1
|
Peng Z, Wen R. Mechanical and structural features of three AcSp proteins underlie the diverse material properties of aciniform silks of Neoscona spiders. Biochimie 2024:S0300-9084(24)00255-4. [PMID: 39486782 DOI: 10.1016/j.biochi.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Spider silks are desirable multicomponent biomaterials characterized by great tensile strength, extensibility, and biocompatibility. Of all spider silk types, aciniform silk has highest toughness due to its combination of high tensile strength and elsticity. Here, we identify three major spidroin components (AcSp1A, AcSp1B, and AcSp2) from aciniform silk of orbweb weaving spider, Neoscona scylloides, and present their full-length coding gene sequences. Comparative sequence and expression level analysis show that AcSp1B has highest expression level and higher serine content than other two AcSp proteins, while the AcSp2 shows very low mRNA level. Furthermore, three recombinant minimalist AcSp proteins are produced and could be induced to form fibers by shear forces in a physiological buffer. The manual-drawn AcSp1B fiber shows strongest tensile strength among three AcSp fibers because of its higher β-sheet formed by abundant serine content. We also compare mechanical properties of aciniform silks between two Neoscona species (N. theisi and N. scylloides) and found that aciniform silks from N. theisi exhibit higher tensile strength than those of N. scylloides, which may result from altering expression levels of two AcSp1 proteins. Collectively, our results provide insights into the mechanical features of each component in aciniform silk from N. scylloides and reveal the molecular mechanism of diverse material properties of aciniform silk among species.
Collapse
Affiliation(s)
- Zheng Peng
- Department of Radiation Oncology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324002, Zhejiang, China
| | - Rui Wen
- Department of Radiation Oncology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324002, Zhejiang, China; The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
2
|
Lu W, Shi R, Li X, Ma S, Yang D, Shang D, Xia Q. A review on complete silk gene sequencing and de novo assembly of artificial silk. Int J Biol Macromol 2024; 264:130444. [PMID: 38417762 DOI: 10.1016/j.ijbiomac.2024.130444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Silk, especially spider and insect silk, is a highly versatile biomaterial with potential applications in biomedicine, materials science, and biomimetic engineering. The primary structure of silk proteins is the basis for the mechanical properties of silk fibers. Biotechnologies such as single-molecule sequencing have facilitated an increasing number of reports on new silk genes and assembled silk proteins. Therefore, this review aims to provide a comprehensive overview of the recent advances in representative spider and insect silk proteins, focusing on identification methods, sequence characteristics, and de novo design and assembly. The review discusses three identification methods for silk genes: polymerase chain reaction (PCR)-based sequencing, PCR-free cloning and sequencing, and whole-genome sequencing. Moreover, it reveals the main spider and insect silk proteins and their sequences. Subsequent de novo assembly of artificial silk is covered and future research directions in the field of silk proteins, including new silk genes, customizable artificial silk, and the expansion of silk production and applications are discussed. This review provides a basis for the genetic aspects of silk production and the potential applications of artificial silk in material science and biomedical engineering.
Collapse
Affiliation(s)
- Wei Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Run Shi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Xue Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Daiying Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Deli Shang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Yang D, Wang S, Wang K, Zheng S, Zan X, Wen R. Physical Properties of the Second Type of Aciniform Spidroin (AcSp2) from Neoscona theisi Reveal a pH-Dependent Self-Assembly Repetitive Domain. ACS Biomater Sci Eng 2023; 9:6670-6682. [PMID: 38019679 DOI: 10.1021/acsbiomaterials.3c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Orb-weaving spiders can use an array of specialized silks with diverse mechanical properties and functions for daily survival. Of all spider silk types, aciniform silk is the toughest silk fiber that combines high strength and elasticity. Although aciniform spidroins (AcSp) are the main protein in aciniform silks, their complete genes have rarely been characterized until now. Moreover, the structural and physical properties of AcSp variant proteins within the species are also unclear. Here, we present three full-length AcSp genes (named AcSp1A, AcSp1B, and AcSp2) from the orb-weaving spider Neoscona theisi and investigate the structural and mechanical features of these three AcSp repetitive domains. We demonstrate that all three AcSp proteins have mainly α-helical structural features in neutral solution and high thermal stability. Significantly, the AcSp2 repetitive domain shows a pH-dependent structural transition from α to β conformations and can self-assemble into amyloid fibrils under acidic conditions, which is the first reported AcSp repetitive domain with pH-dependent self-assembly capacity. Compared with the other two AcSp spidroins, AcSp2 demonstrated the lowest expression level in the aciniform gland but had the highest strength for its silk fiber. Collectively, our findings provide new insight into the physical properties of each component of aciniform silk and expand the repertoire of known spidroin sequences for the synthesis of artificial silk materials.
