1
|
Moreno-Ricardo MA, Gómez-Contreras P, González-Delgado ÁD, Hernández-Fernández J, Ortega-Toro R. Development of films based on chitosan, gelatin and collagen extracted from bocachico scales ( Prochilodus magdalenae). Heliyon 2024; 10:e25194. [PMID: 38317954 PMCID: PMC10839984 DOI: 10.1016/j.heliyon.2024.e25194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/31/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Biodegradable biopolymers from species of the animal kingdom or their byproducts are sustainable as ecological materials due to their abundant supply and compatibility with the environment. The research aims to obtain a biodegradable active material from chitosan, gelatin, and collagen from bocachico scales (Prochilodus magdalenae). Regarding the methodology, films were developed from gelatin, chitosan, and collagen from bocachico scales (Prochilodus magdalenae) at different concentrations using glycerol as a plasticizer and citric acid as a cross-linker. The films were obtained with the hydrated mass processed by compression molding and characterized according to humidity, water solubility, contact angle, mechanical properties, and structural properties. The results of the films showed a hydrophobic characteristic. First, the chitosan-collagen (CS/CO) films showed a yellowish color, while the gelatin-collagen (Gel/CO) films were transparent and less soluble than the gelatin-collagen (Gel/CO) films. Concerning mechanical properties, gelatin films showed higher stiffness and tensile strength than chitosan films. Furthermore, in the morphological analysis, more homogeneous chitosan films were obtained by increasing the concentration of citric acid. In general, chitosan, gelatin, and collagen extracted from the scales of the bocachico (Prochilodus magdalenae) are an alternative in the application of films in the food industry.
Collapse
Affiliation(s)
- María A. Moreno-Ricardo
- Food Packaging and Shelf Life Research Group (FP&SL), Food Engineering Department, Universidad de Cartagena, Cartagena de Indias, 130001, Colombia
| | - Paula Gómez-Contreras
- Food Packaging and Shelf Life Research Group (FP&SL), Food Engineering Department, Universidad de Cartagena, Cartagena de Indias, 130001, Colombia
| | - Ángel Darío González-Delgado
- Nanomaterials and Computer-Aided Process Engineering Research Group (NIPAC), Chemical Engineering Department, Universidad de Cartagena, Avenida del Consulado St. 30, Cartagena de Indias, 130015, Colombia
| | - Joaquín Hernández-Fernández
- Chemistry Program, Department of Natural and Exact Sciences, San Pablo Campus, University of Cartagena, Cartagena, 130015, Colombia
- Chemical Engineering Program, School of Engineering, Universidad Tecnológica de Bolivar, Parque Industrial y Tecnológico Carlos Vélez Pombo, Km 1 Vía Turbaco, Turbaco, 130001, Colombia
- Department of Natural and Exact Science, Universidad de la Costa, Barranquilla, 30300, Colombia
| | - Rodrigo Ortega-Toro
- Food Packaging and Shelf Life Research Group (FP&SL), Food Engineering Department, Universidad de Cartagena, Cartagena de Indias, 130001, Colombia
| |
Collapse
|
2
|
Basumatary IB, Mukherjee A, Kumar S. Chitosan-based composite films containing eugenol nanoemulsion, ZnO nanoparticles and Aloe vera gel for active food packaging. Int J Biol Macromol 2023; 242:124826. [PMID: 37178889 DOI: 10.1016/j.ijbiomac.2023.124826] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/21/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Biopolymer-based food packaging films are gaining increasing popularity, as consumers' demands for sustainable alternatives and environmental concerns associated with synthetic plastic packaging grow. In this research work, chitosan-based active antimicrobial films reinforced with eugenol nanoemulsion (EuNE), Aloe vera gel, and zinc oxide nanoparticles (ZnONPs) were fabricated and characterized for their solubility, microstructure, optical properties, antimicrobial and antioxidant activities. The rate of release of EuNE from the fabricated films was also evaluated to determine active nature of the films. The EuNE droplet size was about 200 nm, and they were uniformly distributed throughout the film matrices. Incorporation of EuNE in chitosan drastically improved UV-light barrier property of the fabricated composite film by 3 to 6 folds, while maintaining their transparency. The XRD spectra of the fabricated films showed good compatibility between the chitosan and the incorporated active agents. The incorporation of ZnONPs significantly improved their antibacterial properties against foodborne bacteria and tensile strength about 2-folds, whereas incorporation of EuNE and AVG improved DPPH scavenging activities of the chitosan film up to 95 %, respectively.
