of biomaterials. Mechanism, advantages and disadvantages of sterilization or disinfection methods. Factors influencing the selection of sterilization or disinfection methods. Selection of sterilization or disinfection methods for decellularized matrix.
Collapse
Affiliation(s)
- Meihan Tao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianrang Ao
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Mao
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Xinzhu Yan
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Weijian Hou
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Yang Wang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Cong Sun
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Shuang Lin
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Tianhao Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, China.,Department of Developmental Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Maspes A, Pizzetti F, Rossetti A, Makvandi P, Sitia G, Rossi F. Advances in Bio-Based Polymers for Colorectal CancerTreatment: Hydrogels and Nanoplatforms. Gels 2021; 7:6. [PMID: 33440908 PMCID: PMC7838948 DOI: 10.3390/gels7010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 12/27/2022] Open
Abstract
Adenocarcinoma of the colon is the most common malignant neoplasia of the gastrointestinal tract and is a major contributor to mortality worldwide. Invasiveness and metastatic behavior are typical of malignant tumors and, because of its portal drainage, the liver is the closest capillary bed available in this case, hence the common site of metastatic dissemination. Current therapies forecast total resection of primary tumor when possible and partial liver resection at advanced stages, along with systemic intravenous therapies consisting of chemotherapeutic agents such as 5-fluorouracil. These cures are definitely not exempt from drawbacks and heavy side effects. Biocompatible polymeric networks, both in colloids and bulk forms, able to absorb large quantities of water and load a variety of molecules-belong to the class of innovative drug delivery systems, thus suitable for the purpose and tunable on each patient can represent a promising alternative. Indeed, the implantation of polymeric scaffolds easy to synthesize can substitute chemotherapy and combination therapies scheduling, shortening side effects. Moreover, they do not require a surgical removal thanks to spontaneous degradation and guarantees an extended and regional cargo release, maintaining high drug concentrations. In this review, we focus our attention on the key role of polymeric networks as drug delivery systems potentially able to counteract this dramatic disease.
Collapse
Affiliation(s)
- Anna Maspes
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy; (A.M.); (F.P.); (A.R.)
| | - Fabio Pizzetti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy; (A.M.); (F.P.); (A.R.)
| | - Arianna Rossetti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy; (A.M.); (F.P.); (A.R.)
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, 56025 Pisa, Italy;
| | - Giovanni Sitia
- Division of Immunology, Transplantation and Infectious Diseases, Experimental Hepatology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Filippo Rossi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, 20131 Milan, Italy; (A.M.); (F.P.); (A.R.)
| |
Collapse
|
17
|
Huang D, Gibeley SB, Xu C, Xiao Y, Celik O, Ginsberg HN, Leong KW. Engineering liver microtissues for disease modeling and regenerative medicine. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909553. [PMID: 33390875 PMCID: PMC7774671 DOI: 10.1002/adfm.201909553] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 05/08/2023]
Abstract
The burden of liver diseases is increasing worldwide, accounting for two million deaths annually. In the past decade, tremendous progress has been made in the basic and translational research of liver tissue engineering. Liver microtissues are small, three-dimensional hepatocyte cultures that recapitulate liver physiology and have been used in biomedical research and regenerative medicine. This review summarizes recent advances, challenges, and future directions in liver microtissue research. Cellular engineering approaches are used to sustain primary hepatocytes or produce hepatocytes derived from pluripotent stem cells and other adult tissues. Three-dimensional microtissues are generated by scaffold-free assembly or scaffold-assisted methods such as macroencapsulation, droplet microfluidics, and bioprinting. Optimization of the hepatic microenvironment entails incorporating the appropriate cell composition for enhanced cell-cell interactions and niche-specific signals, and creating scaffolds with desired chemical, mechanical and physical properties. Perfusion-based culture systems such as bioreactors and microfluidic systems are used to achieve efficient exchange of nutrients and soluble factors. Taken together, systematic optimization of liver microtissues is a multidisciplinary effort focused on creating liver cultures and on-chip models with greater structural complexity and physiological relevance for use in liver disease research, therapeutic development, and regenerative medicine.