Collapse
Affiliation(s)
- Dong Yang
- Department of Radiation and Medical Oncology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Suyang Wang
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Kangkang Wang
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325000, China
| | - Shengwu Zheng
- Wenzhou Celecare Medical Instruments Co., Ltd., Wenzhou, Zhejiang Province 325000, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
- Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325000, China
| | - Rui Wen
- Department of Radiation and Medical Oncology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| |
Collapse
|
4
|
Yang Y, Gao Z, Yang D. pH-dependent self-assembly mechanism of a single repetitive domain from a spider silk protein. Int J Biol Macromol 2023; 242:124775. [PMID: 37169045 DOI: 10.1016/j.ijbiomac.2023.124775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Spider silk is self-assembled from full-length silk proteins, and some silk protein fragments can also form silk-like fibers in vitro. However, the mechanism underlying the silk fiber formation is not understood well. In this study, we investigated the fiber formation of a single repetitive domain (RP) from a minor ampullate silk protein (MiSp). Our findings revealed that pH and salt concentration affect not only the stability of MiSp-RP but also its self-assembly into fibers and aggregates. Using nuclear magnetic resonance (NMR) spectroscopy, we solved the three-dimensional (3D) structure of MiSp RP in aqueous solution. On the basis of the structure and mutagenesis, we revealed that charge-dipole interactions are responsible for the pH- and salt-dependent properties of MiSp-RP. Our results indicate that fiber formation is regulated by a delicate balance between intermolecular and intramolecular interactions, rather than by the protein stability alone. These findings have implications for the design of silk proteins for mass production of spider silk.
Collapse
Affiliation(s)
- Yadi Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Zhenwei Gao
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
5
|
Digestive enzymes and sphingomyelinase D in spiders without venom (Uloboridae). Sci Rep 2023; 13:2661. [PMID: 36792649 PMCID: PMC9932164 DOI: 10.1038/s41598-023-29828-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Spiders have distinct predatory behaviours selected along Araneae's evolutionary history but are mainly based on the use of venom for prey paralysis. Uloboridae spiders have lost their venom glands secondarily during evolution. Because of this, they immobilise their prey by extensively wrapping, and digestion starts with the addition of digestive fluid. During the extra-oral digestion, the digestive fluid liquefies both the prey and the AcSp2 spidroins from the web fibres. Despite the efficiency of this process, the cocktail of enzymes involved in digestion in Uloboridae spiders remains unknown. In this study, the protein content in the midgut of Uloborus sp. was evaluated through enzymatic, proteomic, and phylogenetic analysis. Hydrolases such as peptidases (endo and exopeptidases: cysteine, serine, and metallopeptidases), carbohydrases (alpha-amylase, chitinase, and alpha-mannosidase), and lipases were biochemically assayed, and 50 proteins (annotated as enzymes, structural proteins, and toxins) were identified, evidencing the identity between the digestive enzymes present in venomous and non-venomous spiders. Even enzymes thought to be unique to venom, including enzymes such as sphingomyelinase D, were found in the digestive system of non-venomous spiders, suggesting a common origin between digestive enzymes and enzymes present in venoms. This is the first characterization of the molecules involved in the digestive process and the midgut protein content of a non-venomous spider.