Collapse
Affiliation(s)
- Indra Bhusan Basumatary
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India
| | - Avik Mukherjee
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India.
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, Assam, India.
| |
Collapse
|
3
|
Thambiliyagodage C, Jayanetti M, Mendis A, Ekanayake G, Liyanaarachchi H, Vigneswaran S. Recent Advances in Chitosan-Based Applications-A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2073. [PMID: 36903188 PMCID: PMC10004736 DOI: 10.3390/ma16052073] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Chitosan derived from chitin gas gathered much interest as a biopolymer due to its known and possible broad applications. Chitin is a nitrogen-enriched polymer abundantly present in the exoskeletons of arthropods, cell walls of fungi, green algae, and microorganisms, radulae and beaks of molluscs and cephalopods, etc. Chitosan is a promising candidate for a wide variety of applications due to its macromolecular structure and its unique biological and physiological properties, including solubility, biocompatibility, biodegradability, and reactivity. Chitosan and its derivatives have been known to be applicable in medicine, pharmaceuticals, food, cosmetics, agriculture, the textile and paper industries, the energy industry, and industrial sustainability. More specifically, their use in drug delivery, dentistry, ophthalmology, wound dressing, cell encapsulation, bioimaging, tissue engineering, food packaging, gelling and coating, food additives and preservatives, active biopolymeric nanofilms, nutraceuticals, skin and hair care, preventing abiotic stress in flora, increasing water availability in plants, controlled release fertilizers, dye-sensitised solar cells, wastewater and sludge treatment, and metal extraction. The merits and demerits associated with the use of chitosan derivatives in the above applications are elucidated, and finally, the key challenges and future perspectives are discussed in detail.
Collapse
Affiliation(s)
- Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Madara Jayanetti
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Amavin Mendis
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Geethma Ekanayake
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Heshan Liyanaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering and Information Technology, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
4
|
Kim YT, Kimmel R, Wang X. A New Method to Determine Antioxidant Activities of Biofilms Using a pH Indicator (Resazurin) Model System. Molecules 2023; 28:molecules28052092. [PMID: 36903338 PMCID: PMC10003940 DOI: 10.3390/molecules28052092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Biopolymeric films were prepared with gelatin, plasticizer, and three different types of antioxidants (ascorbic acid, phytic acid, and BHA) corresponding to different mechanisms in activity. The antioxidant activity of films was monitored for 14 storage days upon color changes using a pH indicator (resazurin). The instant antioxidant activity of films was measured by a DPPH free radical test. The system using resazurin was composed of an agar, an emulsifier, and soybean oil to simulate a highly oxidative oil-based food system (AES-R). Gelatin-based films (GBF) containing phytic acid showed higher tensile strength and energy to break than all other samples due to the increased intermolecular interactions between phytic acid and gelatin molecules. The oxygen barrier properties of GBF films containing ascorbic acid and phytic acid increased due to the increased polarity, while GBF films containing BHA showed increased oxygen permeability compared to the control. According to "a-value" (redness) of the AES-R system tested with films, films incorporating BHA showed the most retardation of lipid oxidation in the system. This retardation corresponds to 59.8% antioxidation activity at 14 days, compared with the control. Phytic acid-based films did not show antioxidant activity, whereas ascorbic acid-based GBFs accelerated the oxidation process due to its prooxidant activity. The comparison between the DPPH free radical test and the control showed that the ascorbic acid and BHA-based GBFs showed highly effective free radical scavenging behavior (71.7% and 41.7%, respectively). This novel method using a pH indicator system can potentially determine the antioxidation activity of biopolymer films and film-based samples in a food system.
