1
|
Ansari NK, Khan HS, Naeem A. Doxorubicin as a Drug Repurposing for Disruption of α-Chymotrypsinogen-A Aggregates. Protein J 2024; 43:842-857. [PMID: 39014260 DOI: 10.1007/s10930-024-10217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Protein conformation is affected by interaction of several small molecules resulting either stabilization or disruption depending on the nature of the molecules. In our earlier communication, Hg2+ was known to disrupt the native structure of α-Cgn A leading to aggregation (Ansari, N.K., Rais, A. & Naeem, A. Methotrexate for Drug Repurposing as an Anti-Aggregatory Agent to Mercuric Treated α-Chymotrypsinogen-A. Protein J (2024). https://doi.org/10.1007/s10930-024-10187-z ). Accumulation of β-rich aggregates in the living system is found to be linked with copious number of disorders. Here, we have investigated the effect of varying concentration of doxorubicin (DOX) i.e. 0-100 µM on the preformed aggregates of α-Cgn A upon incubation with 120 µM Hg2+. The decrease in the intrinsic fluorescence and enzyme activity with respect to increase in the Hg2+ concentration substantiate the formation of aggregates. The DOX showed the dose dependent decrease in the ThT fluorescence, turbidity and RLS measurements endorsing the dissolution of aggregates which were consistent with red shift in ANS, confirming the breakdown of aggregates. The α-Cgn A has 30% α-helical content which decreases to 3% in presence of Hg2+. DOX increased the α-helicity to 28% confirming its anti-aggregatory potential. The SEM validates the formation of aggregates with Hg2+ and their dissolution upon incubation with the DOX. Hemolysis assay checked the cytotoxicity of α-Cgn A aggregates. Docking revealed that the DOX interacted Lys203, Cys201, Cys136, Ser159, Leu10, Trp207, Val137 and Thr134 of α-Cgn A through hydrophobic interactions and Gly133, Thr135 and Lys202 forms hydrogen bonds.
Collapse
Affiliation(s)
- Neha Kausar Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India
| | - Hamza Sahib Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India.
| |
Collapse
|
2
|
Kalitnik A, Szefczyk M, Wojciechowska AW, Wojciechowski JW, Gąsior-Głogowska M, Olesiak-Bańska J, Kotulska M. Cytotoxic Staphylococcus aureus PSMα3 inhibits the aggregation of human insulin in vitro. Phys Chem Chem Phys 2024; 26:15587-15599. [PMID: 38757742 DOI: 10.1039/d4cp00669k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Phenol-soluble modulins (PSMs) are extracellular short amphipathic peptides secreted by the bacteria Staphylococcus aureus (S. aureus). They play an essential role in the bacterial lifecycle, biofilm formation, and stabilisation. From the PSM family, PSMα3 has been of special interest recently due to its cytotoxicity and highly stable α-helical conformation, which also remains in its amyloid fibrils. In particular, PSMα3 fibrils were shown to be composed of self-associating "sheets" of α-helices oriented perpendicular to the fibril axis, mimicking the architecture of canonical cross-β fibrils. Therefore, they were called cross-α-fibrils. PSMα3 was synthesised and verified for identity with wild-type sequences (S. aureus). Then, using several experimental techniques, we evaluated its propensity for in vitro aggregation. According to our findings, synthetic PSMα3 (which lacks the N-terminal formyl groups found in bacteria) does not form amyloid fibrils and maintains α-helical conformation in a soluble monomeric form for several days of incubation. We also evaluated the influence of PSMα3 on human insulin fibrillation in vitro, using a variety of experimental approaches in combination with computational molecular studies. First, it was shown that PSMα3 drastically inhibits the fibrillation of human insulin. The anti-fibrillation effect of PSMα3 was concentration-dependent and required a concentration ratio of PSMα3: insulin equal to or above 1 : 100. Molecular modelling revealed that PSMα3 most likely inhibits the production of insulin primary nuclei by competing for residues involved in its dimerization.