Collapse
Affiliation(s)
- Dantong Huang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Sarah B. Gibeley
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Ozgenur Celik
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
18
|
Frieboes HB, Raghavan S, Godin B. Modeling of Nanotherapy Response as a Function of the Tumor Microenvironment: Focus on Liver Metastasis. Front Bioeng Biotechnol 2020; 8:1011. [PMID: 32974325 PMCID: PMC7466654 DOI: 10.3389/fbioe.2020.01011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME) presents a challenging barrier for effective nanotherapy-mediated drug delivery to solid tumors. In particular for tumors less vascularized than the surrounding normal tissue, as in liver metastases, the structure of the organ itself conjures with cancer-specific behavior to impair drug transport and uptake by cancer cells. Cells and elements in the TME of hypovascularized tumors play a key role in the process of delivery and retention of anti-cancer therapeutics by nanocarriers. This brief review describes the drug transport challenges and how they are being addressed with advanced in vitro 3D tissue models as well as with in silico mathematical modeling. This modeling complements network-oriented techniques, which seek to interpret intra-cellular relevant pathways and signal transduction within cells and with their surrounding microenvironment. With a concerted effort integrating experimental observations with computational analyses spanning from the molecular- to the tissue-scale, the goal of effective nanotherapy customized to patient tumor-specific conditions may be finally realized.
Collapse
Affiliation(s)
- Hermann B. Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, United States
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
- Center for Predictive Medicine, University of Louisville, Louisville, KY, United States
| | - Shreya Raghavan
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, United States
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
- Department of Obstetrics and Gynecology, Houston Methodist Hospital, Houston, TX, United States
- Developmental Therapeutics Program, Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
19
|
McCrary MW, Bousalis D, Mobini S, Song YH, Schmidt CE. Decellularized tissues as platforms for in vitro modeling of healthy and diseased tissues. Acta Biomater 2020; 111:1-19. [PMID: 32464269 DOI: 10.1016/j.actbio.2020.05.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Biomedical engineers are at the forefront of developing novel treatments to improve human health, however, many products fail to translate to clinical implementation. In vivo pre-clinical animal models, although the current best approximation of complex disease conditions, are limited by reproducibility, ethical concerns, and poor accurate prediction of human response. Hence, there is a need to develop physiologically relevant, low cost, scalable, and reproducible in vitro platforms to provide reliable means for testing drugs, biomaterials, and tissue engineered products for successful clinical translation. One emerging approach of developing physiologically relevant in vitro models utilizes decellularized tissues/organs as biomaterial platforms for 2D and 3D models of healthy and diseased tissue. Decellularization is a process that removes cellular content and produces tissue-specific extracellular matrix scaffolds that can more accurately recapitulate an organ/tissue's native microenvironment compared to other natural or synthetic materials. Decellularized tissues hold enormous potential for in vitro modeling of various disease phenotypes and tissue responses to drugs or external conditions such as aging, toxin exposure, or even implantation. In this review, we highlight the need for in vitro models, the advantages and limitations of implementing decellularized tissues, and considerations of the decellularization process. We discuss current research efforts towards applying decellularized tissues as platforms to generate in vitro models of healthy and diseased tissues, and where we foresee the field progressing. A variety of organs/tissues are discussed, including brain, heart, kidney, large intestine, liver, lung, skeletal muscle, skin, and tongue. STATEMENT OF SIGNIFICANCE: Many biomedical products fail to reach clinical translation due to animal model limitations. Development of physiologically relevant in vitro models can provide a more economic, scalable, and reproducible means of testing drugs/therapeutics for successful clinical translation. The use of decellularized tissues as platforms for in vitro models holds promise, as these scaffolds can effectively replicate native tissue complexity, but is not widely explored. This review discusses the need for in vitro models, the promise of decellularized tissues as biomaterial substrates, and the current research applying decellularized tissues towards the creation of in vitro models. Further, this review provides insights into the current limitations and future of such in vitro models.
Collapse
Affiliation(s)
- Michaela W McCrary
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States.
| | - Deanna Bousalis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States.
| | - Sahba Mobini
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States; Instituto de Micro y Nanotechnología, IMN-CNM, CSIC (CEI UAM+CSIC), Calle Isaac Newton 8, 28760 Madrid, Tres Cantos, Spain; Departamento de Biología Molecular and Centro de Biología Molecular, Universidad Autónoma de Madrid, Calle Nicolás Cabrera, 28049 Madrid, Spain.
| | - Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States; Department of Biomedical Engineering, University of Arkansas, 134 White Hall, Fayetteville, AR 72701, United States.