Collapse
|
6
|
Wen R, Wang K, Zan X. Characterization of two full-length tubuliform silk gene sequences from Neoscona theisi reveals intragenic concerted evolution and multiple copies in genome. Int J Biol Macromol 2022; 223:1015-1023. [PMID: 36375671 DOI: 10.1016/j.ijbiomac.2022.11.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
Orb-web weaving spiders use a variety of silk types for particular tasks, and each silk type is composed of at least two spider silk proteins (spidroins). In the early stage of divergence, however, the molecular evolutionary processes act on spidroin variants are still unclear because of a lack of knowledge for full-length paralogous and orthologous gene sequences among closely related species. Here, we present two complete gene sequences encoding the tubuliform spidroin TuSp1 variants (TuSp1-v2 and TuSp1-v3) from orb-weaving spider Neoscona theisi. Both N. theisi TuSp1-v2 and TuSp1-v3 genes contain a single enormous exon (14,139 bp for TuSp1-v2 and 13,152 bp for TuSp1-v3) and dozens of tandemly arrayed repeats (25 repeats for TuSp1-v2 and 23 repeats for TuSp1-v3) with extreme intragenic homogenization. The pattern of expression for these two spidroins revealed that the level of TuSp1-v3 mRNA is ~3-fold higher than that of TuSp1-v2 in tubuliform gland. Phylogenetic analyses of spidroins not only show the occurrence of a gene duplication event for TuSp1-v2 and TuSp1-v3 in the common ancestor of the Neoscona and Araneus lineage but reinforce the role of concerted evolution for the extreme homogenization of TuSp1 repeats.
Collapse
Affiliation(s)
- Rui Wen
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Kangkang Wang
- Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
7
|
Miller J, Zimin AV, Gordus A. Chromosome-level genome and the identification of sex chromosomes in Uloborus diversus. Gigascience 2022; 12:giad002. [PMID: 36762707 PMCID: PMC9912274 DOI: 10.1093/gigascience/giad002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/18/2022] [Accepted: 01/03/2023] [Indexed: 02/11/2023] Open
Abstract
The orb web is a remarkable example of animal architecture that is observed in families of spiders that diverged over 200 million years ago. While several genomes exist for araneid orb-weavers, none exist for other orb-weaving families, hampering efforts to investigate the genetic basis of this complex behavior. Here we present a chromosome-level genome assembly for the cribellate orb-weaving spider Uloborus diversus. The assembly reinforces evidence of an ancient arachnid genome duplication and identifies complete open reading frames for every class of spidroin gene, which encode the proteins that are the key structural components of spider silks. We identified the 2 X chromosomes for U. diversus and identify candidate sex-determining loci. This chromosome-level assembly will be a valuable resource for evolutionary research into the origins of orb-weaving, spidroin evolution, chromosomal rearrangement, and chromosomal sex determination in spiders.
Collapse
Affiliation(s)
- Jeremiah Miller
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Aleksey V Zimin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrew Gordus
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
8
|
Wen R, Yang D, Wang K, Zan X. Characterization of two full-length Araneus ventricosus major ampullate silk protein genes. Int J Biol Macromol 2022; 213:297-304. [PMID: 35654219 DOI: 10.1016/j.ijbiomac.2022.05.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
Abstract
Major ampullate silk is noted for its great tensile strength and extensibility. The impressive material properties of major ampullate silk result from their component proteins that encoded by members of the spidroin (spider fibroin) gene family. Although the major ampullate spidroin type has evolved multiple variants within specific-species, most sequences are fragmented. Here, we present two complete major ampullate spidroin genes from the orb-weaving spider Araneus ventricosus. Due to the abundant GPG motifs in their repetitive region, the two MaSp genes were grouped in MaSp2 subclass and named MaSp2C and MaSp2D, respectively. Analysis of the full-length gene sequences reveals that both of them include a single enormous exon (10,851 bp for MaSp2C and 8640 bp for MaSp2D) that mainly translates into a central repetitive region containing multiple amino acid motifs that can be organized into five ensemble types. We use gene-specific PCR primers to search the cDNA from major ampullate glands and find evidence for alternative splicing of MaSp2D transcripts into a minor spliceoform lacking the entire repetitive domain as well as the partial terminal regions. Our results not only provide new templates for protein-based materials with tailored properties, but suggest gene and transcriptional diversity of major ampullate silk.