Collapse
Affiliation(s)
- Aleksandra Kalitnik
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Alicja W Wojciechowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Jakub W Wojciechowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Joanna Olesiak-Bańska
- Institute of Advanced Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Małgorzata Kotulska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
3
|
Alfano C, Fichou Y, Huber K, Weiss M, Spruijt E, Ebbinghaus S, De Luca G, Morando MA, Vetri V, Temussi PA, Pastore A. Molecular Crowding: The History and Development of a Scientific Paradigm. Chem Rev 2024; 124:3186-3219. [PMID: 38466779 PMCID: PMC10979406 DOI: 10.1021/acs.chemrev.3c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
It is now generally accepted that macromolecules do not act in isolation but "live" in a crowded environment, that is, an environment populated by numerous different molecules. The field of molecular crowding has its origins in the far 80s but became accepted only by the end of the 90s. In the present issue, we discuss various aspects that are influenced by crowding and need to consider its effects. This Review is meant as an introduction to the theme and an analysis of the evolution of the crowding concept through time from colloidal and polymer physics to a more biological perspective. We introduce themes that will be more thoroughly treated in other Reviews of the present issue. In our intentions, each Review may stand by itself, but the complete collection has the aspiration to provide different but complementary perspectives to propose a more holistic view of molecular crowding.
Collapse
Affiliation(s)
- Caterina Alfano
- Structural
Biology and Biophysics Unit, Fondazione
Ri.MED, 90100 Palermo, Italy
| | - Yann Fichou
- CNRS,
Bordeaux INP, CBMN UMR 5248, IECB, University
of Bordeaux, F-33600 Pessac, France
| | - Klaus Huber
- Department
of Chemistry, University of Paderborn, 33098 Paderborn, Germany
| | - Matthias Weiss
- Experimental
Physics I, Physics of Living Matter, University
of Bayreuth, 95440 Bayreuth, Germany
| | - Evan Spruijt
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Simon Ebbinghaus
- Lehrstuhl
für Biophysikalische Chemie and Research Center Chemical Sciences
and Sustainability, Research Alliance Ruhr, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Giuseppe De Luca
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Valeria Vetri
- Dipartimento
di Fisica e Chimica − Emilio Segrè, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Annalisa Pastore
- King’s
College London, Denmark
Hill Campus, SE5 9RT London, United Kingdom
| |
Collapse
|
4
|
Khan S, Naeem A. Bovine serum albumin prevents human hemoglobin aggregation and retains its chaperone-like activity. J Biomol Struct Dyn 2024; 42:346-361. [PMID: 36974939 DOI: 10.1080/07391102.2023.2192802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
This study investigates the ability of bovine serum albumin (BSA) to act as an extracellular chaperone (EC) on human hemoglobin (Hb) at a pH of 7.4. The best temperature for studying this behavior was determined by analyzing Hb's aggregation kinetics at multiple temperatures. 55 °C was chosen as the optimal temperature for forming Hb amyloids. BSA was then tested at various concentrations (20-100 μM) to assess its chaperone-like activity on Hb at 55 °C. At a concentration of 100 μM, BSA exhibits chaperone-like activity with a client protein:BSA ratio of 1:10. The high ratio implies that the chaperone activity of BSA is favored by the effects of macromolecular crowding. The results showed that BSA has the potential to inhibit Hb's dissociation into alpha and beta subunits and protein aggregation by inhibiting secondary nucleation. BSA also causes the depolymerization of fibrils over time. The results were validated using molecular docking and all-atom molecular dynamics simulations. MD analysis such as RMSD, RMSF, Rg, SASA, Hydrogen bond, PCA, Free energy landscape (FEL) revealed that the stability of hemoglobin is greater when it is bound to BSA compared to unbound state. The study suggests that BSA can potentially bind to Hb dimers and reduce excitonic interactions, which reduces Hb aggregation. These results are consistent with the aggregation kinetics experiments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sadaf Khan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Aabgeena Naeem
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
5
|
Siddiqui GA, Naeem A. Bioflavonoids ameliorate crowding induced hemoglobin aggregation: a spectroscopic and molecular docking approach. J Biomol Struct Dyn 2023; 41:10315-10325. [PMID: 36519442 DOI: 10.1080/07391102.2022.2154270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
