1
|
Knez D, Wang F, Duan WX, Hrast Rambaher M, Gobec S, Cheng XY, Wang XB, Mao CJ, Liu CF, Frlan R. Development of novel aza-stilbenes as a new class of selective MAO-B inhibitors for the treatment of Parkinson's disease. Bioorg Chem 2024; 153:107877. [PMID: 39396452 DOI: 10.1016/j.bioorg.2024.107877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of nigrostriatal dopaminergic neurons. Inhibitors of monoamine oxidase B (MAO-B) have shown promise in alleviating motor symptoms and reducing oxidative stress associated with PD. In this study, we report the novel use of an azastilbene-based compound library for screening human (h)MAO-B, followed by optimization of initial hits to obtain compounds with low nanomolar inhibitory potencies (compound 9, IC50 = 42 nM) against hMAO-B. To ensure specificity and minimize false positives due to non-specific hydrophobic interactions, we performed comprehensive selectivity profiling against hMAO-A, butyrylcholinesterase (hBChE) and acetylcholinesterase (hAChE) - enzymes with hydrophobic active sites that are structurally distinct from hMAO-B. Docking analysis with Glide provided valuable insights into the binding interactions between the inhibitors and hMAO-B and also explained the selectivity against hMAO-A. In the cell-based model of Parkinson's disease, one of the compounds significantly reduced rotenone-induced accumulation of reactive oxygen species. In addition, these compounds showed a protective effect against acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor dysfunction in PD model mice and reduced MPTP-induced loss of striatal tyrosine hydroxylase-positive neurons in the substantia nigra. These results make azastilbene-based compounds a promising new class of hMAO-B inhibitors with potential therapeutic applications in Parkinson's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Wen-Xiang Duan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Martina Hrast Rambaher
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiao-Bo Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Rok Frlan
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Kumar S, Pandey BP, Abdelgawad MA, Ghoneim MM, Bakr RB, Kim H, Mathew B. Inhibition of monoamine oxidases by heterocyclic derived conjugated dienones: synthesis and in vitro and in silico investigations. RSC Med Chem 2024; 16:d4md00608a. [PMID: 39430951 PMCID: PMC11487422 DOI: 10.1039/d4md00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024] Open
Abstract
A total of 18 heterocyclic derived conjugated dienones (CD1-CD18) were evaluated for their potential monoamine oxidase (MAO)-A/-B inhibitory activity. Among the analyzed molecules, CD11 and CD14 showed notable inhibitory potentials against MAO-B, with half-maximal inhibitory concentration (IC50) values of 0.063 ± 0.001 μM and 0.036 ± 0.008 μM, respectively. In contrast, CD1, CD2 and CD3 showed comparable inhibitory activities toward MAO-A, with IC50 values of 3.45 ± 0.07, 3.23 ± 0.24, and 3.15 ± 0.10 μM, respectively. Derivatives of thiophene (CD13-CD17) exhibited selectivity indices greater than 250 for MAO-B. Both lead compounds exhibited similar potencies to safinamide and were more potent than pargyline. According to kinetic analysis, CD11 and CD14 exhibited competitive inhibition of MAO-B activity, with K i values of 12.67 ± 3.85 nM and 4.5 ± 0.62 nM, respectively. Furthermore, the reversibility test results indicated that the inhibitions were reversible. Molecular docking and molecular dynamics simulation studies can provide insights into the probable binding interactions of CD11 and CD14 with MAO-B. CD11 demonstrated a bipartite contact with Tyr326 and Phe343, whereas CD14 showed contact with Pro102 and Tyr435 via aromatic hydrogen bonds. These results indicated that both compounds have high-affinity binding interactions ( -10.13 and -9.90 kcal mol-1, respectively) at the active site of MAO-B. Furthermore, we used SwissADME to estimate ADME, and both lead compounds demonstrated blood-brain barrier penetration. The study results indicated that all the compounds evaluated demonstrated potent inhibition of MAO-B activity, which was comparable to the efficacy of reference medications. It is necessary to do further investigations on the lead molecules to see whether they may be used to treat different neurodegenerative illnesses.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham AIMS Health Sciences Campus Kochi 682 041 India
| | - Bishnu Prasad Pandey
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University Suncheon 57922 Republic of Korea
- Department of Chemical Science and Engineering, Kathmandu University PO Box No. 6250 Dhulikhel 45200 Nepal
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka 72341 Aljouf Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University Ad Diriyah Riyadh 13713 Saudi Arabia
| | - Rania B Bakr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University Suncheon 57922 Republic of Korea
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham AIMS Health Sciences Campus Kochi 682 041 India
| |
Collapse
|
3
|
Krishna A, Kumar S, Sudevan ST, Singh AK, Pappachen LK, Rangarajan TM, Abdelgawad MA, Mathew B. A Comprehensive Review of the Docking Studies of Chalcone for the Development of Selective MAO-B Inhibitors. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:697-714. [PMID: 37190818 DOI: 10.2174/1871527322666230515155000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Monoamine oxidase B is a crucial therapeutic target for neurodegenerative disorders like Alzheimer's and Parkinson's since they assist in disintegrating neurotransmitters such as dopamine in the brain. Pursuing efficacious monoamine oxidase B inhibitors is a hot topic, as contemporary therapeutic interventions have many shortcomings. Currently available FDA-approved monoamine oxidase inhibitors like safinamide, selegiline and rasagiline also have a variety of side effects like depression and insomnia. In the quest for a potent monoamine oxidase B inhibitor, sizeable, diverse chemical entities have been uncovered, including chalcones. Chalcone is a renowned structural framework that has been intensively explored for its monoamine oxidase B inhibitory activity.The structural resemblance of chalcone (1,3-diphenyl-2-propen-1-one) based compounds and 1,4-diphenyl- 2-butene, a recognized MAO-B inhibitor, accounts for their MAO-B inhibitory activity. Therefore, multiple revisions to the chalcone scaffold have been attempted by the researchers to scrutinize the implications of substitutions onthe molecule's potency. In this work, we outline the docking investigation results of various chalcone analogues with monoamine oxidase B available in the literature until now to understand the interaction modes and influence of substituents. Here we focused on the interactions between reported chalcone derivatives and the active site of monoamine oxidase B and the influence of substitutions on those interactions. Detailed images illustrating the interactions and impact of the substituents or structural modifications on these interactions were used to support the docking results.
Collapse
Affiliation(s)
- Athulya Krishna
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Ashutosh Kumar Singh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Leena K Pappachen
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi-110021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| |
Collapse
|
4
|
Lv Y, Zheng Z, Liu R, Guo J, Zhang C, Xie Y. Monoamine oxidase B inhibitors based on natural privileged scaffolds: A review of systematically structural modification. Int J Biol Macromol 2023; 251:126158. [PMID: 37549764 DOI: 10.1016/j.ijbiomac.2023.126158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Monoamine oxidase is a flavin enzyme that catalyzes the oxidation of monoamine neurotransmitters in the brain. Various toxic by-products, aldehydes and hydrogen peroxide produced during the catalytic process, can cause oxidative stress and neuronal cell death. Overexpression of MAO-B and insufficient dopamine concentration are recognized as pathological factors in neurodegenerative diseases (NDs) including Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, the inhibition of MAO-B is an attractive target for the treatment of NDs. Despite significant efforts, few selective and reversible MAO-B inhibitors have been clinically approved. Natural products have emerged as valuable sources of lead compounds in drug discovery. Compounds such as chromone, coumarin, chalcone, caffeine, and aurone, present in natural structures, are considered as privileged scaffolds in the synthesis of MAO-B inhibitors. In this review, we summarized the structure-activity relationship (SAR) of MAO-B inhibitors based on the naturally privileged scaffolds over the past 20 years. Additionally, we proposed a balanced discussion on the advantages and limitations of natural scaffold-based MAO-B inhibitors with providing a future perspective in drug development.
Collapse
Affiliation(s)
- Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhiyuan Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Renzheng Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
5
|
Hindson SA, Andrews RC, Danson MJ, van der Kamp MW, Manley AE, Sutcliffe OB, Haines TSF, Freeman TP, Scott J, Husbands SM, Blagbrough IS, Anderson JLR, Carbery DR, Pudney CR. Synthetic cannabinoid receptor agonists are monoamine oxidase-A selective inhibitors. FEBS J 2023; 290:3243-3257. [PMID: 36708234 PMCID: PMC10952593 DOI: 10.1111/febs.16741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 01/29/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are one of the fastest growing classes of recreational drugs. Despite their growth in use, their vast chemical diversity and rapidly changing landscape of structures make understanding their effects challenging. In particular, the side effects for SCRA use are extremely diverse, but notably include severe outcomes such as cardiac arrest. These side effects appear at odds with the main putative mode of action, as full agonists of cannabinoid receptors. We have hypothesized that SCRAs may act as MAO inhibitors, owing to their structural similarity to known monoamine oxidase inhibitors (MAOI's) as well as matching clinical outcomes (hypertensive crisis) of 'monoaminergic toxicity' for users of MAOIs and some SCRA use. We have studied the potential for SCRA-mediated inhibition of MAO-A and MAO-B via a range of SCRAs used commonly in the UK, as well as structural analogues to prove the atomistic determinants of inhibition. By combining in silico and experimental kinetic studies we demonstrate that SCRAs are MAO-A-specific inhibitors and their affinity can vary significantly between SCRAs, most notably affected by the nature of the SCRA 'head' group. Our data allow us to posit a putative mechanism of inhibition. Crucially our data demonstrate that SCRA activity is not limited to just cannabinoid receptor agonism and that alternative interactions might account for some of the diversity of the observed side effects and that these effects can be SCRA-specific.