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. BMS J257, Gainesville, FL 32611, United States.
| |
Collapse
|
20
|
Jafarkhani M, Salehi Z, Mashayekhan S, Kowsari-Esfahan R, Orive G, Dolatshahi-Pirouz A, Bonakdar S, Shokrgozar MA. Induced cell migration based on a bioactive hydrogel sheet combined with a perfused microfluidic system. Biomed Mater 2020; 15:045010. [PMID: 32120352 DOI: 10.1088/1748-605x/ab7b90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Endothelial cell migration is a crucial step in the process of new blood vessel formation-a necessary process to maintain cell viability inside thick tissue constructs. Here, we report a new method for maintaining cell viability and inducing cell migration using a perfused microfluidic platform based on collagen gel and a gradient hydrogel sheet. Due to the helpful role of the extracellular matrix components in cell viability, we developed a hydrogel sheet from decellularized tissue (DT) of the bovine heart and chitosan (CS). The results showed that hydrogel sheets with an optimum weight ratio of CS/DT = 2 possess a porosity of around 75%, a mechanical strength of 23 kPa, and display cell viability up to 78%. Then, we immobilized a radial gradient of vascular endothelial growth factor (VEGF) on the hydrogel sheet to promote human umbilical vein endothelial cell migration. Finally, we incorporated the whole system as an entirety on the top of the microfluidic platform and studied cell migration through the hydrogel sheet in the presence of soluble and immobilized VEGF. The results demonstrated that immobilized VEGF stimulated cell migration in the hydrogel sheet at all depths compared with soluble VEGF. The results also showed that applying a VEGF gradient in both soluble and immobilized states had a significant effect on cell migration at limited depths (<100 μm). The main finding of this study is a significant improvement in cell migration using an in vivo imitating, cost-efficient and highly reproducible platform, which may open up a new perspective for tissue engineering applications.
Collapse
Affiliation(s)
- Mahboubeh Jafarkhani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Lyngby, Denmark
| | - Zeinab Salehi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-8639, Iran
| | - Reza Kowsari-Esfahan
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Lyngby, Denmark
- Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen 6525 EX, The Netherlands
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
21
|
Ferreira LP, Gaspar VM, Mano JF. Decellularized Extracellular Matrix for Bioengineering Physiomimetic 3D in Vitro Tumor Models. Trends Biotechnol 2020; 38:1397-1414. [PMID: 32416940 DOI: 10.1016/j.tibtech.2020.04.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Recent advances in the extraction and purification of decellularized extracellular matrix (dECM) obtained from healthy or malignant tissues open new avenues for engineering physiomimetic 3D in vitro tumor models, which closely recapitulate key biomolecular hallmarks and the dynamic cancer cell-ECM interactions in the tumor microenvironment. We review current and upcoming methodologies for chemical modification of dECM-based biomaterials and advanced bioprocessing into organotypic 3D solid tumor models. A comprehensive review of disruptive advances and shortcomings of exploring dECM-based biomaterials for recapitulating the native tumor-supporting matrix is also provided. We hope to drive the discussion on how 3D dECM testing platforms can be leveraged for generating microphysiological tumor surrogates that generate more robust and predictive data on therapeutic bioperformance.
Collapse
Affiliation(s)
- Luís P Ferreira
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
22
|
Zhao C, Li Y, Peng G, Lei X, Zhang G, Gao Y. Decellularized liver matrix-modified chitosan fibrous scaffold as a substrate for C3A hepatocyte culture. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1041-1056. [PMID: 32162599 DOI: 10.1080/09205063.2020.1738690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A bioreactor filled with functional hepatocytes is a crucial portion of the bio-artificial liver device. However, it is a difficult task to maintain sufficient cell quantity and active hepatocellular function. In this work, we developed a promising scaffold for hepatocyte culture by coating porcine liver extracellular matrix (ECM) on chitosan (CTS) fabrics. Porcine Liver was decellularized using 1% Triton X-100. Solubilized liver ECM was immobilized on CTS fibers surface through cross linking of ECM and CTS with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide (NHS). Then the scaffold was characterized by Fourier transformed infrared spectroscopy in attenuated total reflection mode (ATR-FTIR), X-photoelectron spectroscopy (XPS) and water contact angle measurement. The efficacy of modified scaffolds to maintain C3A hepatocytes adhesion, proliferation, bioactivity and functionality in vitro was detected. FTIR spectra and XPS demonstrated the presence of ECM coating on CTS fabric surface. Covalently attached coating significantly improved the binding efficiency between ECM and CTS fabrics, in comparison to the coating by physical absorption. Furthermore, C3A hepatocytes cultured on coated scaffolds showed enhanced cell bioactivity and liver-specific function, such as albumin secretion and urea synthesis, compared with those cultured on untreated scaffolds(p < 0.05). As a promising hepatocyte culture carrier, the ECM coated CTS fabrics could be applied in the biological artificial liver reactor.