The cellular environment is densely crowded, confining biomacromolecules including proteins to less available space. This macromolecular confinement may affect the physiological conformation of proteins in long-term processes like ageing. Changes in physiological protein structure can lead to protein conformational disorders including neurodegeneration. An intervention approach using food and plant derived bioflavonoids offered a way to find a treatment for these enervating pathological conditions as there is no remedy available. The bioflavonoids NAR (naringenin), 7HD (7 hydroxyflavanone) and CHR (chrysin) were tested for their ability to protect Hb (hemoglobin) against crowding-induced aggregation. Morphological and secondary structural transitions were studied using microscopic and circular dichroism experiments, respectively. The kinetic study was carried out using the relative thioflavin T assay. Molecular docking, AmylPred2, admetSAR and FRET were applied to understand the binding parameters of bioflavonoids with Hb and their drug likeliness. Isolated human lymphocytes were used as a cellular system to study the toxic effects of Hb aggregates. Redox perturbation and cytotoxicity were evaluated by DCFH-DA and MTT assays, respectively. This study suggests that bioflavonoids bind to Hb in the vicinity of aggregation prone amino acid sequences. Binding of the bioflavonoids stabilizes the Hb against crowding-induced structural alterations. Therefore, this study signifies the potential of bioflavonoids for future treatment of many proteopathies including neurodegeneration.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gufran Ahmed Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
6
|
Kusova AM, Rakipov IT, Zuev YF. Effects of Homogeneous and Heterogeneous Crowding on Translational Diffusion of Rigid Bovine Serum Albumin and Disordered Alfa-Casein. Int J Mol Sci 2023; 24:11148. [PMID: 37446325 DOI: 10.3390/ijms241311148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Intracellular environment includes proteins, sugars, and nucleic acids interacting in restricted media. In the cytoplasm, the excluded volume effect takes up to 40% of the volume available for occupation by macromolecules. In this work, we tested several approaches modeling crowded solutions for protein diffusion. We experimentally showed how the protein diffusion deviates from conventional Brownian motion in artificial conditions modeling the alteration of medium viscosity and rigid spatial obstacles. The studied tracer proteins were globular bovine serum albumin and intrinsically disordered α-casein. Using the pulsed field gradient NMR, we investigated the translational diffusion of protein probes of different structures in homogeneous (glycerol) and heterogeneous (PEG 300/PEG 6000/PEG 40,000) solutions as a function of crowder concentration. Our results showed fundamentally different effects of homogeneous and heterogeneous crowded environments on protein self-diffusion. In addition, the applied "tracer on lattice" model showed that smaller crowding obstacles (PEG 300 and PEG 6000) create a dense net of restrictions noticeably hindering diffusing protein probes, whereas the large-sized PEG 40,000 creates a "less restricted" environment for the diffusive motion of protein molecules.
Collapse
Affiliation(s)
- Aleksandra M Kusova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str. 2/31, Kazan 420111, Russia
| | - Ilnaz T Rakipov
- Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str. 2/31, Kazan 420111, Russia
- Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| |
Collapse
|
7
|
Chen L, Zhang SB. Structural and functional properties of self-assembled peanut protein nanoparticles prepared by ultrasonic treatment: Effects of ultrasound intensity and protein concentration. Food Chem 2023; 413:135626. [PMID: 36745945 DOI: 10.1016/j.foodchem.2023.135626] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Peanut protein isolate (PPI) nanoparticles were prepared by self-assembly under the combined action of ultrasound (US) and protein concentration. The effects of ultrasound intensity (150-500 W) and protein concentration (1-12 %, w/v) on the structural and functional properties of PPI nanoparticles were investigated. Low-intensity US significantly increased the particle size of PPI, but high-intensity US decreased it. The largest PPI nanoparticles were obtained when 10 % PPI was subjected to low-intensity US treatment (200 W for 5 min). These nanoparticles possessed unique structural characteristics, such as the lowest absolute ζ-potential and the highest contents of exposed free sulfhydryl and disulfide bond, which may be responsible for their excellent heat-set gelling properties. The 12 % PPI treated with low- and high-intensity US had the highest emulsifying activity index and emulsifying stability index, respectively. The self-assembled PPI nanoparticles induced by US treatments at high protein concentrations have great potentials for application in the food industry.