Collapse
Affiliation(s)
- Sarah A. Hindson
- Department of Biology and BiochemistryUniversity of BathBA2 7AYBathUK
| | - Rachael C. Andrews
- Department of ChemistryUniversity of BathBA2 7AYBathUK
- Centre for Sustainable and Circular TechnologiesUniversity of BathBA2 7AYBathUK
| | - Michael J. Danson
- Department of Biology and BiochemistryUniversity of BathBA2 7AYBathUK
| | | | - Amy E. Manley
- Faculty of Health SciencesUniversity of BristolBS8 1THBristolUK
| | - Oliver B. Sutcliffe
- MANchester DRug Analysis & Knowledge Exchange (MANDRAKE), Department of Natural SciencesManchester Metropolitan UniversityM15 5GDManchesterUK
| | | | | | - Jennifer Scott
- Faculty of Health SciencesUniversity of BristolBS8 1THBristolUK
| | | | - Ian S. Blagbrough
- Department of Pharmacy and PharmacologyUniversity of BathBA2 7AYBathUK
| | | | - David R. Carbery
- Department of ChemistryUniversity of BathBA2 7AYBathUK
- Centre for Sustainable and Circular TechnologiesUniversity of BathBA2 7AYBathUK
| | - Christopher R. Pudney
- Department of Biology and BiochemistryUniversity of BathBA2 7AYBathUK
- Centre for Sustainable and Circular TechnologiesUniversity of BathBA2 7AYBathUK
- Centre for Therapeutic InnovationUniversity of BathBA2 7AYBathUK
| |
Collapse
|
6
|
Meng W, Lin S, Ouyang K, Chen L, Zhang Y, Wang W. Screening and Inhibition Mechanism of Xanthine Oxidase Inhibitors in Ethanolic Extracts of Chimonanthus salicifolius Hu Leaves. Chem Biodivers 2023; 20:e202200480. [PMID: 36929603 DOI: 10.1002/cbdv.202200480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
This study aimed to evaluate the inhibition of the ethanol elutions of Chimonanthus salicifolius Hu leaves (CsHL) against xanthine oxidase (XO). The results of XO inhibition assay and enzymatic superoxide free radical scavenging assay in vitro showed that 70 % ethanol eluate (EE) had the best inhibitory effect and followed by 40 % EE. High performance liquid chromatograph analysis showed that quercetin and kaempferol were the potential active components of XO inhibition. The inhibition mechanism of quercetin and kaempferol on XO was investigated by kinetic analysis and fluorescence quenching titration assay. The molecular simulation further revealed that quercetin and kaempferol bind to XO mainly by hydrogen bonding and van der Waals, blocking the entry of substrates and leading to the inhibition of XO. In conclusion, the CsHL have inhibitory effects on XO activity, which provides a theoretical basis for relieving or preventing hyperuricemia and gout as a natural food or medicinal plant in the future.
Collapse
Affiliation(s)
- Wenya Meng
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Suyun Lin
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Kehui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lingli Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ying Zhang
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenjun Wang
- Jiangxi Key Laboratory of Natural Products and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
7
|
Bhawna, Kumar A, Bhatia M, Kapoor A, Kumar P, Kumar S. Monoamine oxidase inhibitors: A concise review with special emphasis on structure activity relationship studies. Eur J Med Chem 2022; 242:114655. [PMID: 36037788 DOI: 10.1016/j.ejmech.2022.114655] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022]
Abstract
Monoamine oxidase enzyme is necessary for the management of brain functions. It oxidatively metabolizes monoamines and produces ammonia, aldehyde and hydrogen peroxide as by-products. Excessive production of by-products of monoamine metabolism generates free radicals which cause cellular apoptosis and several neurodegenerative disorders for example Alzheimer's disease, Parkinson's disease, depression and autism. The inhibition of MAOs is an attractive target for the treatment of neurological disorders. Clinically approved MAO inhibitors for example selegiline, rasagiline, clorgyline, pargyline etc. are irreversible in nature and cause some adverse effects while recently studied reversible MAO inhibitors are devoid of harmful effects of old monoamine oxidase inhibitors. In this review article we have listed various synthesized molecules containing different moieties like coumarin, chalcone, thiazole, thiourea, caffeine, pyrazole, chromone etc. along with their activity, mode of action, structure activity relationship and molecular docking studies.
Collapse
Affiliation(s)
- Bhawna
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Meenakshi Bhatia
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Archana Kapoor
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India.
| |
Collapse
|
8
|
Dhivya LS, Sarvesh S, S AS. Inhibition of Mycobacterium tuberculosis InhA (Enoyl-acyl carrier protein reductase) by synthetic Chalcones: a molecular modelling analysis and in-vitro evidence. J Biomol Struct Dyn 2022:1-19. [PMID: 35751128 DOI: 10.1080/07391102.2022.2086922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Tuberculosis (TB) is a serious infectious disease caused by the bacillus Mycobacterium tuberculosis (Mtb). The World Health Organization (WHO) estimates that 1.8 million people die each year from TB, with 10 million new cases being registered each year. In this study, 50 Chalcones were developed, five of which were synthesized, and their inhibitory effects against Mtb were studied. The discovery of new powerful inhibitors with IC50 values in the sub-micro molar range resulted from the development of structure-activity relationships (SAR). The goal of the molecular modelling studies was to uncover the most important structural criteria underpinning the binding affinity and selectivity of this class of inhibitors as possible anti-TB drugs. Because of their great efficacy and selectivity, our developed nitro and benzyloxy substituted Chalcones compounds appear to be promising anti-TB therapies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- L S Dhivya
- Dr. APJ Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kancheepuram, Tamil Nadu, India
| | - Sabarathinam Sarvesh
- Drug Testing Laboratory, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kancheepuram, Tamil Nadu, India
| | - Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kancheepuram, Tamil Nadu, India
| |
Collapse
|
9
|
Mathew B, Oh JM, Abdelgawad MA, Khames A, Ghoneim MM, Kumar S, Nath LR, Sudevan ST, Parambi DGT, Agoni C, Soliman MES, Kim H. Conjugated Dienones from Differently Substituted Cinnamaldehyde as Highly Potent Monoamine Oxidase-B Inhibitors: Synthesis, Biochemistry, and Computational Chemistry. ACS OMEGA 2022; 7:8184-8197. [PMID: 35284720 PMCID: PMC8908507 DOI: 10.1021/acsomega.2c00397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 02/08/2023]
Abstract
Fifteen multiconjugated dienones (MK1-MK15) were synthesized and evaluated to determine their inhibitory activities against monoamine oxidases (MAOs) A and B. All derivatives were found to be potent and highly selective MAO-B inhibitors. Compound MK6, with an IC50 value of 2.82 nM, most effectively inhibited MAO-B, like MK12 (IC50 = 3.22 nM), followed by MK5, MK13, and MK14 (IC50 = 4.02, 4.24, and 4.89 nM, respectively). The selectivity index values of MK6 and MK12 for MAO-B over MAO-A were 7361.5 and 1780.5, respectively. Compounds MK6 and MK12 were competitive reversible inhibitors of MAO-B, with K i values of 1.10 ± 0.20 and 3.0 ± 0.27 nM, respectively. Cytotoxic studies showed that MK5, MK6, MK12, and MK14 exhibited low toxicities on Vero cells, with IC50 values of 218.4, 149.1, 99.96, and 162.3 μg/mL, respectively, which were much higher than those for their effective nanomolar-level concentrations. Also, MK5, MK6, MK12, and MK14 decreased cell damage in H2O2-induced cells via a significant scavenging effect of reactive oxygen species. Molecular modeling was performed to rationalize the potential inhibitory activities of MK5, MK6, MK12, and MK14 toward MAO-B and their possible binding mechanisms, showing high-affinity binding pocket interactions and conformation perturbations of the compounds with MAO-B, which were interpreted as the conformational dynamics of MAO-B. This study concluded that all the compounds tested were more potent MAO-B inhibitors than the reference drugs, and leading compounds could be further explored for their effectiveness in various kinds of neurodegenerative disorders.
Collapse
Affiliation(s)
- Bijo Mathew
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
- ,
| | - Jong Min Oh
- Department
of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Mohamed A. Abdelgawad
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Ahmed Khames
- Department
of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department
of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Sunil Kumar
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| | - Lekshmi R. Nath
- Department
of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India
| | - Della Grace Thomas Parambi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Clement Agoni
- Molecular
Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South
Africa
| | - Mahmoud E. S. Soliman
- Molecular
Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South
Africa
| | - Hoon Kim
- Department
of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
10
|
Maliyakkal N, Saleem U, Anwar F, Shah MA, Ahmad B, Umer F, Almoyad MAA, Parambi DGT, Beeran AA, Nath LR, Aleya L, Mathew B. Ameliorative effect of ethoxylated chalcone-based MAO-B inhibitor on behavioural predictors of haloperidol-induced Parkinsonism in mice: evidence of its antioxidative role against Parkinson's diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7271-7282. [PMID: 34476688 DOI: 10.1007/s11356-021-15955-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/09/2021] [Indexed: 02/05/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder that affects mostly elderly people above the age of 60. Previously, we have reported that the ethoxylated chalcone derivative (E)-1-(4-ethoxyphenyl)-3-(fluorophenyl)prop-2-en-1-one (E7) showed potent, reversible, and competitive MAO-B inhibition with an IC50 value of 0.053 μm. The present study aims to investigate the anti-Parkinson activity of compound E7 in a haloperidol-induced animal model of mice. The disease was induced with haloperidol (1 mg/kg, intraperitoneal route) once daily for 21 days. E7 was given at dose levels of 10, 20, and 30 mg/kg/day for 21 days, consecutively. Behavioural tests were carried out during and at the end of the study. Biochemical analyses such as oxidative stress biomarkers and neurotransmitters were quantified on the brain homogenate at the end of the study. Behavioural results showed that there is a marked improvement in locomotor activity and motor coordination in the treatment group. Oxidative stress biomarkers such as SOD, CAT, and GSH levels were increased dose-dependently with a maximum at 30 mg/kg, whereas the dose-dependent decrease (30 mg/kg) in the MDA and nitrite levels were observed in the treatment groups. Levels of neurotransmitters, such as dopamine, serotonin, and noradrenaline, were increased in the treatment groups while dopamine and noradrenaline levels were more than in the standard treated group. MAO-B level was also decreased dose dependently in the treatment group in comparison with the control group. Based on the findings, it was concluded that the E7 compound exhibited anti-Parkinson activity which was more evident at 30 mg/kg oral dose as evaluated by the haloperidol-induced animal model of mice.
