1
|
Lee R, Kim JH, Kim WW, Hwang SH, Choi SH, Kim JH, Cho IH, Kim M, Nah SY. Emerging evidence that ginseng components improve cognition in subjective memory impairment, mild cognitive impairment, and early Alzheimer's disease dementia. J Ginseng Res 2024; 48:245-252. [PMID: 38707644 PMCID: PMC11068985 DOI: 10.1016/j.jgr.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/01/2024] [Accepted: 02/15/2024] [Indexed: 05/07/2024] Open
Abstract
Ginseng is a traditional herbal medicine used for prevention and treatment of various diseases as a tonic. Recent scientific cohort studies on life prolongation with ginseng consumption support this record, as those who consumed ginseng for more than 5 years had reduced mortality and cognitive decline compared to those who did not. Clinical studies have also shown that acute or long-term intake of ginseng total extract improves acute working memory performance or cognitive function in healthy individuals and those with subjective memory impairment (SMI), mild cognitive impairment (MCI), or early Alzheimer's disease (AD) dementia who are taking AD medication(s). Ginseng contains various components ranging from classical ginsenosides and polysaccharides to more recently described gintonin. However, it is unclear which ginseng component(s) might be the main candidate that contribute to memory or cognitive improvements or prevent cognitive decline in older individuals. This review describes recent clinical contributors to ginseng components in clinical tests and introduces emerging evidence that ginseng components could be novel candidates for cognitive improvement in older individuals, as ginseng components improve SMI cognition and exhibits add-on effects when co-administered with early AD dementia drugs. The mechanism behind the beneficial effects of ginseng components and how it improves cognition are presented. Additionally, this review shows how ginseng components can contribute to SMI, MCI, or early AD dementia when used as a supplementary food and/or medicine, and proposes a novel combination therapy of current AD medicines with ginseng component(s).
Collapse
Affiliation(s)
- Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ji-Hun Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Won-Woo Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju, Republic of Korea
| | - Sun-Hye Choi
- Department of Animal Health, College of Health and Medical Services, Osan University, Osan-si, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan City, Jeollabuk-Do, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Shin MS, Lee Y, Cho IH, Yang HJ. Brain plasticity and ginseng. J Ginseng Res 2024; 48:286-297. [PMID: 38707640 PMCID: PMC11069001 DOI: 10.1016/j.jgr.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 05/07/2024] Open
Abstract
Brain plasticity refers to the brain's ability to modify its structure, accompanied by its functional changes. It is influenced by learning, experiences, and dietary factors, even in later life. Accumulated researches have indicated that ginseng may protect the brain and enhance its function in pathological conditions. There is a compelling need for a more comprehensive understanding of ginseng's role in the physiological condition because many individuals without specific diseases seek to improve their health by incorporating ginseng into their routines. This review aims to deepen our understanding of how ginseng affects brain plasticity of people undergoing normal aging process. We provided a summary of studies that reported the impact of ginseng on brain plasticity and related factors in human clinical studies. Furthermore, we explored researches focused on the molecular mechanisms underpinning the influence of ginseng on brain plasticity and factors contributing to brain plasticity. Evidences indicate that ginseng has the potential to enhance brain plasticity in the context of normal aging by mediating both central and peripheral systems, thereby expecting to improve age-related declines in brain function. Moreover, given modern western diet can damage neuroplasticity in the long term, ginseng can be a beneficial supplement for better brain health.
Collapse
Affiliation(s)
- Myoung-Sook Shin
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Jeong Yang
- Department of Integrative Bioscience, University of Brain Education, Cheonan, Republic of Korea
- Department of Integrative Healthcare, University of Brain Education, Cheonan, Republic of Korea
- Korea Institute of Brain Science, Seoul, Republic of Korea
| |
Collapse
|
3
|
Virtanen PS, Ortiz KJ, Patel A, Blocher WA, Richardson AM. Blood-Brain Barrier Disruption for the Treatment of Primary Brain Tumors: Advances in the Past Half-Decade. Curr Oncol Rep 2024; 26:236-249. [PMID: 38329660 DOI: 10.1007/s11912-024-01497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/09/2024]
Abstract
PURPOSE OF REVIEW To review relevant advances in the past half-decade in the treatment of primary brain tumors via modification of blood-brain barrier (BBB) permeability. RECENT FINDINGS BBB disruption is becoming increasingly common in the treatment of primary brain tumors. Use of mannitol in BBB disruption for targeted delivery of chemotherapeutics via superselective intra-arterial cerebral infusion (SIACI) is the most utilized strategy to modify the BBB. Mannitol is used in conjunction with chemotherapeutics, oligonucleotides, and other active agents. Convection-enhanced delivery has become an attractive option for therapeutic delivery while bypassing the BBB. Other technologic innovations include laser interstitial thermal therapy (LITT) and focused ultrasound (FUS) which have emerged as prime modalities to directly target tumors and cause significant local BBB disruption. In the past 5 years, interest has significantly increased in studying modalities to disrupt the BBB in primary brain tumors to enhance treatment responses and improve clinical outcomes.