Collapse
Affiliation(s)
- Rui Wen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| | - Dong Yang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Kangkang Wang
- Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Oujiang Laboratory, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| |
Collapse
|
9
|
Ramezaniaghdam M, Nahdi ND, Reski R. Recombinant Spider Silk: Promises and Bottlenecks. Front Bioeng Biotechnol 2022; 10:835637. [PMID: 35350182 PMCID: PMC8957953 DOI: 10.3389/fbioe.2022.835637] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 02/02/2023] Open
Abstract
Spider silk threads have exceptional mechanical properties such as toughness, elasticity and low density, which reach maximum values compared to other fibre materials. They are superior even compared to Kevlar and steel. These extraordinary properties stem from long length and specific protein structures. Spider silk proteins can consist of more than 20,000 amino acids. Polypeptide stretches account for more than 90% of the whole protein, and these domains can be repeated more than a hundred times. Each repeat unit has a specific function resulting in the final properties of the silk. These properties make them attractive for innovative material development for medical or technical products as well as cosmetics. However, with livestock breeding of spiders it is not possible to reach high volumes of silk due to the cannibalistic behaviour of these animals. In order to obtain spider silk proteins (spidroins) on a large scale, recombinant production is attempted in various expression systems such as plants, bacteria, yeasts, insects, silkworms, mammalian cells and animals. For viable large-scale production, cost-effective and efficient production systems are needed. This review describes the different types of spider silk, their proteins and structures and discusses the production of these difficult-to-express proteins in different host organisms with an emphasis on plant systems.
Collapse
Affiliation(s)
- Maryam Ramezaniaghdam
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS at FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Nadia D. Nahdi
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS at FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects. Microbiol Spectr 2022; 10:e0216921. [PMID: 35107331 PMCID: PMC8809340 DOI: 10.1128/spectrum.02169-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacillus velezensis HNA3, a potential plant growth promoter and biocontrol rhizobacterium, was isolated from plant rhizosphere soils in our previous work. Here, we sequenced the entire genome of the HNA3 strain and performed a comparative genome analysis. We found that HNA3 has a 3,929-kb chromosome with 46.5% GC content and 4,080 CDSs. We reclassified HNA3 as a Bacillus velezensis strain by core genome analysis between HNA3 and 74 previously defined Bacillus strains in the evolutionary tree. A comparative genomic analysis among Bacillus velezensis HNA3, Bacillus velezensis FZB42, Bacillus amyloliquefaciens DSM7, and Bacillus subtilis 168 showed that only HNA3 has one predicated secretory protein feruloyl esterase that catalyzes the hydrolysis of plant cell wall polysaccharides. The analysis of gene clusters revealed that whole biosynthetic gene clusters type Lanthipeptide was exclusively identified in HNA3 and might lead to the synthesis of new bioactive compounds. Twelve gene clusters were detected in HNA3 responsible for the synthesis of 14 secondary metabolites including Bacillaene, Fengycin, Bacillomycin D, Surfactin, Plipastatin, Mycosubtilin, Paenilarvins, Macrolactin, Difficidin, Amylocyclicin, Bacilysin, Iturin, Bacillibactin, Paenibactin, and others. HNA3 has 77 genes encoding for possible antifungal and antibacterial secreting carbohydrate active enzymes. It also contains genes involved in plant growth promotion, such as 11 putative indole acetic acid (IAA)-producing genes, spermidine and polyamine synthase genes, volatile compound producing genes, and multiple biofilm related genes. HNA3 also has 19 phosphatase genes involved in phosphorus solubilization. Our results provide insights into the genetic characteristics responsible for the bioactivities and potential application of HNA3 as plant growth-promoting strain in ecological agriculture. IMPORTANCE This study is the primary initiative to identify Bacillus velezensis HNA3 whole genome sequence and reveal its genomic properties as an effective biocontrol agent against plant pathogens and a plant growth stimulator. HNA3 genetic profile can be used as a reference for future studies that can be applied as a highly effective biofertilizer and biofungicide inoculum to improve agriculture productivity. HNA3 reclassified in the phylogenetic tree which may be helpful for highly effective strain engineering and taxonomy. The genetic comparison among HNA3 and closely similar species B. velezensis FZB42, B. amyloliquefaciens DSM7, and B. subtilis 168 demonstrates some distinctive genetic properties of HNA3 and provides a basis for the genetic diversity of the Bacillus genus, which allows developing more effective eco-friendly resources for agriculture and separation of Bacillus velezensis as distinct species in the phylogenetic tree.