Collapse
Affiliation(s)
- Young-Teck Kim
- Department of Sustainable Biomaterials, College of Natural Resources and Environment, Virginia Tech, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: +1-(540)-231-1156
| | - Robert Kimmel
- Food, Nutrition, and Packaging Sciences Department, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Xiyu Wang
- Department of Sustainable Biomaterials, College of Natural Resources and Environment, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
5
|
Zhang L, Chen D, Yu D, Regenstein JM, Jiang Q, Dong J, Chen W, Xia W. Modulating physicochemical, antimicrobial and release properties of chitosan/zein bilayer films with curcumin/nisin-loaded pectin nanoparticles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Gholizadeh M, Tahvildari K, Nozari M. Physical, Rheological and Antibacterial Properties of New Edible Packaging Films Based on the Sturgeon Fish Waste Gelatin and its Compounds with Chitosan. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2132842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mehrnaz Gholizadeh
- Faculty of Chemistry, North Branch of Tehran, Islamic Azad University, Tehran, Iran
| | - Kambiz Tahvildari
- Faculty of Chemistry, North Branch of Tehran, Islamic Azad University, Tehran, Iran
| | - Maryam Nozari
- Faculty of Chemistry, North Branch of Tehran, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Fabrication and characterization of chitosan/gelatin films loaded with microcapsules of Pulicaria jaubertii extract. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107624] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Correlating in silico elucidation of interactions between hydroxybenzoic acids and casein with in vitro release kinetics for designing food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Rodrigues Arruda T, Campos Bernardes P, Robledo Fialho e Moraes A, de Fátima Ferreira Soares N. Natural bioactives in perspective: The future of active packaging based on essential oils and plant extracts themselves and those complexed by cyclodextrins. Food Res Int 2022; 156:111160. [DOI: 10.1016/j.foodres.2022.111160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
|
10
|
Development of Turmeric Oil—Loaded Chitosan/Alginate Nanocapsules for Cytotoxicity Enhancement against Breast Cancer. Polymers (Basel) 2022; 14:polym14091835. [PMID: 35567007 PMCID: PMC9101660 DOI: 10.3390/polym14091835] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Turmeric oil (TO) exhibits various biological activities with limited therapeutic applications due to its instability, volatility, and poor water solubility. Here, we encapsulated TO in chitosan/alginate nanocapsules (CS/Alg-NCs) using o/w emulsification to enhance its physicochemical characteristics, using poloxamer 407 as a non-ionic surfactant. TO-loaded CS/Alg-NCs (TO-CS/Alg-NCs) were prepared with satisfactory features, encapsulation efficiency, release characteristics, and cytotoxicity against breast cancer cells. The average size of the fabricated TO-CS/Alg-NCs was around 200 nm; their distribution was homogenous, and their shapes were spherical, with smooth surfaces. The TO-CS/Alg-NCs showed a high encapsulation efficiency, of 70%, with a sustained release of TO at approximately 50% after 12 h at pH 7.4 and 5.5. The TO-CS/Alg-NCs demonstrated enhanced cytotoxicity against two breast cancer cells, MDA-MB-231 and MCF-7, compared to the unencapsulated TO, suggesting that CS/Alg-NCs are potential nanocarriers for TO and can serve as prospective candidates for in vivo anticancer activity evaluation.