Collapse
Affiliation(s)
- Chaochen Zhao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yang Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Gongze Peng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, Guangdong Province, China
| | - Xiongxin Lei
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, China
| | - Guifeng Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
23
|
da Silva Morais A, Vieira S, Zhao X, Mao Z, Gao C, Oliveira JM, Reis RL. Advanced Biomaterials and Processing Methods for Liver Regeneration: State-of-the-Art and Future Trends. Adv Healthc Mater 2020; 9:e1901435. [PMID: 31977159 DOI: 10.1002/adhm.201901435] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/13/2019] [Indexed: 12/17/2022]
Abstract
Liver diseases contribute markedly to the global burden of mortality and disease. The limited organ disposal for orthotopic liver transplantation results in a continuing need for alternative strategies. Over the past years, important progress has been made in the field of tissue engineering (TE). Many of the early trials to improve the development of an engineered tissue construct are based on seeding cells onto biomaterial scaffolds. Nowadays, several TE approaches have been developed and are applied to one vital organ: the liver. Essential elements must be considered in liver TE-cells and culturing systems, bioactive agents or growth factors (GF), and biomaterials and processing methods. The potential of hepatocytes, mesenchymal stem cells, and others as cell sources is demonstrated. They need engineered biomaterial-based scaffolds with perfect biocompatibility and bioactivity to support cell proliferation and hepatic differentiation as well as allowing extracellular matrix deposition and vascularization. Moreover, they require a microenvironment provided using conventional or advanced processing technologies in order to supply oxygen, nutrients, and GF. Herein the biomaterials and the conventional and advanced processing technologies, including cell-sheets process, 3D bioprinting, and microfluidic systems, as well as the future trends in these major fields are discussed.
Collapse
Affiliation(s)
- Alain da Silva Morais
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Sílvia Vieira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Xinlian Zhao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Joaquim M. Oliveira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
24
|
Liver Cancer: Current and Future Trends Using Biomaterials. Cancers (Basel) 2019; 11:cancers11122026. [PMID: 31888198 PMCID: PMC6966667 DOI: 10.3390/cancers11122026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common type of cancer diagnosed and the second leading cause of death worldwide. Despite advancement in current treatments for HCC, the prognosis for this cancer is still unfavorable. This comprehensive review article focuses on all the current technology that applies biomaterials to treat and study liver cancer, thus showing the versatility of biomaterials to be used as smart tools in this complex pathologic scenario. Specifically, after introducing the liver anatomy and pathology by focusing on the available treatments for HCC, this review summarizes the current biomaterial-based approaches for systemic delivery and implantable tools for locally administrating bioactive factors and provides a comprehensive discussion of the specific therapies and targeting agents to efficiently deliver those factors. This review also highlights the novel application of biomaterials to study HCC, which includes hydrogels and scaffolds to tissue engineer 3D in vitro models representative of the tumor environment. Such models will serve to better understand the tumor biology and investigate new therapies for HCC. Special focus is given to innovative approaches, e.g., combined delivery therapies, and to alternative approaches-e.g., cell capture-as promising future trends in the application of biomaterials to treat HCC.
Collapse
|
25
|
Underhill GH, Khetani SR. Emerging trends in modeling human liver disease in vitro. APL Bioeng 2019; 3:040902. [PMID: 31893256 PMCID: PMC6930139 DOI: 10.1063/1.5119090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
The liver executes 500+ functions, such as protein synthesis, xenobiotic metabolism, bile production, and metabolism of carbohydrates/fats/proteins. Such functions can be severely degraded by drug-induced liver injury, nonalcoholic fatty liver disease, hepatitis B and viral infections, and hepatocellular carcinoma. These liver diseases, which represent a significant global health burden, are the subject of novel drug discovery by the pharmaceutical industry via the use of in vitro models of the human liver, given significant species-specific differences in disease profiles and drug outcomes. Isolated primary human hepatocytes (PHHs) are a physiologically relevant cell source to construct such models; however, these cells display a rapid decline in the phenotypic function within conventional 2-dimensional monocultures. To address such a limitation, several engineered platforms have been developed such as high-throughput cellular microarrays, micropatterned cocultures, self-assembled spheroids, bioprinted tissues, and perfusion devices; many of these platforms are being used to coculture PHHs with liver nonparenchymal cells to model complex cell cross talk in liver pathophysiology. In this perspective, we focus on the utility of representative platforms for mimicking key features of liver dysfunction in the context of chronic liver diseases and liver cancer. We further discuss pending issues that will need to be addressed in this field moving forward. Collectively, these in vitro liver disease models are being increasingly applied toward the development of new therapeutics that display an optimal balance of safety and efficacy, with a focus on expediting development, reducing high costs, and preventing harm to patients.