Collapse
|
11
|
Wen R, Wang K, Yang D, Yu T, Zan X, Meng Q. The novel aciniform silk protein (AcSp2-v2) reveals the unique repetitive domain with high acid and thermal stability and self-assembly capability. Int J Biol Macromol 2021; 202:91-101. [PMID: 34973994 DOI: 10.1016/j.ijbiomac.2021.12.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022]
Abstract
Orb-weaving spiders spin a mechanically and functionally diverse range of silk fibers, each composed of one or more specific silk proteins. Of all silk types, wrapping silk combines high strength and extensibility and is made of multiple aciniform silk proteins (AcSp) that can be grouped into two AcSp types (AcSp1 and AcSp2) according to their distinct repetitive regions. Here, we present a novel and complete AcSp gene from orb weaving spider Araneus ventricosus. Phylogenetic analysis of the terminal regions of spidroins reveals that the new silk protein and the published A. ventricosus AcSp2 together form a subclade, indicating that this protein is a member of AcSp2 subclass and therefore named AcSp2 variant 2 (AcSp2-v2). The repetitive region of A. ventricosus AcSp2-v2 contains 24 cysteine residues, which is the first time that cysteine has been found in repetitive regions of spidroins. Moreover, the discovery of the ability of AcSp2-v2 repetitive domain to self-assemble into silk fibers expands the repertoire of known self-assembling sequences.
Collapse
Affiliation(s)
- Rui Wen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Kangkang Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Dong Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Tiantian Yu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Xingjie Zan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
12
|
Li F, Bian C, Li D, Shi Q. Spider Silks: An Overview of Their Component Proteins for Hydrophobicity and Biomedical Applications. Protein Pept Lett 2021; 28:255-269. [PMID: 32895035 DOI: 10.2174/0929866527666200907104401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
Spider silks have received extensive attention from scientists and industries around the world because of their remarkable mechanical properties, which include high tensile strength and extensibility. It is a leading-edge biomaterial resource, with a wide range of potential applications. Spider silks are composed of silk proteins, which are usually very large molecules, yet many silk proteins still remain largely underexplored. While there are numerous reviews on spider silks from diverse perspectives, here we provide a most up-to-date overview of the spider silk component protein family in terms of its molecular structure, evolution, hydrophobicity, and biomedical applications. Given the confusion regarding spidroin naming, we emphasize the need for coherent and consistent nomenclature for spidroins and provide recommendations for pre-existing spidroin names that are inconsistent with nomenclature. We then review recent advances in the components, identification, and structures of spidroin genes. We next discuss the hydrophobicity of spidroins, with particular attention on the unique aquatic spider silks. Aquatic spider silks are less known but may inspire innovation in biomaterials. Furthermore, we provide new insights into antimicrobial peptides from spider silk glands. Finally, we present possibilities for future uses of spider silks.
Collapse
Affiliation(s)
- Fan Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Chao Bian
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Daiqin Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
13
|
Zhou SY, Dong QL, Zhu KS, Gao L, Chen X, Xiang H. Long-read transcriptomic analysis of orb-weaving spider Araneus ventricosus indicates transcriptional diversity of spidroins. Int J Biol Macromol 2020; 168:395-402. [PMID: 33275979 DOI: 10.1016/j.ijbiomac.2020.11.182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 08/31/2020] [Accepted: 11/26/2020] [Indexed: 12/01/2022]
Abstract
Spider silk, which is composed of diverse silk proteins (spidroin), is a kind of natural high-mass biomaterial with great potential. However, due to the complexity of both the structure and the composition of the spidroins in natural spider silk, application of this valuable biomass is still limited to date. There are diverse kinds of spider silk in the orb-weaving spider with different mechanical and structural characteristics. In order to systematically illustrate the landscape of all the different spidrons, here we chose Araneus ventricosus, an orb-weaving spider with superior silk mechanical features and genome information, to generate a long-read whole body transcriptome. We deciphered the repeat arrangements of each kind of spidroin, based on which we found that there are substantially transcriptional diversity of each spidroin gene. Some repeat motifs are not documented before. Specifically, we discovered novel full-lengh MaSp transcript as well as a relatively small full-length AcSp isoforms, which are potential promising materials for bioengineering of recombinant spidroin. Our study provided a batch of new spidron resources with detail sequential information. The finding of transcriptional diversity may provide cues in understanding of within-species variation of the mechanical properties of the natural spider silk and further molecular designing of recombinant spidroin.