Collapse
Affiliation(s)
- Lin Chen
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan Province 450001, People's Republic of China
| | - Shao-Bing Zhang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan Province 450001, People's Republic of China.
| |
Collapse
|
8
|
Connecting the Dots: Macromolecular Crowding and Protein Aggregation. J Fluoresc 2023; 33:1-11. [PMID: 36417150 DOI: 10.1007/s10895-022-03082-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
Proteins are one of the dynamic macromolecules that play a significant role in many physiologically important processes to sustain life on the earth. Proteins need to be properly folded into their active conformation to perform their function. Alteration in the protein folding process may lead to the formation of misfolded conformers. Accumulation of these misfolded conformers can result in the formation of protein aggregates which are attributed to many human pathological conditions including neurodegeneration, cataract, neuromuscular disorders, and diabetes. Living cells naturally have heterogeneous crowding environments with different concentrations of various biomolecules. Macromolecular crowding condition has been found to alter the protein conformation. Here in this review, we tried to show the relation between macromolecular crowding, protein aggregation, and its consequences.
Collapse
|
9
|
Phycocyanin-rich water-in-oil-in-water (W1/O/W2) double emulsion with nanosized particles: Improved color stability against light exposure. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Zheng R, Yan Y, Pu J, Zhang B. Physiological and Pathological Functions of Neuronal Hemoglobin: A Key Underappreciated Protein in Parkinson's Disease. Int J Mol Sci 2022; 23:9088. [PMID: 36012351 PMCID: PMC9408843 DOI: 10.3390/ijms23169088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The expression of Hemoglobin (Hb) is not restricted to erythrocytes but is also present in neurons. Hb is selectively enriched in vulnerable mesencephalic dopaminergic neurons of Parkinson's disease (PD) instead of resistant neurons. Controversial results of neuronal Hb levels have been reported in postmortem brains of PD patients: although neuronal Hb levels may decline in PD patients, elderly men with higher Hb levels have an increased risk of developing PD. α-synuclein, a key protein involved in PD pathology, interacts directly with Hb protein and forms complexes in erythrocytes and brains of monkeys and humans. These complexes increase in erythrocytes and striatal cytoplasm, while they decrease in striatal mitochondria with aging. Besides, the colocalization of serine 129-phosphorylated (Pser129) α-synuclein and Hb β chains have been found in the brains of PD patients. Several underlying molecular mechanisms involving mitochondrial homeostasis, α-synuclein accumulation, iron metabolism, and hormone-regulated signaling pathways have been investigated to assess the relationship between neuronal Hb and PD development. The formation of fibrils with neuronal Hb in various neurodegenerative diseases may indicate a common fibrillization pathway and a widespread target that could be applied in neurodegeneration therapy.
Collapse
Affiliation(s)
| | | | - Jiali Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
11
|
Siddiqui GA, Naeem A. Refolding of Hemoglobin Under Macromolecular Confinement: Impersonating In Vivo Volume Exclusion. J Fluoresc 2021; 31:1371-1377. [PMID: 34156613 DOI: 10.1007/s10895-021-02751-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
Biomacromolecules evolve and function inside the cell under crowded conditions. The effect of macromolecular crowding and confinement on nature and interactions of biomacromolecules cannot be ruled out. This study demonstrates the effect of volume exclusion due to macromolecular crowding on refolding rate of Gn-HCl induced unfolded hemoglobin. The in vivo like crowding milieu was created using dextran 70. Unfolding of Hb was followed by the absorbance at 280 nm and intrinsic fluorescence intensity along with a bathochromic shift that shows the destabilization of Hb in the presence of the denaturing agent. This was supported by a decrease in soret absorbance, increased hydrodynamic radii and loss in secondary structure, evidenced from dynamic light scattering and circular dichroism experiments respectively. Refolding process of Hb was followed by an increase in soret absorbance, decrease in intrinsic fluorescence intensity with a hypsochromic shift, decreased hydrodynamic radii and gain in secondary structural content. The results revealed that the effect of confinement and volume exclusion is insignificant on the process of Hb refolding.