Collapse
Affiliation(s)
- Naseer Maliyakkal
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushayt, King Khalid University, Abha, Saudi Arabia.
| | - Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, 54000, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, 54000, Pakistan
| | - Filzah Umer
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, 54000, Pakistan
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushayt, King Khalid University, Abha, Saudi Arabia
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Asmy Appadath Beeran
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India
| | - Lotfi Aleya
- Laboratoire Chrono-Environnement, CNRS6249, Universite de Bourgogne Franche-Comte, Besancon, France
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041, India.
| |
Collapse
|
11
|
Kamecki F, Knez D, Carvalho D, Marcucci C, Rademacher M, Higgs J, Žakelj S, Marcos A, de Tezanos Pinto F, Abin-Carriquiry JA, Gobec S, Colettis N, Marder M. Multitarget 2'-hydroxychalcones as potential drugs for the treatment of neurodegenerative disorders and their comorbidities. Neuropharmacology 2021; 201:108837. [PMID: 34653442 DOI: 10.1016/j.neuropharm.2021.108837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 02/01/2023]
Abstract
The complex nature of neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD) calls for multidirectional treatment. Restoring neurotransmitter levels by combined inhibition of cholinesterases (ChEs) and monoamine oxidases (MAOs, MAO-A and MAO-B), in conjunction with strategies to counteract amyloid β (Aβ) aggregation, may constitute a therapeutically strong multi-target approach for the treatment of NDDs. Chalcones are a subgroup of flavonoids with a broad spectrum of biological activity. We report here the synthesis of 2'-hydroxychalcones as MAO-A and MAO-B inhibitors. Compounds 5c (IC50 = 0.031 ± 0.001 μM), 5a (IC50 = 0.084 ± 0.003 μM), 2c (IC50 = 0.095 ± 0.019 μM) and 2a (IC50 = 0.111 ± 0.006 μM) were the most potent, selective and reversible inhibitors of human (h)MAO-B isoform. hMAO-B inhibitors 1a, 2a and 5a also inhibited murine MAO-B in vivo in mouse brain homogenates. Molecular modelling rationalised the binding mode of 2'-hydroxychalcones in the active site of hMAO-B. Additionally, several derivatives inhibited murine acetylcholinesterase (mAChE) (IC50 values from 4.37 ± 0.83 μM to 15.17 ± 6.03 μM) and reduced the aggregation propensity of Aβ. Moreover, some derivatives bound to the benzodiazepine binding site (BDZ-bs) of the γ-aminobutyric acid A (GABAA) receptors (1a and 2a with Ki = 4.9 ± 1.1 μM and 5.0 ± 1.1 μM, respectively), and exerted sedative and/or anxiolytic like effects on mice. The biological results reported here on 2'-hydroxychalcones provide an extension to previous studies on chalcone scaffold and show them as a potential treatment strategy for NDDs and their associated comorbidities.
Collapse
Affiliation(s)
- Fabiola Kamecki
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
| | - Diego Carvalho
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
| | - Carolina Marcucci
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Marina Rademacher
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Josefina Higgs
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Simon Žakelj
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
| | - Alejandra Marcos
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Felicitas de Tezanos Pinto
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Juan Andrés Abin-Carriquiry
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
| | - Natalia Colettis
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Mariel Marder
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Sasidharan R, Eom BH, Heo JH, Park JE, Abdelgawad MA, Musa A, Gambacorta N, Nicolotti O, Manju SL, Mathew B, Kim H. Morpholine-based chalcones as dual-acting monoamine oxidase-B and acetylcholinesterase inhibitors: synthesis and biochemical investigations. J Enzyme Inhib Med Chem 2021; 36:188-197. [PMID: 33430657 PMCID: PMC7808749 DOI: 10.1080/14756366.2020.1842390] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nine compounds (MO1–MO9) containing the morpholine moiety were assessed for their inhibitory activities against monoamine oxidases (MAOs) and acetylcholinesterase (AChE). Most of the compounds potently inhibited MAO-B; MO1 most potently inhibited with an IC50 value of 0.030 µM, followed by MO7 (0.25 µM). MO5 most potently inhibited AChE (IC50 = 6.1 µM), followed by MO9 (IC50 = 12.01 µM) and MO7 most potently inhibited MAO-A (IC50 = 7.1 µM). MO1 was a reversible mixed-type inhibitor of MAO-B (Ki = 0.018 µM); MO5 reversibly competitively inhibited AChE (Ki = 2.52 µM); and MO9 reversibly noncompetitively inhibited AChE (Ki = 7.04 µM). MO1, MO5 and MO9 crossed the blood–brain barrier, and were non-toxic to normal VERO cells. These results show that MO1 is a selective inhibitor of MAO-B and that MO5 is a dual-acting inhibitor of AChE and MAO-B, and that both should be considered candidates for the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Rani Sasidharan
- College of Pharmaceutical Science, Government T.D. Medical College, Alappuzha, India.,Organic Chemistry Division, SAS, VIT University, Vellore, India
| | - Bo Hyun Eom
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Jeong Hyun Heo
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Jong Eun Park
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Mohamed A Abdelgawad
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Arafa Musa
- Department of Pharmacogonosy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Department of Pharmacogonosy, Al-Azhar University, Cairo, Egypt
| | - Nicola Gambacorta
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | | | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
13
|
Koyiparambath VP, Oh JM, Khames A, Abdelgawad MA, Nair AS, Nath LR, Gambacorta N, Ciriaco F, Nicolotti O, Kim H, Mathew B. Trimethoxylated Halogenated Chalcones as Dual Inhibitors of MAO-B and BACE-1 for the Treatment of Neurodegenerative Disorders. Pharmaceutics 2021; 13:pharmaceutics13060850. [PMID: 34201128 PMCID: PMC8226672 DOI: 10.3390/pharmaceutics13060850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 02/05/2023] Open
Abstract
Six halogenated trimethoxy chalcone derivatives (CH1-CH6) were synthesized and spectrally characterized. The compounds were further evaluated for their inhibitory potential against monoamine oxidases (MAOs) and β-secretase (BACE-1). Six compounds inhibited MAO-B more effectively than MAO-A, and the 2',3',4'-methoxy moiety in CH4-CH6 was more effective for MAO-B inhibition than the 2',4',6'-methoxy moiety in CH1-CH3. Compound CH5 most potently inhibited MAO-B, with an IC50 value of 0.46 µM, followed by CH4 (IC50 = 0.84 µM). In 2',3',4'-methoxy derivatives (CH4-CH6), the order of inhibition was -Br in CH5 > -Cl in CH4 > -F in CH6 at the para-position in ring B of chalcone. CH4 and CH5 were selective for MAO-B, with selectivity index (SI) values of 15.1 and 31.3, respectively, over MAO-A. CH4 and CH5 moderately inhibited BACE-1 with IC50 values of 13.6 and 19.8 µM, respectively. When CH4 and CH5 were assessed for their cell viability studies on the normal African Green Monkey kidney cell line (VERO) using MTT assays, it was noted that both compounds were found to be safe, and only a slightly toxic effect was observed in concentrations above 200 µg/mL. CH4 and CH5 decreased reactive oxygen species (ROS) levels of VERO cells treated with H2O2, indicating both compounds retained protective effects on the cells by antioxidant activities. All compounds showed high blood brain barrier permeabilities analyzed by a parallel artificial membrane permeability assay (PAMPA). Molecular docking and ADME prediction of the lead compounds provided more insights into the rationale behind the binding and the CNS drug likeness. From non-test mutagenicity and cardiotoxicity studies, CH4 and CH5 were non-mutagenic and non-/weak-cardiotoxic. These results suggest that CH4 and CH5 could be considered candidates for the cure of neurological dysfunctions.
Collapse
Affiliation(s)
- Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry, AIMS Health Sciences Campus, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (V.P.K.); (A.S.N.)
| | - Jong Min Oh
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea;
| | - Ahmed Khames
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box-11099, Taif 21944, Saudi Arabia;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62514, Egypt
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, AIMS Health Sciences Campus, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (V.P.K.); (A.S.N.)
| | - Lekshmi R. Nath
- Department of Pharmacogonosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682041, India;
| | - Nicola Gambacorta
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy; (N.G.); (O.N.)
| | - Fulvio Ciriaco
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy;
| | - Orazio Nicolotti
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, I-70125 Bari, Italy; (N.G.); (O.N.)
| | - Hoon Kim
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea;
- Correspondence: (H.K.); (B.M.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, AIMS Health Sciences Campus, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 682041, India; (V.P.K.); (A.S.N.)