Collapse
Affiliation(s)
- Shi-Yi Zhou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qing-Lin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ke-Sen Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Hui Xiang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
14
|
Wen R, Wang K, Meng Q. Characterization of the second type of aciniform spidroin (AcSp2) provides new insight into design for spidroin-based biomaterials. Acta Biomater 2020; 115:210-219. [PMID: 32798722 DOI: 10.1016/j.actbio.2020.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022]
Abstract
Spiders spin a range of silks from different glands for distinct functions, and each silk type exhibits distinct material properties. Silk extruded by the aciniform gland is used for prey wrapping and egg case construction and displays high toughness and extensibility. So far, only the aciniform spidroin 1 (AcSp1) gene which was firstly identified as a silk gene in aciniform gland has been obtained. Here we present the gene sequence for the second type of full-length aciniform silk protein, AcSp2. Analysis of the AcSp2 primary sequence reveals relatively conserved terminal regions and a distinct repetitive sequence relative to AcSp1. A fraction of the gene can be expressed in recombinant systems. Secondary structure analysis of the recombinant AcSp2 protein in solution reveals that the protein adopts mainly an α-helical conformation. Artificial spinning of recombinant AcSp2 demonstrates that the spidroins can be spun into fine fibers which display up to 142% extensibility. The silk fibers are dominated by β-sheet and β-turn secondary structures. Moreover, the mechanical data collected from these synthetic fibers revealed that the mechanical properties are partly correlated with the molecular weights. Overall, our studies enrich our knowledge of spidroin gene family members and provide a new insight into creation of high-performance silk fibers for next generation biomaterials. STATEMENT OF SIGNIFICANCE: In this study, we presented the second type of aciniform silk protein (AcSp2) gene sequence of orb-weaving spider Araneus ventricosus, expanding the spider silk gene family members. The primary structure revealed the central repetitive sequence of the new spidroin gene is distinctly different from other AcSp1 genes. Characterization of the recombinant minispidroin fibers of AcSp2 revealed the mechanical properties are partly correlate with the molecular weights, and the spidroins can be spun into fine fibers which display up to 142% extensibility. Overall, our studies enrich our knowledge of spidroin gene family members and provide a new insight into creation of high-performance silk fibers for next generation biomaterials.
Collapse
Affiliation(s)
- Rui Wen
- Institute of Biological Sciences and Biotechnology, Donghua University, 2999 North Renmin Road 201620, Shanghai 201620, China
| | - Kangkang Wang
- Institute of Biological Sciences and Biotechnology, Donghua University, 2999 North Renmin Road 201620, Shanghai 201620, China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, 2999 North Renmin Road 201620, Shanghai 201620, China.
| |
Collapse
|
15
|
Li X, Mi J, Wen R, Zhang J, Cai Y, Meng Q, Lin Y. Wet-Spinning Synthetic Fibers from Aggregate Glue: Aggregate Spidroin 1 (AgSp1). ACS APPLIED BIO MATERIALS 2020; 3:5957-5965. [PMID: 35021824 DOI: 10.1021/acsabm.0c00619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spidroin has the potential of wide applications in the biomedicine field as a natural biomaterial. Various synthetic fibers with outstanding mechanical properties have been produced from different spidroins. However, studies on the structural analysis or biomimetic exploration of aggregate spidroin (AgSp) remain scarce. Here, three recombinant AgSp1 spidroins (1RP, 1RC, 3RP) were constructed and expressed in Escherichia coli, followed by purification via coupling heating and ammonium sulfate precipitation. Circular dichroism (CD) spectrum-based secondary structural analysis shows that 1RP and 3RP have similar structures (mainly random coil) in water and PB buffer, while 1RC is mainly composed of α-helix structure and HFIP can change all of the recombinant AgSp1 into helix structure. Through the wet-spinning method, six types of synthetic fibers were produced from these three recombinant AgSp1 spidroins. Subsequently, the properties and structures of synthetic fibers were characterized by mechanical testing and ATR-FTIR. Synthetic fibers spun from 3RP have considerable tensile strength and extensibility (∼37.56 MPa and ∼4.5%, respectively). To the best of our knowledge, this is the first synthetic fiber obtained from AgSp spidroin. Our results demonstrated that AgSp1 can be regarded as an available source of spidroin for silklike fiber production and may provide valuable perspectives on the AgSp1 biomimetic process for certain applications.