Collapse
|
11
|
Karami P, Zandi M, Ganjloo A. Evaluation of physicochemical, mechanical and antimicrobial properties of gelatin‐sodium alginate‐yarrow (
Achillea millefolium L
.) essential oil film. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Parvaneh Karami
- Department of Food Science and Engineering, Faculty of Agriculture University of Zanjan Zanjan Iran
| | - Mohsen Zandi
- Department of Food Science and Engineering, Faculty of Agriculture University of Zanjan Zanjan Iran
| | - Ali Ganjloo
- Department of Food Science and Engineering, Faculty of Agriculture University of Zanjan Zanjan Iran
| |
Collapse
|
12
|
Ravindran Maniam MM, Loong YH, Samsudin H. Understanding the Formation of β‐cyclodextrin Inclusion Complexes and their use in Active Packaging Systems. STARCH-STARKE 2022. [DOI: 10.1002/star.202100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Ye Heng Loong
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia 11800 USM Penang Malaysia
| | - Hayati Samsudin
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia 11800 USM Penang Malaysia
| |
Collapse
|
13
|
Huang S, Yang S, Chen Y, Yang Z, Deng L, Wu Y, Zhang T, Feng R, Zeng M. Porous carbon supported Pd catalysts derived from gelatin‐based/chitosan or polyvinyl pyrrolidone/
PdCl
2
blends. J Appl Polym Sci 2022. [DOI: 10.1002/app.52163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuaijian Huang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process College of Chemistry & Chemical Engineering, Shaoxing University Shaoxing China
| | - Shuai Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process College of Chemistry & Chemical Engineering, Shaoxing University Shaoxing China
| | - Yuli Chen
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process College of Chemistry & Chemical Engineering, Shaoxing University Shaoxing China
| | - Zhen Yang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process College of Chemistry & Chemical Engineering, Shaoxing University Shaoxing China
| | - Lu Deng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process College of Chemistry & Chemical Engineering, Shaoxing University Shaoxing China
| | - Yuanyuan Wu
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process College of Chemistry & Chemical Engineering, Shaoxing University Shaoxing China
| | - Taojun Zhang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process College of Chemistry & Chemical Engineering, Shaoxing University Shaoxing China
| | - Ruokun Feng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process College of Chemistry & Chemical Engineering, Shaoxing University Shaoxing China
| | - Minfeng Zeng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process College of Chemistry & Chemical Engineering, Shaoxing University Shaoxing China
| |
Collapse
|
14
|
Chen C, Zong L, Wang J, Xie J. Microfibrillated cellulose reinforced starch/polyvinyl alcohol antimicrobial active films with controlled release behavior of cinnamaldehyde. Carbohydr Polym 2021; 272:118448. [PMID: 34420711 DOI: 10.1016/j.carbpol.2021.118448] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022]
Abstract
The starch/polyvinyl alcohol (ST/PVA) films incorporated with cinnamaldehyde (CIN) and microfibrillated cellulose (MFC) were developed. The effect of MFC content on the films' properties was studied. The SEM results showed that MFC promoted compatibility among starch, PVA and CIN. With increased content of MFC, the strength of the films was improved and their flexibility reduced, the films' crystallinity degree and hydrophobicity were improved. The oxygen and water vapor permeability of the films both reduced first and then increased as a whole. The release of CIN from films into the food stimulant (10% ethanol) could be controlled by MFC. When MFC content was between 1% and 7.5%, it decelerated the release of CIN but high MFC content exceeded 10% promoted the release of CIN. It revealed that films containing CIN could inhibit growth of S. putrefaciens. It showed a good prospect of using MFC to develop controlled release active ST/PVA films.
Collapse
Affiliation(s)
- Chenwei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China
| | - Lin Zong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiaxi Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
15
|
Wang H, Ding F, Ma L, Zhang Y. Recent advances in gelatine and chitosan complex material for practical food preservation application. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hongxia Wang
- College of Food Science Southwest University Chongqing 400715 China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education Chongqing 400715 China
- The Ecological Fishery Technological System of Chongqing Municipal Agricultural and Rural Committee Chongqing 400715 China
| | - Fuyuan Ding
- School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 China
| | - Liang Ma
- College of Food Science Southwest University Chongqing 400715 China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education Chongqing 400715 China
- The Ecological Fishery Technological System of Chongqing Municipal Agricultural and Rural Committee Chongqing 400715 China
| | - Yuhao Zhang
- College of Food Science Southwest University Chongqing 400715 China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education Chongqing 400715 China