- Correspondence: (H.K.); (B.M.)
| |
Collapse
|
14
|
Mathew GE, Oh JM, Mohan K, Kumudhavalli M, Jayanthi S, Kim H, Mathew B. Inhibitions of monoamine oxidases and acetylcholinesterase by 1-methyl, 5-phenyl substituted thiosemicarbazones: Synthesis, biochemical, and computational investigations. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Jung HJ, Noh SG, Ryu IY, Park C, Lee JY, Chun P, Moon HR, Chung HY. ( E)-1-(Furan-2-yl)-(substituted phenyl)prop-2-en-1-one Derivatives as Tyrosinase Inhibitors and Melanogenesis Inhibition: An In Vitro and In Silico Study. Molecules 2020; 25:molecules25225460. [PMID: 33233397 PMCID: PMC7700175 DOI: 10.3390/molecules25225460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
A series of (E)-1-(furan-2-yl)prop-2-en-1-one derivatives (compounds 1–8) were synthesized and evaluated for their mushroom tyrosinase inhibitory activity. Among these series, compound 8 (2,4-dihydroxy group bearing benzylidene) showed potent tyrosinase inhibitory activity, with respective IC50 values of 0.0433 µM and 0.28 µM for the monophenolase and diphenolase as substrates in comparison to kojic acid as standard compound 19.97 µM and 33.47 µM. Moreover, the enzyme kinetics of compound 8 were determined to be of the mixed inhibition type and inhibition constant (Ki) values of 0.012 µM and 0.165 µM using the Lineweaver-Burk plot. Molecular docking results indicated that compound 8 can bind to the catalytic and allosteric sites 1 and 2 of tyrosinase to inhibit enzyme activity. The computational molecular dynamics analysis further revealed that compound 8 interacted with two residues in the tyrosinase active site pocket, such as ASN260 and MET280. In addition, compound 8 attenuated melanin synthesis and cellular tyrosinase activity, simulated by α-melanocyte-stimulating hormone and 1-methyl-3-isobutylxanthine. Compound 8 also decreased tyrosinase expressions in B16F10 cells. Based on in vitro and computational studies, we propose that compound 8 might be a worthy candidate for the development of an antipigmentation agent.
Collapse
Affiliation(s)
- Hee Jin Jung
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.J.J.); (S.G.N.); (I.Y.R.); (C.P.); (J.Y.L.)
| | - Sang Gyun Noh
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.J.J.); (S.G.N.); (I.Y.R.); (C.P.); (J.Y.L.)
| | - Il Young Ryu
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.J.J.); (S.G.N.); (I.Y.R.); (C.P.); (J.Y.L.)
| | - Chaeun Park
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.J.J.); (S.G.N.); (I.Y.R.); (C.P.); (J.Y.L.)
| | - Ji Young Lee
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.J.J.); (S.G.N.); (I.Y.R.); (C.P.); (J.Y.L.)
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, Korea;
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.J.J.); (S.G.N.); (I.Y.R.); (C.P.); (J.Y.L.)
- Correspondence: (H.R.M.); (H.Y.C.); Tel.: +82-51-510-2814 (H.Y.C.); Fax: +82-51-518-2821 (H.Y.C.)
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.J.J.); (S.G.N.); (I.Y.R.); (C.P.); (J.Y.L.)
- Correspondence: (H.R.M.); (H.Y.C.); Tel.: +82-51-510-2814 (H.Y.C.); Fax: +82-51-518-2821 (H.Y.C.)
| |
Collapse
|
16
|
Jeong GS, Kaipakasseri S, Lee SR, Marraiki N, Batiha GES, Dev S, Palakkathondi A, Kavully FS, Gambacorta N, Nicolotti O, Mathew B, Kim H. Selected 1,3-Benzodioxine-Containing Chalcones as Multipotent Oxidase and Acetylcholinesterase Inhibitors. ChemMedChem 2020; 15:2257-2263. [PMID: 32924264 DOI: 10.1002/cmdc.202000491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/18/2020] [Indexed: 01/01/2023]
Abstract
Chalcones are considered effective templates for the development of monoamine oxidase (MAO) and cholinesterase (ChE) inhibitors. The present work describes the syntheses of selected 1,3-benzodioxine-containing chalcones (CD3, CD8 and CD10), and their inhibitory activities against MAO-A, MAO-B, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE). Compound CD8 most potently inhibited MAO-B with an IC50 value of 0.026 μM, followed by CD10 and CD3 (1.54 and 1.68 μM, respectively). CD8 potently and non-selectively inhibited MAO-A (IC50 value of 0.023 μM). On the other hand, CD10 and CD8 inhibited AChE with IC50 values of 5.40 and 9.57 μM, respectively. Kinetics and reversibility experiments showed that all synthesized molecules were competitive and reversible inhibitors, and the Ki values of CD8 for MAO-A and MAO-B were 0.018 and 0.0019 μM, respectively. By in vitro and in silico analyses, all compounds were found to have high passive human gastrointestinal absorptions, blood-brain barrier permeabilities, and non-toxicities. Molecular docking simulations revealed that docking affinity of each compound for MAO-B was higher than that for MAO-A. The results indicate that CD8 is a potent non-selective MAO inhibitor, and CD10 is an effective selective MAO-B inhibitor, and both possess AChE inhibitory activity. Therefore, we suggest that CD8 and CD10 be considered potential dual-targeting inhibitors of MAO and AChE for the treatment of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Geum Seok Jeong
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Swafvan Kaipakasseri
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Sang Ryong Lee
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Al-Beheira, Egypt
| | - Sanal Dev
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Ashique Palakkathondi
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Fathima Sahla Kavully
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Nicola Gambacorta
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Health Science Campus, Kochi-682 041, Kerala, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| |
Collapse
|
17
|
Reeta, Baek SC, Lee JP, Rangarajan TM, Ayushee, Singh RP, Singh M, Mangiatordi GF, Nicolotti O, Kim H, Mathew B. Ethyl Acetohydroxamate Incorporated Chalcones: Unveiling a Novel Class of Chalcones for Multitarget Monoamine Oxidase-B Inhibitors Against Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:643-654. [PMID: 31550216 DOI: 10.2174/1871527318666190906101326] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chalcones are considered as the selective scaffold for the inhibition of MAO-B. OBJECTIVES A previously synthesized ethyl acetohydroxamate-chalcones (L1-L22) were studied for their inhibitory activities against human recombinant monoamine oxidase A and B (hMAO-A and hMAO-B, respectively) and acetylcholinesterase (AChE) as multi-target directed ligands for the treatment of Alzheimer's Disease (AD). METHODS Enzyme inhibition studies of MAO-A, MAO-B and AChE is carried out. Computational studies such as Molecular docking, Molecular Mechanics/Generalized Born Surface Area calculations, ADMET prediction, and protein target prediction are also performed. RESULTS Among the screened compounds, compound L3 has most potent hMAO-B inhibition with an IC50 value of 0.028 ± 0.0016 µM, and other compounds, L1, L2, L4, L8, L12, and L21 showed significant potent hMAO-B inhibition with IC50 values of 0.051 ± 0.0014, 0.086 ± 0.0035, 0.036 ± 0.0011, 0.096 ± 0.0061, 0.083 ± 0.0016, and 0.038 ± 0.0021 µM, respectively. On the other hand, among the tested compounds, compound L13 showed highest hMAO-A inhibition with an IC50 value of 0.51± 0.051 µM and L9 has a significant value of 1.85 ± 0.045 µM. However, the compounds L3 and L4 only showed high selectivities for hMAO-B with Selectivity Index (SI) values of 621.4 and 416.7, respectively. Among the substituents in ring A of ethyl acetohydroxamate-chalcones (L1-L9), F atom at p-position (L3) showed highest inhibitory effect against hMAO-B. This result supports the uniqness and bizarre behavior of fluorine. Moreover, chalcones L3, L4, L9, L11, and L12 showed potential AChE inhibitory effect with IC50 values of 0.67, 0.85, 0.39, 0.30, and 0.45 µM, respectively. Inhibitions of hMAO-B by L3 or L4 were recovered to the level of the reversible reference (lazabemide), and were competitive with Ki values of 0.0030 ± 0.0002 and 0.0046 ± 0.0005 µM, respectively. Inhibitions of AChE by L3 and L11 were of the competitive and mixed types with Ki values of 0.30 ± 0.044 and 0.14 ± 0.0054 µM, respectively. CONCLUSION The studies indicated that L3 and L4 are considered to be promising multitarget drug molecules with potent, selective, and reversible competitive inhibitors of hMAO-B and with highly potent AChE inhibitory effect.