Collapse
Affiliation(s)
- Gufran Ahmed Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India.
| |
Collapse
|
12
|
Ye Y, Huo X, Yin Z. Protein-protein interactions at high concentrations: Effects of ArgHCl and NaCl on the stability, viscosity and aggregation mechanisms of protein solution. Int J Pharm 2021; 601:120535. [PMID: 33811966 DOI: 10.1016/j.ijpharm.2021.120535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The aim of this work was to use the diffusion coefficient ration (Dm/Dline) as a parameter to characterize the stability of protein at high concentration, to compare the effects of ArgHCl and NaCl on the interaction of highly concentrated proteins under different pH conditions, and to explore the correlation with protein stability. For this purpose, a high-concentration bovine serum albumin solution (BSA) was selected as the model system, and the diffusion coefficient, aggregation degree, conformational stability, and solution viscosity of the protein were studied by dynamic light scattering (DLS) and spectral detection techniques. The result showed that there was a significant correlation between the Dm/Dline and the protein aggregation. The Dm/Dline of the protein was minimum at pH 7.4, which corresponded to the maximum degree of aggregation and the highest solution viscosity. At pH 7.4, the hydrophobic interactions and the increased conformational stability of ArgHCl maximized the stability of the protein and reduced the viscosity of the solution by 69.3%. At pH 3.0, the strong charge shielding effect of ArgHCl and NaCl and the decreased conformational stability induced protein aggregation and the gel formation. These findings provided valuable insights into the mechanism of protein aggregation and the diffusion coefficient ration (Dm/Dline) could be a potential tool for the pre-formulation studies.
Collapse
Affiliation(s)
- Yalin Ye
- Key Laboratory of Drug Targeting and Novel Drug Delivery System Ministry of Education, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xingli Huo
- Key Laboratory of Drug Targeting and Novel Drug Delivery System Ministry of Education, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zongning Yin
- Key Laboratory of Drug Targeting and Novel Drug Delivery System Ministry of Education, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
13
|
Siddiqui GA, Naeem A. The contrasting effect of macromolecular crowding and confinement on fibril formation of globular protein: Underlying cause of proteopathies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
A biomimetic model of 3D fluid extracellular macromolecular crowding microenvironment fine-tunes ovarian cancer cells dissemination phenotype. Biomaterials 2020; 269:120610. [PMID: 33388691 DOI: 10.1016/j.biomaterials.2020.120610] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
An early fundamental step in ovarian cancer progression is the dissemination of cancer cells through liquid environments, one of them being cancer ascites accumulated in the peritoneal cavity. These biological fluids are highly crowded with a high total macromolecule concentration. This biophysical property of fluids is widely used in tissue engineering for a few decades now, yet is largely underrated in cancer biomimetic models. To unravel the role of fluids extracellular macromolecular crowding (MMC), we exposed ovarian cancer cells (OCC) to high molecular weight inert polymer solutions. High macromolecular composition of extracellular liquid presented a differential effect: i) it impeded non-adherent OCC aggregation in suspension and, decreased their adhesion; ii) it promoted adherent OCC migration by decreasing extracellular matrix deposition. Besides, there seemed to be a direct link between the extracellular MMC and intracellular processes, especially the actin cytoskeleton organization and the nucleus morphology. In conclusion, extracellular fluid MMC orients OCC dissemination phenotype. Integrating MMC seems crucial to produce more relevant mimetic 3D in vitro fluid models to study ovarian dissemination but also to screen drugs.
Collapse
|
15
|
Pignataro MF, Herrera MG, Dodero VI. Evaluation of Peptide/Protein Self-Assembly and Aggregation by Spectroscopic Methods. Molecules 2020; 25:E4854. [PMID: 33096797 PMCID: PMC7587993 DOI: 10.3390/molecules25204854] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
The self-assembly of proteins is an essential process for a variety of cellular functions including cell respiration, mobility and division. On the other hand, protein or peptide misfolding and aggregation is related to the development of Parkinson's disease and Alzheimer's disease, among other aggregopathies. As a consequence, significant research efforts are directed towards the understanding of this process. In this review, we are focused on the use of UV-Visible Absorption Spectroscopy, Fluorescence Spectroscopy and Circular Dichroism to evaluate the self-organization of proteins and peptides in solution. These spectroscopic techniques are commonly available in most chemistry and biochemistry research laboratories, and together they are a powerful approach for initial as well as routine evaluation of protein and peptide self-assembly and aggregation under different environmental stimulus. Furthermore, these spectroscopic techniques are even suitable for studying complex systems like those in the food industry or pharmaceutical formulations, providing an overall idea of the folding, self-assembly, and aggregation processes, which is challenging to obtain with high-resolution methods. Here, we compiled and discussed selected examples, together with our results and those that helped us better to understand the process of protein and peptide aggregation. We put particular emphasis on the basic description of the methods as well as on the experimental considerations needed to obtain meaningful information, to help those who are just getting into this exciting area of research. Moreover, this review is particularly useful to those out of the field who would like to improve reproducibility in their cellular and biomedical experiments, especially while working with peptide and protein systems as an external stimulus. Our final aim is to show the power of these low-resolution techniques to improve our understanding of the self-assembly of peptides and proteins and translate this fundamental knowledge in biomedical research or food applications.