Collapse
Affiliation(s)
- Piiamaria S Virtanen
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kyle J Ortiz
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ajay Patel
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Angela M Richardson
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
4
|
Kim JH, Lee RM, Oh HB, Kim TY, Rhim H, Choi YK, Kim JH, Oh S, Kim DG, Cho IH, Nah SY. Atypical formations of gintonin lysophosphatidic acids as new materials and their beneficial effects on degenerative diseases. J Ginseng Res 2024; 48:1-11. [PMID: 38223830 PMCID: PMC10785247 DOI: 10.1016/j.jgr.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/12/2023] [Indexed: 02/23/2023] Open
Abstract
Fresh ginseng is prone to spoilage due to its high moisture content. For long-term storage, most fresh ginsengs are dried to white ginseng (WG) or steamed for hours at high temperature/pressure and dried to form Korean Red ginseng (KRG). They are further processed for ginseng products when subjected to hot water extraction/concentration under pressure. These WG or KRG preparation processes affect ginsenoside compositions and also other ginseng components, probably during treatments like steaming and drying, to form diverse bioactive phospholipids. It is known that ginseng contains high amounts of gintonin lysophosphatidic acids (LPAs). LPAs are simple lipid-derived growth factors in animals and humans and act as exogenous ligands of six GTP-binding-protein coupled LPA receptor subtypes. LPAs play diverse roles ranging from brain development to hair growth in animals and humans. LPA-mediated signaling pathways involve various GTP-binding proteins to regulate downstream pathways like [Ca2+]i transient induction. Recent studies have shown that gintonin exhibits anti-Alzheimer's disease and anti-arthritis effects in vitro and in vivo mediated by gintonin LPAs, the active ingredients of gintonin, a ginseng-derived neurotrophin. However, little is known about how gintonin LPAs are formed in high amounts in ginseng compared to other herbs. This review introduces atypical or non-enzymatic pathways under the conversion of ginseng phospholipids into gintonin LPAs during steaming and extraction/concentration processes, which exert beneficial effects against degenerative diseases, including Alzheimer's disease and arthritis in animals and humans via LPA receptors.
Collapse
Affiliation(s)
- Ji-Hun Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ra Mi Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyo-Bin Oh
- Department of Efficacy Study, Institute of Jinan Red Ginseng, Jeollabuk-do, Republic of Korea
| | - Tae-Young Kim
- Department of Efficacy Study, Institute of Jinan Red Ginseng, Jeollabuk-do, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Bio/Molecular Informatics Center, Republic of Korea
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeollabuk-do, Republic of Korea
| | - Seikwan Oh
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Zhang M, Niu H, Li Q, Jiao L, Li H, Wu W. Active Compounds of Panax ginseng in the Improvement of Alzheimer's Disease and Application of Spatial Metabolomics. Pharmaceuticals (Basel) 2023; 17:38. [PMID: 38256872 PMCID: PMC10818864 DOI: 10.3390/ph17010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Panax ginseng C.A. Meyer (P. ginseng) is one of the more common traditional Chinese medicines (TCMs). It contains numerous chemical components and exhibits a range of pharmacological effects. An enormous burden is placed on people's health and life by Alzheimer's disease (AD), a neurodegenerative condition. Recent research has shown that P. ginseng's chemical constituents, particularly ginsenosides, have a significant beneficial impact on the prevention and management of neurological disorders. To understand the current status of research on P. ginseng to improve AD, this paper discusses the composition of P. ginseng, its mechanism of action, and its clinical application. The pathogenesis of AD includes amyloid beta protein (Aβ) generation and aggregation, tau protein hyperphosphorylation, oxidant stress, neuroinflammation, mitochondrial damage, and neurotransmitter and gut microbiota disorders. This review presents the key molecular mechanisms and signaling pathways of the active ingredients in P. ginseng involved in improving AD from the perspective of AD pathogenesis. A P. ginseng-related signaling pathway network was constructed to provide effective targets for the treatment of AD. In addition, the application of spatial metabolomics techniques in studying P. ginseng and AD is discussed. In summary, this paper discusses research perspectives for the study of P. ginseng in the treatment of AD, including a systematic and in-depth review of the mechanisms of action of the active substances in P. ginseng, and evaluates the feasibility of applying spatial metabolomics in the study of AD pathogenesis and pharmacological treatment.