Collapse
Affiliation(s)
- Gregory H. Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Salman R. Khetani
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
26
|
Hoshiba T. Decellularized Extracellular Matrix for Cancer Research. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1311. [PMID: 31013621 PMCID: PMC6515435 DOI: 10.3390/ma12081311] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
Genetic mutation and alterations of intracellular signaling have been focused on to understand the mechanisms of oncogenesis and cancer progression. Currently, it is pointed out to consider cancer as tissues. The extracellular microenvironment, including the extracellular matrix (ECM), is important for the regulation of cancer cell behavior. To comprehensively investigate ECM roles in the regulation of cancer cell behavior, decellularized ECM (dECM) is now used as an in vitro ECM model. In this review, I classify dECM with respect to its sources and summarize the preparation and characterization methods for dECM. Additionally, the examples of cancer research using the dECM were introduced. Finally, future perspectives of cancer studies with dECM are described in the conclusions.
Collapse
Affiliation(s)
- Takashi Hoshiba
- Biotechnology Group, Tokyo Metropolitan Industrial Technology Research Institute, Koto-ku, Tokyo 135-0064, Japan.
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Ibaraki, Japan.
| |
Collapse
|
27
|
Dorgau B, Felemban M, Hilgen G, Kiening M, Zerti D, Hunt NC, Doherty M, Whitfield P, Hallam D, White K, Ding Y, Krasnogor N, Al-Aama J, Asfour HZ, Sernagor E, Lako M. Decellularised extracellular matrix-derived peptides from neural retina and retinal pigment epithelium enhance the expression of synaptic markers and light responsiveness of human pluripotent stem cell derived retinal organoids. Biomaterials 2019; 199:63-75. [PMID: 30738336 DOI: 10.1016/j.biomaterials.2019.01.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/11/2019] [Accepted: 01/20/2019] [Indexed: 12/13/2022]
Abstract
Tissue specific extracellular matrices (ECM) provide structural support and enable access to molecular signals and metabolites, which are essential for directing stem cell renewal and differentiation. To mimic this phenomenon in vitro, tissue decellularisation approaches have been developed, resulting in the generation of natural ECM scaffolds that have comparable physical and biochemical properties of the natural tissues and are currently gaining traction in tissue engineering and regenerative therapies due to the ease of standardised production, and constant availability. In this manuscript we report the successful generation of decellularised ECM-derived peptides from neural retina (decel NR) and retinal pigment epithelium (decel RPE), and their impact on differentiation of human pluripotent stem cells (hPSCs) to retinal organoids. We show that culture media supplementation with decel RPE and RPE-conditioned media (CM RPE) significantly increases the generation of rod photoreceptors, whilst addition of decel NR and decel RPE significantly enhances ribbon synapse marker expression and the light responsiveness of retinal organoids. Photoreceptor maturation, formation of correct synapses between retinal cells and recording of robust light responses from hPSC-derived retinal organoids remain unresolved challenges for the field of regenerative medicine. Enhanced rod photoreceptor differentiation, synaptogenesis and light response in response to addition of decellularised matrices from RPE and neural retina as shown herein provide a novel and substantial advance in generation of retinal organoids for drug screening, tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Birthe Dorgau
- Institute of Genetic Medicine, Newcastle University, UK
| | | | | | | | - Darin Zerti
- Institute of Genetic Medicine, Newcastle University, UK
| | | | | | | | - Dean Hallam
- Institute of Genetic Medicine, Newcastle University, UK
| | | | - Yuchun Ding
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, UK
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, Newcastle University, UK
| | - Jumana Al-Aama
- Department of Genetic Medicine and Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Hani Z Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research o Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, UK.
| |
Collapse
|