Collapse
Affiliation(s)
- María Florencia Pignataro
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
| | - María Georgina Herrera
- Department of Physiology and Molecular and Cellular Biology, Institute of Biosciences, Biotechnology and Translational Biology (iB3), Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires C1428EG, Argentina;
- Institute of Biological Chemistry and Physical Chemistry, Dr. Alejandro Paladini, University of Buenos Aires-CONICET, Buenos Aires C1113AAD, Argentina
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Verónica Isabel Dodero
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
16
|
Effects of macromolecular crowding on the folding and aggregation of glycosylated MUC5AC. Biochem Biophys Res Commun 2020; 529:984-990. [PMID: 32819609 DOI: 10.1016/j.bbrc.2020.06.156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To investigate the effects of macromolecular crowding on the folding and aggregation of MUC5AC with different levels of glycosylation during refolding. METHODS Part 1:An in vitro catalytic reaction comprising the ppGalNAc T2 enzyme, uridine-5'-diphospho-N-galactosamine (UDP-GalNAc) and an 11-amino acid peptide substrate, was used to assess the enzyme activity of the ppGalNAc T2 enzyme in macromolecular crowding environment respectively with bovine serum albumin (BSA), polyethylene glycol (PEG2000), Dextran70 and Ficoll70 at different concentration and temperature. Part 2: The recombinant MUC5AC was expressed in HEK293 cells and purified by nickel column chromatography. The purified protein was treated with PNGase F, and the degree of glycosylation was analyzed by SDS-PAGE. Macromolecular crowding was simulated using PEG2000 at the concentrations of 50, 100, and 200 g/L. Deglycosylated-MUC5AC (d-MUC5AC) and glycosylated MUC5AC (g-MUC5AC) were denatured by GdnHCl and renatured by dilution in a refolding buffer. Protein aggregation was monitored continuously by absorbance reading at 488 nm using a UV spectrophotometer at 25 °C. The refolded proteins were centrifuged, the protein concentration of the supernatant was measured, and refolding yield in different refolding buffers was determined. RESULTS Enzyme activityof ppGalNAc T2 was observed to increase with increasing crowding agent concentration, with highest enzyme activity at 200 g/L. Compared with the group in the absence of crowding reagent, the refolding yield of g-MUC5AC and d-MUC5AC were reduced significantly in the presence of different concentrations of PEG2000 (200, 100, and 50 g/L). Compared with the dilute solution, aggregation increased significantly in the presence of PEG2000, especially at 200 g/L. Moreover, in the crowded reagent with the same concentration, the refolding yield of d-MUC5AC was higher than that of g-MUC5AC, whereas the degree of aggregation of d-MUC5AC was lower than that of g-MUC5AC. CONCLUSION The crowded intracellular environment reduces the refolding rate of MUC5AC and strongly induces the misfolding and aggregation of glycosylated MUC5AC.
Collapse
|
17
|
Raina N, Singh AK, Hassan MI, Ahmad F, Islam A. Concentration dependent effect of ethylene glycol on the structure and stability of holo α-lactalbumin: Characterization of intermediate state amidst soft interactions. Int J Biol Macromol 2020; 164:2151-2161. [PMID: 32735932 DOI: 10.1016/j.ijbiomac.2020.07.224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022]
Abstract
The interior of the cell is crowded with different kinds of biological molecules with varying sizes, shapes and compositions which may affect physiological processes especially protein folding, protein conformation and protein stability. To understand the consequences of such a crowded environment, pH-induced unfolding of holo alpha-lactalbumin (holo α-LA) was studied in the presence of ethylene glycol (EG). The effect of EG on the folding and stability of holo α-LA in aqueous solution was investigated using several spectroscopic techniques. The results indicate that stabilization/destabilization of holo α-LA by EG is concentration- and pH-dependent. Low concentration of EG stabilizes the protein at pH near its pI. From the results of far-UV CD, UV-visible and ANS fluorescence, intermediate state (MG state) was characterized in the presence of high concentration of ethylene glycol. The results invoke a new mechanism for the formation of MG state identical to active component of BAMLET. MG state of holo α-LA has a direct implication to cancer therapy. MG state of α-LA in complex with specific type of lipid is a novel class of protein-based anti-cancer complexes that incorporate oleic acid and deliver it to the cancer cells.