Collapse
Affiliation(s)
- Reeta
- Centre for Fire, Explosive and Environment Saftey, DRDO, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Seung Cheol Baek
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| | - Jae Pil Lee
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Ayushee
- Department of Chemistry, University of Delhi, Delhi, India
| | - Rishi Pal Singh
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Manjula Singh
- Department of Chemistry, Shivaji College, University of Delhi, New Delhi, India
| | | | - Orazio Nicolotti
- Dipartimento di Farmacia- Scienze del Farmaco, Universitá degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad-678557, Kerala, India
| |
Collapse
|
18
|
Mathew B, Parambi DGT, Sivasankarapillai VS, Uddin MS, Suresh J, Mathew GE, Joy M, Marathakam A, Gupta SV. Perspective Design of Chalcones for the Management of CNS Disorders: A Mini-Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:432-445. [PMID: 31187716 DOI: 10.2174/1871527318666190610111246] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/09/2019] [Accepted: 04/24/2019] [Indexed: 11/22/2022]
Abstract
The development of chalcone-based compounds for CNS disorders has been explored by many research groups. Chalcones are being considered as a potent organic scaffold with widespread applications in the field of drug discovery and medicinal chemistry. The planar or semi-planar geometry of chalcones with various functionalities impinged on the terminal aromatic systems renders the molecule its bio-activity including anti-cancer, anti-malarial, anti-microbial, anti-fungal, antileishmanial, anti-viral, anti-diabetic, anti-hypertensive properties, etc. Moreover, cutting-edge research has been executed in the domain of Central Nervous System (CNS) based scheme, further, their identification and classifications also remain of high interest in the field of medicinal chemistry but the specific reviews are limited. Hence, the present review highlights the significance of chalcones toward their CNS activities (up to 2019), which include anti-depressant activity, anxiolytic activity, activity with GABA receptors, acetylcholinesterase (AChE) and butyryl cholinesterase (BChE) inhibitions, activity as adenosine receptor antagonists anti-Alzheimer's agents, β-amyloid plaques imaging agents, monoamine oxidase inhibition. To our knowledge, this is the first review exclusively for CNS activity profile of chalcones.
Collapse
Affiliation(s)
- Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad 678557, Kerala, India
| | | | | | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Jerad Suresh
- Department of Pharmaceutical Chemistry, College of Pharmacy, Madras Medical College, Chennai 600004, India
| | | | - Monu Joy
- School of Pure & Applied Physics, M.G. University, Kottayam 686560, India
| | - Akash Marathakam
- Department of Pharmaceutical Chemistry, National College of Pharmacy, Calicut 673602, Kerala, India
| | - Sheeba Varghese Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| |
Collapse
|
19
|
Design and synthesis of novel benzyloxy-tethered-chromone-carboxamide derivatives as potent and selective human monoamine oxidase-b inhibitors. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01332-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Chalcones: Unearthing their therapeutic possibility as monoamine oxidase B inhibitors. Eur J Med Chem 2020; 205:112650. [PMID: 32920430 DOI: 10.1016/j.ejmech.2020.112650] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
In the last years the continuous efforts in the development of novel and effective inhibitors of human monoamine oxidases (hMAOs) promoted the discovery of new agents able to effectively and selectively bound one of the two isoforms (hMAO-A and hMAO-B). However, the parent chalcone scaffold still covers an important role in hMAOs inhibition. In the present work, we focused our attention on the researches performed in the last five years, involving chalcones or compounds that can be correlated to them. We classified the chalcones into different groups depending on their structural characteristics or common molecular properties. In this regard, we also considered chalcones based on heterocycles and compounds endowed with scaffolds containing a masked chalcone motif. When structural attributes could not be used, we took advantage of enzymatic activity to arrange compounds in a group. We followed this approach for the multitarget agents. Finally, we also analysed the naturally occurring chalcones. All the sections were discussed exhaustively and the structure-activity relationship (SAR) analyses were sustained by means of detailed images describing the effects related to the substituents or structural changes.
Collapse
|
21
|
Maliyakkal N, Eom BH, Heo JH, Abdullah Almoyad MA, Thomas Parambi DG, Gambacorta N, Nicolotti O, Beeran AA, Kim H, Mathew B. A New Potent and Selective Monoamine Oxidase-B Inhibitor with Extended Conjugation in a Chalcone Framework: 1-[4-(Morpholin-4-yl)phenyl]-5-phenylpenta-2,4-dien-1-one. ChemMedChem 2020; 15:1629-1633. [PMID: 32583952 DOI: 10.1002/cmdc.202000305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Indexed: 01/18/2023]
Abstract
The general blueprint for the design of monoamine oxidase-B (MAO-B) inhibitors has been based on two phenyl or heteronuclei linked via a spacer of appropriate length. In this study, 1-[4-(morpholin-4-yl)phenyl]-5-phenylpenta-2,4-dien-1-one (MO10) was prepared by the condensation of 4'-morpholinoacetophenone and cinnamaldehyde in basic alcoholic medium. MO10 was assessed for inhibitory activity against two human MAO isoforms, MAO-A and MAO-B. Interestingly, MO10 showed a remarkable inhibition against MAO-B with an IC50 value of 0.044 μM along with a selectivity index of 366.13. The IC50 value was better than that of lazabemide (IC50 value of 0.063 μM), which was used as a reference. Kinetics studies revealed that MO10 acted as a competitive inhibitor of MAO-B, with a Ki value of 0.0080 μM. The observation of recovery of MAO-B inhibition, compared to reference levels showed MO10 to be a reversible inhibitor. MTT assays showed that MO10 was nontoxic to normal VERO cells with an IC50 value of 195.44 μg/mL. SwissADME predicted that MO10 provided advantageous pharmacokinetics profiles for developing agents acting on the central nervous system, that is, high passive human gastrointestinal absorption and blood-brain barrier permeability. Molecular docking simulations showed that MO10 properly entered the aromatic cage formed by Y435, Y398, and FAD of the active site of MAO-B. On the basis of these results, MO10 can be considered a promising starting compound in development of agents for the treatment of various neurodegenerative disorders.
Collapse
Affiliation(s)
- Naseer Maliyakkal
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha, Mushait, PO Box. 4536, ZIP., 61412, Saudi Arabia
| | - Bo Hyun Eom
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, South Korea
| | - Jeong Hyun Heo
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, South Korea
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushyt, King Khalid University, Abha, Mushait, PO Box. 4536, ZIP., 61412, Saudi Arabia
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014, Saudi Arabia
| | - Nicola Gambacorta
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Asmy Appadath Beeran
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Hoon Kim
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, South Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, 678557, Kerala, India
| |
Collapse
|
22
|
Mathew GE, Oh JM, Mohan K, Tengli A, Mathew B, Kim H. Development of methylthiosemicarbazones as new reversible monoamine oxidase-B inhibitors for the treatment of Parkinson's disease. J Biomol Struct Dyn 2020; 39:4786-4794. [PMID: 32588753 DOI: 10.1080/07391102.2020.1782266] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Selective monoamine oxidase-B (MAO-B) inhibition is an attractive subject for the treatment of Parkinson's disease (PD). In the current study, we synthesized some selected derivatives of methylthiosemicarbazones and investigated their MAOs and acetylcholinesterase (AChE) inhibitory activities. Among the series synthesized, compounds SM5, SM4, and SM9 most inhibited MAO-B with IC50 values of 5.48, 7.06, and 8.03 µM, respectively. All compounds tested weakly inhibited MAO-A at 10 µM with the residual activities of >50%. Compound SM5 had the highest selectivity index (SI) value for MAO-B (>7.30), followed by SM4 (>5.67). Kinetic experiments revealed that SM5 competitively inhibited MAO-B, with a mean Ki value of 2.39 ± 0.15 µM. Reversibility experiments showed that SM5 reversibly inhibited MAO-B, and 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assays revealed that SM5 was not toxic to Vero cells (IC50 = 198.96 µg/mL). The SM5/MAO-B interaction was ascertained by molecular docking and dynamics studies. The study shows that SM5 competitively inhibits MAO-B in a reversible, moderate selective manner, and that it is non-toxic to Vero cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Githa Elizabeth Mathew
- Department of Pharmacology, Grace College of Pharmacy, Palakkad, Kerala, India.,Department of Pharmaceutical Chemistry, Vinayaka Mission's College of Pharmacy, Vinayaka Mission's Research Foundation (Deemed to be a University), Tamilnadu, Salem, India
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Kumar Mohan
- Department of Pharmaceutical Chemistry, Vinayaka Mission's College of Pharmacy, Vinayaka Mission's Research Foundation (Deemed to be a University), Tamilnadu, Salem, India
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry Research Lab, Ahalia School of Pharmacy, Palakkad, Kerala, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
23
|
Novel Class of Chalcone Oxime Ethers as Potent Monoamine Oxidase-B and Acetylcholinesterase Inhibitors. Molecules 2020; 25:molecules25102356. [PMID: 32443652 PMCID: PMC7288026 DOI: 10.3390/molecules25102356] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Previously synthesized novel chalcone oxime ethers (COEs) were evaluated for inhibitory activities against monoamine oxidases (MAOs) and acetylcholinesterase (AChE). Twenty-two of the 24 COEs synthesized, except COE-17 and COE-24, had potent and/or significant selective inhibitory effects on MAO-B. COE-6 potently inhibited MAO-B with an IC50 value of 0.018 µM, which was 105, 2.3, and 1.1 times more potent than clorgyline, lazabemide, and pargyline (reference drugs), respectively. COE-7, and COE-22 were also active against MAO-B, both had an IC50 value of 0.028 µM, which was 67 and 1.5 times lower than those of clorgyline and lazabemide, respectively. Most of the COEs exhibited weak inhibitory effects on MAO-A and AChE. COE-13 most potently inhibited MAO-A (IC50 = 0.88 µM) and also significantly inhibited MAO-B (IC50 = 0.13 µM), and it could be considered as a potential nonselective MAO inhibitor. COE-19 and COE-22 inhibited AChE with IC50 values of 5.35 and 4.39 µM, respectively. The selectivity index (SI) of COE-22 for MAO-B was higher than that of COE-6 (SI = 778.6 vs. 222.2), but the IC50 value (0.028 µM) was slightly lower than that of COE-6 (0.018 µM). In reversibility experiments, inhibitions of MAO-B by COE-6 and COE-22 were recovered to the levels of reference reversible inhibitors and both competitively inhibited MAO-B, with Ki values of 0.0075 and 0.010 µM, respectively. Our results show that COE-6 and COE-22 are potent, selective MAO-B inhibitors, and COE-22 is a candidate of dual-targeting molecule for MAO-B and AChE.