Collapse
Affiliation(s)
- Xue Li
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Junpeng Mi
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Rui Wen
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Jie Zhang
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Yuming Cai
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| | - Ying Lin
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
16
|
Novel Highly Soluble Chimeric Recombinant Spidroins with High Yield. Int J Mol Sci 2020; 21:ijms21186905. [PMID: 32962298 PMCID: PMC7554824 DOI: 10.3390/ijms21186905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 11/21/2022] Open
Abstract
Spider silk has been a hotspot in the study of biomaterials for more than two decades due to its outstanding mechanical properties. Given that spiders cannot be farmed, and their low silk productivity, many attempts have been made to produce recombinant spidroins as an alternative. Herein, we present novel chimeric recombinant spidroins composed of 1 to 4 repetitive units of aciniform spidroin (AcSp) flanked by the nonrepetitive N- and C-terminal domains of the minor ampullate spidroin (MiSp), all from Araneus ventricosus. The spidroins were expressed in the form of inclusion body in E. coli with high yield. Remarkably, the aqueous solubility of the four spidroins ranged from 13.4% to over 50% (m/v). The four spidroins could self-assemble into silk-like fibers by hand-drawing. The secondary structures of these proteins, determined by circular dichroism spectrum (CD) and Fourier transform infrared spectrum (FTIR), indicated a prominent transformation from α-helix to β-sheet after fiber formation. The mechanical properties of the hand-drawn fibers showed a positive correlation with the spidroin molecular weight. In summary, this study describes promising biomaterials for further study and wide application.
Collapse
|
17
|
Wen R, Wang K, Meng Q. Two novel tubuliform silk gene sequences from Araneus ventricosus provide evidence for multiple loci in genome. Int J Biol Macromol 2020; 160:806-813. [PMID: 32446899 DOI: 10.1016/j.ijbiomac.2020.05.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 12/29/2022]
Abstract
Spiders produce a diversity of silk fibers from multiple morphologically distinct silk glands for specific tasks, and each silk type primarily composed of one or more particular silk proteins encoded by silk gene family members believed to generated by duplication and divergence of ancient silk genes. Egg case silks spun from tubuliform glands are used to construct the tough outer structure of egg cases, are important for their reproduction. Here we present two novel complete TuSp1 sequences from orb weaving spider Araneus ventricosus. Alignment of the two spidroin iterated repeats showed both extreme intragenic homogenization. The pairwise Ka/Ks analysis revealed the terminal and repetitive regions for three TuSp1 loci including the reported TuSp1 gene are all under purifying selection. Phylogenetic analysis showed the two new TuSp1 variants could derive from recent duplication events.
Collapse
Affiliation(s)
- Rui Wen
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Kangkang Wang
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, People's Republic of China.
| |
Collapse
|
18
|
Wen R, Wang K, Meng Q. The three novel complete aciniform spidroin variants from Araneus ventricosus reveal diversity of gene sequences within specific spidroin type. Int J Biol Macromol 2020; 157:60-66. [PMID: 32335120 DOI: 10.1016/j.ijbiomac.2020.04.142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/24/2022]
Abstract
Orb-weaving spiders produce multiple types of silks with distinct functions and material features, and all these silks are mainly composed of proteins which encoded by specific spidroin (spider silk protein) gene family members. Moreover, nearly all spidroins have evolved one or more variants within specific-species. However, the majority of variant sequences are fragmentary, limiting us to investigate the molecular structures and evolution relationships between spidroin variant genes. As the silk that is used to wrap prey and form an egg case liner, aciniform silk is given high toughness and tensile strength. To date, only one aciniform spidroin 1 (AcSp1) gene sequence from orb weavers Araneus ventricosus was reported, and it is still unknown whether presence of multiple AcSp1 variants in this species. Here, we present three novel complete AcSp1 variant gene sequences from Araneus ventricosus. The primary structures revealed the varying length of these variants, and partial repetitive sequences of two AcSp1 variants were deleted. Phylogenetic analysis showed AcSp1 seems to undergo multiple rounds of gene duplication, and the AcSp1-v4 likely originates from a recent duplication event. In brief, the generation of multiple AcSp1 variant genes contributes to transcript diversification and could result in varying tensile properties of aciniform silks.