Collapse
Affiliation(s)
| | | | | | | | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.Z.); (H.N.); (Q.L.); (L.J.)
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.Z.); (H.N.); (Q.L.); (L.J.)
| |
Collapse
|
6
|
Cho HS, Kwon TW, Kim JH, Lee R, Bae CS, Kim HC, Kim JH, Choi SH, Cho IH, Nah SY. Gintonin Alleviates HCl/Ethanol- and Indomethacin-Induced Gastric Ulcers in Mice. Int J Mol Sci 2023; 24:16721. [PMID: 38069044 PMCID: PMC10705886 DOI: 10.3390/ijms242316721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Gintonin, newly extracted from ginseng, is a glycoprotein that acts as an exogenous lysophosphatidic acid (LPA) receptor ligand. This study aimed to demonstrate the in vivo preventive effects of gintonin on gastric damage. ICR mice were randomly assigned to five groups: a normal group (received saline, 0.1 mL/10 g, p.o.); a control group (administered 0.3 M HCl/ethanol, 0.1 mL/10 g, p.o.) or indomethacin (30 mg/kg, p.o.); gintonin at two different doses (50 mg/kg or 100 mg/kg, p.o.) with either 0.3 M HCl/ethanol or indomethacin; and a positive control (Ranitidine, 40 mg/kg, p.o.). After gastric ulcer induction, the gastric tissue was examined to calculate the ulcer index. The expression of gastric damage markers, such as tumor necrosis factor (TNF)-α, cyclooxygenase 2 (COX-2), and LPA2 and LPA5 receptors, were measured by Western blotting. Interleukin-6 (IL-6) and prostaglandin E2 (PGE2) levels were measured by enzyme-linked immunosorbent assay. The platelet endothelial cell adhesion molecule (PECAM-1), Evans blue, and occludin levels in gastric tissues were measured using immunofluorescence analysis. Both HCl/ethanol- and indomethacin-induced gastric ulcers showed increased TNF-α, IL-6, Evans blue permeation, and PECAM-1, and decreased COX-2, PGE2, occludin, and LPA5 receptor expression levels. However, oral administration of gintonin alleviated the gastric ulcer index induced by HCl/ethanol and indomethacin in a dose-dependent manner. Gintonin suppressed TNF-α and IL-6 expression, but increased COX-2 expression and PGE2 levels in mouse gastric tissues. Gintonin intake also increased LPA5 receptor expression in mouse gastric tissues. These results indicate that gintonin can play a role in gastric protection against gastric damage induced by HCl/ethanol or indomethacin.
Collapse
Affiliation(s)
- Han-Sung Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| | - Tae Woo Kwon
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Ji-Hun Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-City 54596, Republic of Korea
| | - Sun-Hye Choi
- Department of Animal Health, College of Health and Medical Services, Osan University, Osan-si 18119, Republic of Korea
| | - Ik-Hyun Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| |
Collapse
|
7
|
Devasani K, Yao Y. Expression and functions of adenylyl cyclases in the CNS. Fluids Barriers CNS 2022; 19:23. [PMID: 35307032 PMCID: PMC8935726 DOI: 10.1186/s12987-022-00322-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/27/2022] Open
Abstract
Adenylyl cyclases (ADCYs), by generating second messenger cAMP, play important roles in various cellular processes. Their expression, regulation and functions in the CNS, however, remain largely unknown. In this review, we first introduce the classification and structure of ADCYs, followed by a discussion of the regulation of mammalian ADCYs (ADCY1-10). Next, the expression and function of each mammalian ADCY isoform are summarized in a region/cell-specific manner. Furthermore, the effects of GPCR-ADCY signaling on blood-brain barrier (BBB) integrity are reviewed. Last, current challenges and future directions are discussed. We aim to provide a succinct review on ADCYs to foster new research in the future.