Collapse
|
24
|
Parambi DGT. Treatment of Parkinson's Disease by MAO-B Inhibitors, New Therapies and Future Challenges - A Mini-Review. Comb Chem High Throughput Screen 2020; 23:847-861. [PMID: 32238135 DOI: 10.2174/1386207323666200402090557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/30/2019] [Accepted: 01/23/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND One of the most prevalent neurodegenerative diseases with increasing age is Parkinson's disease (PD). Its pathogenesis is unclear and mainly confined to glutamate toxicity and oxidative stress. The dyskinesia and motor fluctuations and neuroprotective potential are the major concerns which are still unmet in PD therapy. OBJECTIVE This article is a capsulization of the role of MAO-B in the treatment of PD, pharmacological properties, safety and efficiency, clinical evidence through random trials, future therapies and challenges. CONCLUSION MAO-B inhibitors are well tolerated for the treatment of PD because of their pharmacokinetic properties and neuroprotective action. Rasagiline and selegiline were recommended molecules for early PD and proven safe and provide a modest to significant rise in motor function, delay the use of levodopa and used in early PD. Moreover, safinamide is antiglutamatergic in action. When added to Levodopa, these molecules significantly reduce the offtime with a considerable improvement of non-motor symptoms. This review also discusses the new approaches in therapy like the use of biomarkers, neurorestorative growth factors, gene therapy, neuroimaging, neural transplantation, and nanotechnology. Clinical evidence illustrated that MAOB inhibitors are recommended as monotherapy and added on therapy to levodopa. A large study and further evidence are required in the field of future therapies to unwind the complexity of the disease.
Collapse
Affiliation(s)
- Della G T Parambi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jouf University, Sakaka, Jouf, Saudi Arabia
| |
Collapse
|
25
|
Kavully FS, Oh JM, Dev S, Kaipakasseri S, Palakkathondi A, Vengamthodi A, Abdul Azeez RF, Tondo AR, Nicolotti O, Kim H, Bijo Mathew. Design of enamides as new selective monoamine oxidase-B inhibitors. J Pharm Pharmacol 2020; 72:916-926. [PMID: 32246471 DOI: 10.1111/jphp.13264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/08/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To develop of new class of selective and reversible MAO-B inhibitors from enamides. METHODS Syntheses of the titled derivatives (AD1-AD11) were achieved by reacting cinnamoyl chloride and various primary and secondary amines in basic medium. All eleven compounds were investigated for in vitro inhibitory activities against recombinant human MAO-A and MAO-B. The reversibilities of lead compound inhibitions were analysed by dialysis. MTT assays of lead compounds were performed using normal VERO cell lines. KEY FINDINGS Compounds AD3 and AD9 exhibited the greatest inhibitory activity against MAO-B with IC50 values of 0.11 and 0.10 µm, respectively, and were followed by AD2 and AD1 (0.51 and 0.71 µm, respectively). Most of the compounds weakly inhibited MAO-A, with the exceptions AD9 and AD7, which had IC50 values of 4.21 and 5.95 µm, respectively. AD3 had the highest selectivity index (SI) value for MAO-B (>363.6) and was followed by AD9 (SI 42.1). AD3 and AD9 were found to be competitive inhibitors of MAO-B with Ki values of 0.044 ± 0.0036 and 0.039 ± 0.0047 µm, respectively. Reversibility experiments showed AD3 and AD9 were reversible inhibitors of MAO-B; dialysis restored the activity of MAO-B to the reference level. MTT assays revealed AD3 and AD9 were non-toxic to normal VERO cell lines with IC50 values of 153.96 and 194.04 µg/ml, respectively. Computational studies provided hypothetical binding modes for AD3 and AD9 in the binding cavities of MAO-A and MAO-B. CONCLUSIONS These results encourage further studies on the enamide scaffold as potential drug candidates for the treatment of Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Fathima Sahla Kavully
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Sanal Dev
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Swafvan Kaipakasseri
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Ashique Palakkathondi
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | - Ajeesh Vengamthodi
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Perinthalmanna, India
| | | | - Anna Rita Tondo
- Instituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| |
Collapse
|
26
|
Shi CC, Chen TR, Zhang QH, Wei LH, Huang C, Zhu YD, Liu HB, Bai YK, Wang FJ, Guo WZ, Zhang LR, Ge GB. Inhibition of human thrombin by the constituents of licorice: inhibition kinetics and mechanistic insights through in vitro and in silico studies. RSC Adv 2020; 10:3626-3635. [PMID: 35492646 PMCID: PMC9048847 DOI: 10.1039/c9ra09203j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/13/2020] [Indexed: 12/30/2022] Open
Abstract
Thrombin inhibition therapy is a practical strategy to reduce thrombotic and cardiovascular risks via blocking the formation of blood clots. This study aimed to identify naturally occurring thrombin inhibitors from licorice (one of the most popular edible herbs), as well as to investigate their inhibitory mechanisms. Among all tested licorice constituents, licochalcone A was found as the most efficacious agent against human thrombin (IC50 = 7.96 μM). Inhibition kinetic analyses demonstrated that licochalcone A was a mixed inhibitor against thrombin-mediated Z-Gly-Gly-Arg-AMC acetate hydrolysis, with a Ki value of 12.23 μM. Furthermore, mass spectrometry-based chemoproteomic assays and molecular docking simulations revealed that licochalcone A could bind to human thrombin at both exosite I and the catalytic site. In summary, our findings demonstrated that the chalcones isolated from licorice were a new class of direct thrombin inhibitors, also suggesting that licochalcone A was a promising lead compound for developing novel anti-thrombotic agents. Licochalcone A, a bioactive compound from licorice, displayed strong inhibition of thrombin.![]()
Collapse
|
27
|
Parambi DGT, Oh JM, Baek SC, Lee JP, Tondo AR, Nicolotti O, Kim H, Mathew B. Design, synthesis and biological evaluation of oxygenated chalcones as potent and selective MAO-B inhibitors. Bioorg Chem 2019; 93:103335. [PMID: 31606547 DOI: 10.1016/j.bioorg.2019.103335] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 01/10/2023]
Abstract
The present study documents the synthesis of oxygenated chalcone (O1-O26) derivatives and their abilities to inhibit monoamine oxidases. All 26 derivatives examined showed potent inhibitory activity against MAO-B. Compound O23 showed the greatest inhibitory activity against MAO-B with an IC50 value of 0.0021 µM, followed by compounds O10 and O17 (IC50 = 0.0030 and 0.0034 µM, respectively). In addition, most of the derivatives potently inhibited MAO-A and O6 was the most potent inhibitor with an IC50 value of 0.029 µM, followed by O3, O4, O9, and O2 (IC50 = 0.035, 0.053, 0.072, and 0.082 µM, respectively). O23 had a high selectivity index (SI) value for MAO-B of 138.1, and O20 (IC50 value for MAO-B = 0.010 µM) had an extremely high SI of >4000. In dialysis experiments, inhibitions of MAO-A and MAO-B by O6 and O23, respectively, were recovered to their respective reversible reference levels, demonstrating both are reversible inhibitors. Kinetic studies revealed that O6 and O23 competitively inhibited MAO-A and MAO-B, respectively, with respective Ki values of 0.016 ± 0.0007 and 0.00050 ± 0.00003 µM. Lead compound are also non-toxic at 200 µg/mL in normal rat spleen cells. Molecular docking simulations and subsequent Molecular Mechanics/Generalized Born Surface Area calculations provided a rationale that explained experimental data.