- The Ecological Fishery Technological System of Chongqing Municipal Agricultural and Rural Committee Chongqing 400715 China
| |
Collapse
|
16
|
Farias NSD, Silva B, de Oliveira Costa AC, Müller CMO. Alginate based antioxidant films with yerba mate (Ilex paraguariensis St. Hil.): Characterization and kinetics of phenolic compounds release. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2020.100548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Wang H, Ding F, Ma L, Zhang Y. Edible films from chitosan-gelatin: Physical properties and food packaging application. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100871] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Haghighi H, Gullo M, La China S, Pfeifer F, Siesler HW, Licciardello F, Pulvirenti A. Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106454] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Cyclodextrin–phytochemical inclusion complexes: Promising food materials with targeted nutrition and functionality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Marangoni Júnior L, Vieira RP, Jamróz E, Anjos CAR. Furcellaran: An innovative biopolymer in the production of films and coatings. Carbohydr Polym 2021; 252:117221. [DOI: 10.1016/j.carbpol.2020.117221] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
|
21
|
Haghighi H, Licciardello F, Fava P, Siesler HW, Pulvirenti A. Recent advances on chitosan-based films for sustainable food packaging applications. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100551] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Taghavi Kevij H, Salami M, Mohammadian M, Khodadadi M. Fabrication and investigation of physicochemical, food simulant release, and antioxidant properties of whey protein isolate-based films activated by loading with curcumin through the pH-driven method. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106026] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Matencio A, Navarro-Orcajada S, García-Carmona F, López-Nicolás JM. Applications of cyclodextrins in food science. A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Active barrier chitosan films containing gallic acid based oxygen scavenger. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00669-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Hu H, Yao X, Qin Y, Yong H, Liu J. Development of multifunctional food packaging by incorporating betalains from vegetable amaranth (Amaranthus tricolor L.) into quaternary ammonium chitosan/fish gelatin blend films. Int J Biol Macromol 2020; 159:675-684. [DOI: 10.1016/j.ijbiomac.2020.05.103] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
|
26
|
Kong R, Wang J, Cheng M, Lu W, Chen M, Zhang R, Wang X. Development and characterization of corn starch/PVA active films incorporated with carvacrol nanoemulsions. Int J Biol Macromol 2020; 164:1631-1639. [PMID: 32763393 DOI: 10.1016/j.ijbiomac.2020.08.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 11/19/2022]
Abstract
An active film was prepared by corn starch (CS), polyvinyl alcohol (PVA) and carvacrol nanoemulsions (CNE). The microstructure and properties of CNE/corn starch/PVA (CNE/CSP) films were characterized and investigated. Scanning electron microscopy (SEM) revealed the uniform distribution of CNE and discontinuity of the film matrix. Fourier transform infrared (FT-IR) and rheological analysis indicated that CNE could weaken molecular interaction of the film matrix. X-ray diffraction (XRD) show that the films are amorphous and CNE has no effect on crystal structure of the films. Incorporation of CNE significantly increased the tensile strength, Young's modulus, elongation at break, barrier (water vapor and ultraviolet), antioxidant and antifungal activity. With the CNE incorporated, the optimal tensile strength, Young's modulus, elongation at break and antioxidant activity of the films can reach 12 MPa, 11 MPa, 133%, 81%, respectively. Minimum water vapor permeability was 3.1 × 10-12 gd-1m-1Pa-1. Notably, films incorporated with CNE (≥20%) had good DPPH free radical scavenging ability (>50%) when stored up to 6 days. Films with 25% CNE exhibited excellent antifungal activity against Trichoderma sp. and its inhibitory zone was 47 mm. Overall, the CSP films loaded with CNE (>15%) could be used as food packing materials with good antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Ruiqi Kong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Juan Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| | - Meng Cheng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Wenqian Lu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Menglin Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Rongfei Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
27
|
Active edible furcellaran/whey protein films with yerba mate and white tea extracts: Preparation, characterization and its application to fresh soft rennet-curd cheese. Int J Biol Macromol 2020; 155:1307-1316. [DOI: 10.1016/j.ijbiomac.2019.11.102] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023]
|
28
|
Kabanov VL, Novinyuk LV. CHITOSAN APPLICATION IN FOOD TECHNOLOGY: A REVIEW OF RESCENT ADVANCES. ACTA ACUST UNITED AC 2020. [DOI: 10.21323/2618-9771-2020-3-1-10-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- V. L. Kabanov