Collapse
Affiliation(s)
- Neha Raina
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh 201310, India; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh 201310, India.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
18
|
Bhakuni K, Yadav N, Venkatesu P. A novel amalgamation of deep eutectic solvents and crowders as biocompatible solvent media for enhanced structural and thermal stability of bovine serum albumin. Phys Chem Chem Phys 2020; 22:24410-24422. [DOI: 10.1039/d0cp04397d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study unravels the effect of a novel solvent medium designed by amalgamation of macromolecular crowders and deep eutectic solvents (DESs) on bovine serum albumin (BSA).
Collapse
Affiliation(s)
- Kavya Bhakuni
- Department of Chemistry
- University of Delhi
- Delhi
- India
| | - Niketa Yadav
- Department of Chemistry
- University of Delhi
- Delhi
- India
| | | |
Collapse
|
19
|
Singla R, Abidi SMS, Dar AI, Acharya A. Inhibition of Glycation-Induced Aggregation of Human Serum Albumin by Organic-Inorganic Hybrid Nanocomposites of Iron Oxide-Functionalized Nanocellulose. ACS OMEGA 2019; 4:14805-14819. [PMID: 31552320 PMCID: PMC6751540 DOI: 10.1021/acsomega.9b01392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/31/2019] [Indexed: 05/06/2023]
Abstract
Protein aggregation leads to the transformation of proteins from their soluble form to the insoluble amyloid fibrils and these aggregates get deposited in the specific body tissues, accounting for various diseases. To prevent such an aggregation, organic-inorganic hybrid nanocomposites of iron oxide nanoparticle (NP, ∼6.5-7.0 nm)-conjugated cellulose nanocrystals (CNCs) isolated from Syzygium cumini (SC) and Pinus roxburghii (PR) were chemically synthesized. Transmission electron microscopy (TEM) images of the nanocomposites suggested that the in situ-synthesized iron oxide NPs were bound to the CNC surface in a uniform and regular fashion. The ThT fluorescence assay together with 8-anilino-1-naphthalenesulfonic acid, Congo Red, and CD studies suggested that short fiber-based SC nanocomposites showed better inhibition as well as dissociation of human serum albumin aggregates. The TEM and fluorescence microscopy studies supported similar observations. Native polyacrylamide gel electrophoresis results documented dissociation of higher protein aggregates in the presence of the developed nanocomposite. Interestingly, the dissociated proteins retained their biological function by maintaining a high amount of α-helix content. The in vitro studies with HEK-293 cells suggested that the developed nanocomposite reduces aggregation-induced cytotoxicity by intracellular reactive oxygen species scavenging and maintaining the Ca2+ ion-channel. These results indicated that the hybrid organic-inorganic nanocomposite, with simultaneous sites for hydrophobic and hydrophilic interactions, tends to provide a larger surface area for nanocomposite-protein interactions, which ultimately disfavors the nucleation step for fibrillation for protein aggregates.