Collapse
Affiliation(s)
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seung Cheol Baek
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jae Pil Lee
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Anna Rita Tondo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via la Masa 19, 20156 Milano, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona, 4, I-70125 Bari, Italy
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad 678557, Kerala, India.
| |
Collapse
|
28
|
Mathew B, Parambi DGT, Mathew GE, Uddin MS, Inasu ST, Kim H, Marathakam A, Unnikrishnan MK, Carradori S. Emerging therapeutic potentials of dual-acting MAO and AChE inhibitors in Alzheimer's and Parkinson's diseases. Arch Pharm (Weinheim) 2019; 352:e1900177. [PMID: 31478569 DOI: 10.1002/ardp.201900177] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 01/07/2023]
Abstract
No drug has been approved to prevent neuronal cell loss in patients suffering from Parkinson's disease (PD) or Alzheimer's disease (AD); despite increased comprehension of the underlying molecular causes, therapies target cognitive functional improvement and motor fluctuation control. Drug design strategies that adopt the "one protein, one target" philosophy fail to address the multifactorial aetiologies of neurodegenerative disorders such as AD and PD optimally. On the contrary, restoring neurotransmitter levels by combined combinatorial inhibition of cholinesterases, monoamine oxidases, and adenosine A2A A receptors, in conjunction with strategies to counter oxidative stress and beta-amyloid plaque accumulation, would constitute a therapeutically robust, multitarget approach. This extensive review delineates the therapeutic advantages of combining dual-acting molecules that inhibit monoamine oxidases and cholinesterases and/or adenosine A2A A receptors, and describes the structure-activity relationships of compound classes that include, but are not limited to, alkaloids, coumarins, chalcones, donepezil-propargylamine conjugates, homoisoflavonoids, resveratrol analogs, hydrazones, and pyrazolines. In the wake of recent advances in network biology, in silico approaches, and omics, this review emphasizes the need to consider conceptually informed research strategies for drug discovery, in the context of the mounting burden posed by chronic neurodegenerative diseases with complex aetiologies and pathophysiologies involving multiple signalling pathways and numerous drug targets.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry Research Lab, Division of Drug Design and Medicinal Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Della G T Parambi
- Department of Pharmaceutical Chemistry, Jouf University, Sakaka, Saudi Arabia
| | - Githa E Mathew
- Department of Pharmacology, Grace College of Pharmacy, Palakkad, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Sini T Inasu
- Department of Pharmaceutical Chemistry Research Lab, Division of Drug Design and Medicinal Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Hoon Kim
- Department of Pharmacy and Research, Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Akash Marathakam
- Department of Pharmaceutical Chemistry, National College of Pharmacy, Calicut, India
| | | | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
29
|
Di Paolo ML, Christodoulou MS, Calogero AM, Pinzi L, Rastelli G, Passarella D, Cappelletti G, Dalla Via L. 2-Phenyloxazole-4-carboxamide as a Scaffold for Selective Inhibition of Human Monoamine Oxidase B. ChemMedChem 2019; 14:1641-1652. [PMID: 31322823 DOI: 10.1002/cmdc.201900261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/15/2019] [Indexed: 12/21/2022]
Abstract
A series of 2-phenyloxazoles bearing an amide group at position 4 were designed and synthesized for evaluation as potential inhibitors of human recombinant monoamine oxidases (hrMAOs). Results of kinetics experiments demonstrated that all compounds behave as competitive MAO inhibitors, with good selectivity toward the MAO-B isoform. The most potent and selective derivatives are characterized by inhibition constant (Ki ) values in the sub-micromolar range and a good selectivity index (Ki MAO-A /Ki MAO-B >50). Some derivatives were also found to be able to inhibit MAO activity in nerve growth factor (NGF)-differentiated PC12 cells, taken as a model of neuronal cells. In particular, 2-(2-hydroxyphenyl)-N-phenyloxazole-4-carboxamide (compound 4 a) may be a promising new scaffold, exerting the highest selectivity and inhibitory effect toward MAOs in NGF-differentiated PC12 cell lysates, without compromising cell viability. Molecular docking analysis allowed a rationalization of the experimentally observed binding affinity and selectivity.
Collapse
Affiliation(s)
- Maria L Di Paolo
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via G. Colombo 3, 35131, Padova, Italy
| | - Michael S Christodoulou
- DISFARM, Sezione di Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, via Venezian 21, 20133, Milano, Italy
| | - Alessandra M Calogero
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133, Milano, Italy
| | - Luca Pinzi
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Giulio Rastelli
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, via Campi 103, 41125, Modena, Italy
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133, Milano, Italy
| | - Graziella Cappelletti
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133, Milano, Italy
| | - Lisa Dalla Via
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via F. Marzolo 5, 35131, Padova, Italy
| |
Collapse
|
30
|
Design, Synthesis and Docking Calculations of Prenylated Chalcones as Selective Monoamine Oxidase B Inhibitors with Antioxidant Activity. ChemistrySelect 2019. [DOI: 10.1002/slct.201901282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Guglielmi P, Carradori S, Ammazzalorso A, Secci D. Novel approaches to the discovery of selective human monoamine oxidase-B inhibitors: is there room for improvement? Expert Opin Drug Discov 2019; 14:995-1035. [PMID: 31268358 DOI: 10.1080/17460441.2019.1637415] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Selective monoamine oxidase-B (MAO-B) inhibitors are currently used as coadjuvants for the treatment of early motor symptoms in Parkinson's disease. They can, based on their chemical structure and mechanism of inhibition, be categorized into reversible and irreversible agents. Areas covered: This review provides a comprehensive update on the development state of selective MAO-B inhibitors describing the results, structures, structure-activity relationships (SARs) and Medicinal chemistry strategies as well as the related shortcomings over the past five years. Expert opinion: Researchers have explored and implemented new and old chemical scaffolds achieving high inhibitory potencies and isoform selectivity. Most of them were characterized and proposed as multitarget agents able to act at different levels (including AChE inhibition, H3R or A2AR antagonism, antioxidant and chelating properties, Aβ1-42 aggregation reduction) in the network of aetiologies of neurodegenerative disorders. These results can also be used to avoid 'cheese-reaction' effects and the occurrence of serotonergic syndrome in patients.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti , Italy
| | | | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| |
Collapse
|
32
|
Oh JM, Kang MG, Hong A, Park JE, Kim SH, Lee JP, Baek SC, Park D, Nam SJ, Cho ML, Kim H. Potent and selective inhibition of human monoamine oxidase-B by 4-dimethylaminochalcone and selected chalcone derivatives. Int J Biol Macromol 2019; 137:426-432. [PMID: 31271801 DOI: 10.1016/j.ijbiomac.2019.06.167] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/23/2019] [Accepted: 06/23/2019] [Indexed: 12/14/2022]
Abstract
Six synthetic (1-6) and six natural (7-12) chalcones were tested for human monoamine oxidases (hMAOs) and acetylcholinesterase (AChE) inhibitory activities. Compounds 4-dimethylaminochalcone (2), 4'-chloro-4-dimethylaminochalcone (5), and 2,4'-dichloro-4-dimethylaminochalcone (1) potently inhibited hMAO-B with IC50 values of 0.029, 0.061, and 0.075 μM, respectively. 4-Nitrochalcone (4) and 4-chlorochalcone (3) also potently inhibited hMAO-B with IC50 values of 0.066 and 0.082 μM, respectively (2.3- and 2.6-fold less than compound 2). Compound 2 had a high selectivity index (113.1) for hMAO-B over hMAO-A (IC50 = 3.28 μM). Compounds 1 and 2,2'-dihydroxy-4',6'-dimethoxychalcone (12) potently inhibited hMAO-A with IC50 values of 0.18 and 0.39 μM, respectively. In addition, compounds 4 and 2 also effectively inhibited AChE with IC50 values of 1.25 and 6.07 μM, respectively, and thus, exhibited dual-targeting. Compound 2 reversibly and competitively inhibited hMAO-B with a Ki value of 0.0066 μM. Docking simulations showed binding affinities of compounds 1 to 5 for hMAO-B were higher than those for hMAO-A or AChE and suggested these five chalcones form hydrogen bonds with MAO-B at Cys172 but that they do not form hydrogen bonds with hMAO-A or AChE. These findings suggest compound 2 be considered a promising and dual-targeting lead compound for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Myung-Gyun Kang
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Ahreum Hong
- Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji-Eun Park
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea
| | - Soo Hyun Kim
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea
| | - Jae Pil Lee
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seung Cheol Baek
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Sang-Jip Nam
- Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea; Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Myoung-Lae Cho
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
33
|
Lakshminarayanan B, Baek SC, Lee JP, Kannappan N, Mangiatordi GF, Nicolotti O, Subburaju T, Kim H, Mathew B. Ethoxylated Head of Chalcones as a New Class of Multi‐Targeted MAO Inhibitors. ChemistrySelect 2019. [DOI: 10.1002/slct.201901093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Balasubramanian Lakshminarayanan
- Division of Drug Design and Medicinal Chemistry Research LabDepartment of Pharmaceutical ChemistryAhalia School of Pharmacy Palakkad- 678557, Kerala India
- Department of PharmacyAnnamalai University Chidambaram- 608002, Tamilnadu India
| | - Seung Cheol Baek
- Department of PharmacyResearch Institute of Life Pharmaceutical SciencesSunchon National University Suncheon 57922 Republic of Korea
| | - Jae Pil Lee
- Department of PharmacyResearch Institute of Life Pharmaceutical SciencesSunchon National University Suncheon 57922 Republic of Korea
| | - Nagappan Kannappan
- Department of PharmacyAnnamalai University Chidambaram- 608002, Tamilnadu India
| | | | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del FarmacoUniversita degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4 I-70125 Bari Italy
| | - Thillainayagam Subburaju
- Division of Drug Design and Medicinal Chemistry Research LabDepartment of Pharmaceutical ChemistryAhalia School of Pharmacy Palakkad- 678557, Kerala India
| | - Hoon Kim
- Department of PharmacyResearch Institute of Life Pharmaceutical SciencesSunchon National University Suncheon 57922 Republic of Korea
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research LabDepartment of Pharmaceutical ChemistryAhalia School of Pharmacy Palakkad- 678557, Kerala India
| |
Collapse
|
34
|
Mathew B, Baek SC, Thomas Parambi DG, Lee JP, Mathew GE, Jayanthi S, Vinod D, Rapheal C, Devikrishna V, Kondarath SS, Uddin MS, Kim H. Potent and highly selective dual-targeting monoamine oxidase-B inhibitors: Fluorinated chalcones of morpholine versus imidazole. Arch Pharm (Weinheim) 2019; 352:e1800309. [PMID: 30663112 DOI: 10.1002/ardp.201800309] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 11/07/2022]
Abstract
Two series of fluorinated chalcones containing morpholine and imidazole-based compounds (f1-f8) were synthesized and evaluated for recombinant human monoamine oxidase (MAO)-A and -B as well as acetylcholinesterase inhibitory activities. Our results indicate that morpholine containing chalcones are highly selective MAO-B inhibitors having reversibility properties. All the imidazole-based fluorinated chalcones showed weak MAO inhibitions in both isoforms. Among the tested compounds, (2E)-3-(3-fluorophenyl)-1-[4-(morpholin-4-yl)phenyl]prop-2-en-1-one (f2) showed potent inhibitory activity for recombinant human MAO-B (IC50 = 0.087 μM) with a high selectivity index (SI) of 517.2. In the recovery experiments using dialysis, the residual activity of MAO-B inhibited by f2 was close to that with the reversible reference inhibitor. Inhibition assays revealed that the Ki values of f1 and f2 for MAO-B were 0.027 and 0.020 μM, respectively, with competitive patterns. All the morpholine-based compounds (f1-f4) showed moderate inhibition toward acetylcholinesterase with IC50 values ranging between 24 and 54 μM. All morpholine-containing compounds exhibit good blood-brain barrier permeation in the PAMPA method. The rational approach regarding the highly selective MAO-B inhibitor f2 was further ascertained by induced fit docking and molecular dynamics simulation studies.