- All-Russia Research Institute for Food Additives — Branch of V. M. Gorbato Federal Research Center for Food Systems of RAS
| | - L. V. Novinyuk
- All-Russia Research Institute for Food Additives — Branch of V. M. Gorbato Federal Research Center for Food Systems of RAS
| |
Collapse
|
29
|
UV-irradiated gelatin-chitosan bio-based composite film, physiochemical features and release properties for packaging applications. Int J Biol Macromol 2020; 147:990-996. [DOI: 10.1016/j.ijbiomac.2019.10.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 11/18/2022]
|
30
|
Kan J, Liu J, Yong H, Liu Y, Qin Y, Liu J. Development of active packaging based on chitosan-gelatin blend films functionalized with Chinese hawthorn (Crataegus pinnatifida) fruit extract. Int J Biol Macromol 2019; 140:384-392. [DOI: 10.1016/j.ijbiomac.2019.08.155] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/12/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
|
31
|
Characterization of gelatin/chitosan ploymer films integrated with docosahexaenoic acids fabricated by different methods. Sci Rep 2019; 9:8375. [PMID: 31182734 PMCID: PMC6557809 DOI: 10.1038/s41598-019-44807-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
In this study, docosahexaenoic acid powder-enhanced gelatin-chitosan edible films were prepared by casting, electrospinning and coaxial electrospinning, respectively. The color (CR), transparency (UV), light transmission (UV), mechanical strength (TA-XT), thermal stability (DSC), crystalline structures (XRD), molecular interactions (FTIR), and microstructure (SEM) were assessed in the analytical research. The results of the research showed that the electrospinning process and the coaxial electrospinning process produced a smooth surface visible to by the naked eye and a uniform granular network structure in a unique film-forming manner, thereby exhibiting good water solubility and mechanical properties. In contrast, the casted film was smooth, transparent, and mechanically strong but poorly water soluble. It was also found that the addition of docosahexaenoic acid powder affected the optical, physical and mechanical properties of the film to varying degrees.
Collapse
|
32
|
Fernández MA, Silva OF, Vico RV, de Rossi RH. Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr Res 2019; 480:12-34. [PMID: 31158527 DOI: 10.1016/j.carres.2019.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cyclodextrins (CDs) are a family of biodegradable cyclic hydrocarbons composed of α-(1,4) linked glucopyranose subunits, the more common containing 6, 7 or 8 glucose units are named α, β and γ-cyclodextrins respectively. Since the discovery of CDs, they have attracted interest among scientists and the first studies were about the properties of the native compounds and in particular their use as catalysts of organic reactions. Characteristics features of different types of cyclodextrins stimulated investigation in different areas of research, due to its non-toxic and non-inmunogenic properties and also to the development of an improved industrial production. In this way, many materials with important properties have been developed. This mini-review will focus on chemical systems that use cyclodextrins, whatever linked covalently or mediated by the non covalent interactions, to build complex systems developed mainly during the last five years.
Collapse
Affiliation(s)
- Mariana A Fernández
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - O Fernando Silva
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Raquel V Vico
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Rita H de Rossi
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
33
|
Kulawik P, Jamróz E, Özogul F. Chitosan for Seafood Processing and Preservation. SUSTAINABLE AGRICULTURE REVIEWS 36 2019. [DOI: 10.1007/978-3-030-16581-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Szente L, Fenyvesi É. Cyclodextrin-Enabled Polymer Composites for Packaging †. Molecules 2018; 23:molecules23071556. [PMID: 29954121 PMCID: PMC6100494 DOI: 10.3390/molecules23071556] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/28/2022] Open
Abstract
Cyclodextrin complexes of fragrances, antimicrobial agents, dyes, insecticides, UV-filters can be incorporated into polymers (packaging films, trays, containers) either to ensure the slow release or a homogeneous distribution of the complexed substances. This way the propagation of microorganisms on surface of enwrapped products is decelerated, or the product is made more attractive by slowly released fragrances, protected against UV-light-induced deterioration, oxidation, etc. Incorporating empty cyclodextrins into the packaging material an aroma barrier packaging is produced, which decelerates the loss of the aroma from the packaged food, prevents the penetration of undesired volatile pollutants from the environment, like components of exhaust gases, cigarette smoke, and reduces the migration of plasticizers, residual solvents and monomers, etc. Applying cyclodextrins in active packaging allows to preserve the quality of food and ensures a longer shelf-life for the packaged items.
Collapse
Affiliation(s)
- Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary.
| | - Éva Fenyvesi
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary.
| |
Collapse
|