Collapse
Affiliation(s)
- Rubbel Singla
- Biotechnology
Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Syed M. S. Abidi
- Biotechnology
Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Aqib Iqbal Dar
- Biotechnology
Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Amitabha Acharya
- Biotechnology
Division and Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| |
Collapse
|
20
|
Lysozyme encapsulated gold nanoclusters for probing the early stage of lysozyme aggregation under acidic conditions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111540. [DOI: 10.1016/j.jphotobiol.2019.111540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 06/02/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022]
|
21
|
Chen XW, Ning XY, Zou Y, Liu X, Yang XQ. Multicompartment emulsion droplets for programmed release of hydrophobic cargoes. Food Funct 2019; 10:4522-4532. [PMID: 31355399 DOI: 10.1039/c9fo00558g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Delivery systems with multicompartmental structures that allow simultaneous delivery of several cargos are of great interest in both fundamental research and industrial applications. Here, we report a facile and easily scalable approach to fabricate multi-compartmentalized microdroplets for achieving programmed release of hydrophobic cargoes. Well-dispersed nanodroplets stabilized by natural Quillaja saponin served as an effective colloid stabilizer for fabricating microscale emulsion droplets with multicompartment architectures comprising many nanoscale droplets as a shell and single microscale core. Control of the number of nanodroplets allows accurate manipulation of the interface permeability for flexible and controllable release of volatile compounds (e.g., 2,3-butanedione, cis-3-hexen-1-ol, ethyl butyrate, d-limonene). More interestingly, the multicompartment microdroplets exhibited a higher flexibility for programmed release of different volatile compounds, as well as curcumin, during in vitro digestion by introducing cargos into the shell subcompartments or core microcompartment. The promising results highlight the power of this multi-compartmentalized system toward accessing a powerful platform for functional cargo delivery strategies.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Department of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | | | | | | | | |
Collapse
|
22
|
Does macromolecular crowding compatible with enzyme stem bromelain structure and stability? Int J Biol Macromol 2019; 131:527-535. [DOI: 10.1016/j.ijbiomac.2019.03.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 01/21/2023]
|
23
|
Huff HC, Maroutsos D, Das A. Lipid composition and macromolecular crowding effects on CYP2J2-mediated drug metabolism in nanodiscs. Protein Sci 2019; 28:928-940. [PMID: 30861250 DOI: 10.1002/pro.3603] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/11/2019] [Indexed: 01/13/2023]
Abstract
Lipid composition and macromolecular crowding are key external effectors of protein activity and stability whose role varies between different proteins. Therefore, it is imperative to study their effects on individual protein function. CYP2J2 is a membrane-bound cytochrome P450 in the heart involved in the metabolism of fatty acids and xenobiotics. In order to facilitate this metabolism, cytochrome P450 reductase (CPR), transfers electrons to CYP2J2 from NADPH. Herein, we use nanodiscs to show that lipid composition of the membrane bilayer affects substrate metabolism of the CYP2J2-CPR nanodisc (ND) system. Differential effects on both NADPH oxidation and substrate metabolism by CYP2J2-CPR are dependent on the lipid composition. For instance, sphingomyelin containing nanodiscs produced more secondary substrate metabolites than discs of other lipid compositions, implying a possible conformational change leading to processive metabolism. Furthermore, we demonstrate that macromolecular crowding plays a role in the lipid-solubilized CYP2J2-CPR system by increasing the Km and decreasing the Vmax , and effect that is size-dependent. Crowding also affects the CYP2J2-CPR-ND system by decreasing both the Km and Vmax for Dextran-based macromolecular crowding agents, implying an increase in substrate affinity but a lack of metabolism. Finally, protein denaturation studies show that crowding agents destabilize CYP2J2, while the multidomain protein CPR is stabilized. Overall, these studies are the first report on the role of the surrounding lipid environment and macromolecular crowding in modulating enzymatic function of CYP2J2-CPR membrane protein system.
Collapse
Affiliation(s)
- Hannah C Huff
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Demetri Maroutsos
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Aditi Das
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Beckman Institute for Advanced Science and Technology, Division of Nutritional Science, Neuroscience Program, and Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
24
|
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801651. [PMID: 30126066 DOI: 10.1002/adma.201801651] [Citation(s) in RCA: 528] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Indexed: 05/20/2023]
Abstract
Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Zhuning Wu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Aniket Kshirsagar
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rufus Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Yves Bayon
- Sofradim Production-A Medtronic Company, Trevoux, France
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
25
|
Wong JX, Rehm BHA. Design of Modular Polyhydroxyalkanoate Scaffolds for Protein Immobilization by Directed Ligation. Biomacromolecules 2018; 19:4098-4112. [DOI: 10.1021/acs.biomac.8b01093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jin Xiang Wong
- Institute of Fundamental Sciences, Massey University, Private Bag, 11222 Palmerston North, New Zealand
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, 4111 Queensland, Australia
| |
Collapse
|