Collapse
Affiliation(s)
- Rui Wen
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Kangkang Wang
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, People's Republic of China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai, People's Republic of China.
| |
Collapse
|
19
|
The molecular structure of novel pyriform spidroin (PySp2) reveals extremely complex central repetitive region. Int J Biol Macromol 2019; 145:437-444. [PMID: 31843611 DOI: 10.1016/j.ijbiomac.2019.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022]
Abstract
Orb-weaving spiders produce a diversity of silk fibers throughout their entire lifecycle, and each silk type is given a specific purpose. As a dry fiber material with wet glue, pyriform silks are different from other silk fibers and make the attachment discs which are used for bonding fibers together and attaching dragline silk to other substrates. To date, only two full-length pyriform spidroin 1 (PySp1) gene sequences were identified. Here we present a novel full-length pyriform spidroin 2 (PySp2) from orb-weaving spider, Araneus ventricosus. Although the A. ventricosus PySp2 lack the long linker regions, the central repetitive region of PySp2 is more complex than PySp1 and can be classified into four types of repetitive regions including three novel repetitive sequences and one type of repetitive region that is similar to PySp1 repeats. Prediction of hydrophobicity of A. ventricosus PySp2 reveals the two new repetitive regions display strong hydrophilicity. Analysis of CD spectrum and secondary structure prediction for A. ventricosus PySp2 repeat unit reveal α-helix conformation dominates the repetitive region. Furthermore, recombinant protein-based artificial fibers show the single repeat unit is sufficient for self-assembling into silk fiber.
Collapse
|
20
|
Orb-weaving spider Araneus ventricosus genome elucidates the spidroin gene catalogue. Sci Rep 2019; 9:8380. [PMID: 31182776 PMCID: PMC6557832 DOI: 10.1038/s41598-019-44775-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/22/2019] [Indexed: 02/02/2023] Open
Abstract
Members of the family Araneidae are common orb-weaving spiders, and they produce several types of silks throughout their behaviors and lives, from reproduction to foraging. Egg sac, prey capture thread, or dragline silk possesses characteristic mechanical properties, and its variability makes it a highly attractive material for ecological, evolutional, and industrial fields. However, the complete set of constituents of silks produced by a single species is still unclear, and novel spidroin genes as well as other proteins are still being found. Here, we present the first genome in genus Araneus together with the full set of spidroin genes with unamplified long reads and confirmed with transcriptome of the silk glands and proteome analysis of the dragline silk. The catalogue includes the first full length sequence of a paralog of major ampullate spidroin MaSp3, and several spider silk-constituting elements designated SpiCE. Family-wide phylogenomic analysis of Araneidae suggests the relatively recent acquisition of these genes, and multiple-omics analyses demonstrate that these proteins are critical components in the abdominal spidroin gland and dragline silk, contributing to the outstanding mechanical properties of silk in this group of species.
Collapse
|
21
|
Toward Spider Glue: Long Read Scaffolding for Extreme Length and Repetitious Silk Family Genes AgSp1 and AgSp2 with Insights into Functional Adaptation. G3-GENES GENOMES GENETICS 2019; 9:1909-1919. [PMID: 30975702 PMCID: PMC6553539 DOI: 10.1534/g3.119.400065] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An individual orb weaving spider can spin up to seven different types of silk, each with unique functions and material properties. The capture spiral silk of classic two-dimensional aerial orb webs is coated with an amorphous glue that functions to retain prey that get caught in a web. This unique modified silk is partially comprised of spidroins (spider fibroins) encoded by two members of the silk gene family. The glue differs from solid silk fibers as it is a viscoelastic, amorphic, wet material that is responsive to environmental conditions. Most spidroins are encoded by extremely large, highly repetitive genes that cannot be sequenced using short read technology alone, as the repetitive regions are longer than read length. We sequenced for the first time the complete genomic Aggregate Spidroin 1 (AgSp1) and Aggregate Spidroin 2 (AgSp2) glue genes of orb weaving spider Argiope trifasciata using error-prone long reads to scaffold for high accuracy short reads. The massive coding sequences are 42,270 bp (AgSp1) and 20,526 bp (AgSp2) in length, the largest silk genes currently described. The majority of the predicted amino acid sequence of AgSp1 consists of two similar but distinct motifs that are repeated ∼40 times each, while AgSp2 contains ∼48 repetitions of an AgSp1-similar motif, interspersed by regions high in glutamine. Comparisons of AgSp repetitive motifs from orb web and cobweb spiders show regions of strict conservation followed by striking diversification. Glues from these two spider families have evolved contrasting material properties in adhesion (stickiness), extensibility (stretchiness), and elasticity (the ability of the material to resume its native shape), which we link to mechanisms established for related silk genes in the same family. Full-length aggregate spidroin sequences from diverse species with differing material characteristics will provide insights for designing tunable bio-inspired adhesives for a variety of unique purposes.
Collapse
|