Collapse
Affiliation(s)
- Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Seung C Baek
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | | | - Jae P Lee
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Githa E Mathew
- Department of Pharmacology, Grace College of Pharmacy, Palakkad, India
| | - Sivaraman Jayanthi
- Computational Drug Design Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Devaraji Vinod
- Computational Drug Design Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Clariya Rapheal
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Vinod Devikrishna
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Shahin Shad Kondarath
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Hoon Kim
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
35
|
Mathew B. Unraveling the Structural Requirements of Chalcone Chemistry Towards Monoamine Oxidase Inhibition. Cent Nerv Syst Agents Med Chem 2019; 19:6-7. [PMID: 30706795 DOI: 10.2174/1871524919666190131160122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad-678557, Kerala, India
| |
Collapse
|
36
|
Mathew B, Baek SC, Grace Thomas Parambi D, Pil Lee J, Joy M, Annie Rilda PR, Randev RV, Nithyamol P, Vijayan V, Inasu ST, Mathew GE, Lohidakshan KK, Kumar Krishnan G, Kim H. Selected aryl thiosemicarbazones as a new class of multi-targeted monoamine oxidase inhibitors. MEDCHEMCOMM 2018; 9:1871-1881. [PMID: 30568755 PMCID: PMC6254048 DOI: 10.1039/c8md00399h] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/23/2018] [Indexed: 12/26/2022]
Abstract
A series of 13 phenyl substituted thiosemicarbazones (SB1-SB13) were synthesized and evaluated for their inhibitory potential towards human recombinant monoamine oxidase A and B (MAO-A and MAO-B, respectively) and acetylcholinesterase. The solid state structure of SB4 was ascertained by the single X-ray diffraction technique. Compounds SB5 and SB11 were potent for MAO-A (IC50 1.82 ± 0.14) and MAO-B (IC50 0.27 ± 0.015 μM), respectively. Furthermore, SB11 showed a high selectivity index (SI > 37.0) for MAO-B. The effects of fluorine orientation revealed that SB11 (m-fluorine) showed 28.2 times higher inhibitory activity than SB12 (o-fluorine) against MAO-B. Furthermore, inhibitions by SB5 and SB11 against MAO-A and MAO-B, respectively, were recovered to near reference levels in reversibility experiments. Both SB5 and SB11 showed competitive inhibition modes, with K i values of 0.97 ± 0.042 and 0.12 ± 0.006 μM, respectively. These results indicate that SB5 and SB11 are selective, reversible and competitive inhibitors of MAO-A and MAO-B, respectively. Compounds SB5, SB7 and SB11 showed moderate inhibition against acetylcholinesterase with IC50 values of 35.35 ± 0.47, 15.61 ± 0.057 and 26.61 ± 0.338 μM, respectively. Blood-brain barrier (BBB) permeation was studied using the parallel artificial membrane permeation assay (PAMPA) method. Molecular docking studies were carried out using AutoDock 4.2.
Collapse
Affiliation(s)
- Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab , Department of Pharmaceutical Chemistry , Ahalia School of Pharmacy , Palakkad-678557 , Kerala , India .
| | - Seung Cheol Baek
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences , Sunchon National University , Suncheon-57922 , Republic of Korea .
| | | | - Jae Pil Lee
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences , Sunchon National University , Suncheon-57922 , Republic of Korea .
| | - Monu Joy
- School of Pure & Applied Physics , M.G. University , Kottayam , Kerala , India
| | - P R Annie Rilda
- Division of Drug Design and Medicinal Chemistry Research Lab , Department of Pharmaceutical Chemistry , Ahalia School of Pharmacy , Palakkad-678557 , Kerala , India .
| | - Rugma V Randev
- Division of Drug Design and Medicinal Chemistry Research Lab , Department of Pharmaceutical Chemistry , Ahalia School of Pharmacy , Palakkad-678557 , Kerala , India .
| | - P Nithyamol
- Division of Drug Design and Medicinal Chemistry Research Lab , Department of Pharmaceutical Chemistry , Ahalia School of Pharmacy , Palakkad-678557 , Kerala , India .
| | - Vijitha Vijayan
- Division of Drug Design and Medicinal Chemistry Research Lab , Department of Pharmaceutical Chemistry , Ahalia School of Pharmacy , Palakkad-678557 , Kerala , India .
| | - Sini T Inasu
- Division of Drug Design and Medicinal Chemistry Research Lab , Department of Pharmaceutical Chemistry , Ahalia School of Pharmacy , Palakkad-678557 , Kerala , India .
| | | | | | - Girish Kumar Krishnan
- Department of Pharmaceutical Chemistry , College of Pharmaceutical Sciences , Government Medical College Trivandrum , India
| | - Hoon Kim
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences , Sunchon National University , Suncheon-57922 , Republic of Korea .
| |
Collapse
|
37
|
Imidazole bearing chalcones as a new class of monoamine oxidase inhibitors. Biomed Pharmacother 2018; 106:8-13. [PMID: 29940538 DOI: 10.1016/j.biopha.2018.06.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/01/2018] [Accepted: 06/13/2018] [Indexed: 01/08/2023] Open
Abstract
In the present study, series of eleven (2E)-1-[4-(1H-imidazol-1-yl)substituted phenyl]-3-phenylprop-2-en-1-one (IM1-IM11) derivatives were synthesized and evaluated as inhibitors of recombinant human monoamine oxidase (MAO) A and B. The results indicate that (2E)-3-[4-(dimethylamino) phenyl]-1-[4-(1H-imidazol-1-yl) phenyl] prop-2-en-1-one (IM5) is a nonselective and reversible competitive inhibitor of MAO-A and MAO-B with IC50 values of 0.30 ± 0.010 and 0.40 ± 0.017 μM, respectively ; those of (2E)-1-[4-(1H-imidazol-1-yl) phenyl]-3-(4-methylphenyl) prop-2-en-1-one (IM4) were 1.06 ± 0.090 and 0.32 ± 0.021 μM, respectively. Kinetic studies document that both IM5 and IM4 are competitive inhibitors of MAO-A and MAO-B with Ki value of 0.11 ± 0.0085 and 0.085 ± 0.0064 μM, respectively. Molecular docking studies of lead compounds further explained the binding modes in the inhibitor binding cavity of both MAO-A and MAO-B.
Collapse
|
38
|
Design, synthesis,in vitroandin silicoevaluation of new pyrrole derivatives as monoamine oxidase inhibitors. Arch Pharm (Weinheim) 2018; 351:e1800082. [DOI: 10.1002/ardp.201800082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/25/2018] [Accepted: 05/02/2018] [Indexed: 11/07/2022]
|
39
|
Szökő É, Tábi T, Riederer P, Vécsei L, Magyar K. Pharmacological aspects of the neuroprotective effects of irreversible MAO-B inhibitors, selegiline and rasagiline, in Parkinson's disease. J Neural Transm (Vienna) 2018; 125:1735-1749. [PMID: 29417334 DOI: 10.1007/s00702-018-1853-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/31/2018] [Indexed: 11/24/2022]
Abstract
The era of MAO-B inhibitors dates back more than 50 years. It began with Kálmán Magyar's outstanding discovery of the selective inhibitor, selegiline. This compound is still regarded as the gold standard of MAO-B inhibition, although newer drugs have also been introduced to the field. It was revealed early on that selective, even irreversible inhibition of MAO-B is free from the severe side effect of the non-selective MAO inhibitors, the potentiation of tyramine, resulting in the so-called 'cheese effect'. Since MAO-B is involved mainly in the degradation of dopamine, the inhibitors lack any antidepressant effect; however, they became first-line medications for the therapy of Parkinson's disease based on their dopamine-sparing activity. Extensive studies with selegiline indicated its complex pharmacological activity profile with MAO-B-independent mechanisms involved. Some of these beneficial effects, such as neuroprotective and antiapoptotic properties, were connected to its propargylamine structure. The second MAO-B inhibitor approved for the treatment of Parkinson's disease, rasagiline also possesses this structural element and shows similar pharmacological characteristics. The preclinical studies performed with selegiline and rasagiline are summarized in this review.
Collapse
Affiliation(s)
- Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Peter Riederer
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Magarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - László Vécsei
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary. .,MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, 6725, Hungary.
| | - Kálmán Magyar
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| |
Collapse
|