Collapse
Affiliation(s)
- Karan Devasani
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, 33612, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, 33612, USA.
| |
Collapse
|
8
|
Whelan R, Hargaden GC, Knox AJS. Modulating the Blood-Brain Barrier: A Comprehensive Review. Pharmaceutics 2021; 13:1980. [PMID: 34834395 PMCID: PMC8618722 DOI: 10.3390/pharmaceutics13111980] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
The highly secure blood-brain barrier (BBB) restricts drug access to the brain, limiting the molecular toolkit for treating central nervous system (CNS) diseases to small, lipophilic drugs. Development of a safe and effective BBB modulator would revolutionise the treatment of CNS diseases and future drug development in the area. Naturally, the field has garnered a great deal of attention, leading to a vast and diverse range of BBB modulators. In this review, we summarise and compare the various classes of BBB modulators developed over the last five decades-their recent advancements, advantages and disadvantages, while providing some insight into their future as BBB modulators.
Collapse
Affiliation(s)
- Rory Whelan
- School of Biological and Health Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 XT95 Dublin, Ireland;
- Chemical and Structural Biology, Environmental Sustainability and Health Institute, Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - Grainne C. Hargaden
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 XT95 Dublin, Ireland;
| | - Andrew J. S. Knox
- School of Biological and Health Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 XT95 Dublin, Ireland;
- Chemical and Structural Biology, Environmental Sustainability and Health Institute, Technological University Dublin, D07 H6K8 Dublin, Ireland
| |
Collapse
|
9
|
Hashimoto Y, Campbell M, Tachibana K, Okada Y, Kondoh M. Claudin-5: A Pharmacological Target to Modify the Permeability of the Blood-Brain Barrier. Biol Pharm Bull 2021; 44:1380-1390. [PMID: 34602546 DOI: 10.1248/bpb.b21-00408] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Claudin-5 is the dominant tight junction protein in brain endothelial cells and exclusively limits the paracellular permeability of molecules larger than 400 Da across the blood-brain barrier (BBB). Its pathological impairment or sustained down-regulation has been shown to lead to the progression of psychiatric and neurological disorders, whereas its expression under physiological conditions prevents the passage of drugs across the BBB. While claudin-5 enhancers could potentially act as vascular stabilizers to treat neurological diseases, claudin-5 inhibitors could function as delivery systems to enhance the brain uptake of hydrophilic small-molecular-weight drugs. Therefore, the effects of claudin-5 manipulation on modulating the BBB in different neurological diseases requires further examination. To manipulate claudin-5 expression levels and function, several claudin-5 modulating molecules have been developed. In this review, we first describe the molecular, cellular and pathological aspects of claudin-5 to highlight the mechanisms of claudin-5 enhancers/inhibitors. We then discuss recently developed claudin-5 enhancers/inhibitors and new methods to discover these molecules.
Collapse
Affiliation(s)
| | | | | | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
10
|
Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Front Cell Neurosci 2021; 15:661838. [PMID: 34588955 PMCID: PMC8475767 DOI: 10.3389/fncel.2021.661838] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is involved in the onset or progression of various neurodegenerative diseases. Initiation of neuroinflammation is triggered by endogenous substances (damage-associated molecular patterns) and/or exogenous pathogens. Activation of glial cells (microglia and astrocytes) is widely recognized as a hallmark of neuroinflammation and triggers the release of proinflammatory cytokines, leading to neurotoxicity and neuronal dysfunction. Another feature associated with neuroinflammatory diseases is impairment of the blood-brain barrier (BBB). The BBB, which is composed of brain endothelial cells connected by tight junctions, maintains brain homeostasis and protects neurons. Impairment of this barrier allows trafficking of immune cells or plasma proteins into the brain parenchyma and subsequent inflammatory processes in the brain. Besides neurons, activated glial cells also affect BBB integrity. Therefore, BBB dysfunction can amplify neuroinflammation and act as a key process in the development of neuroinflammation. BBB integrity is determined by the integration of multiple signaling pathways within brain endothelial cells through intercellular communication between brain endothelial cells and brain perivascular cells (pericytes, astrocytes, microglia, and oligodendrocytes). For prevention of BBB disruption, both cellular components, such as signaling molecules in brain endothelial cells, and non-cellular components, such as inflammatory mediators released by perivascular cells, should be considered. Thus, understanding of intracellular signaling pathways that disrupt the BBB can provide novel treatments for neurological diseases associated with neuroinflammation. In this review, we discuss current knowledge regarding the underlying mechanisms involved in BBB impairment by inflammatory mediators released by perivascular cells.
Collapse
Affiliation(s)
- Fuyuko Takata
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Junichi Matsumoto
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shinya Dohgu
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
11
|
Salmina AB, Komleva YK, Malinovskaya NA, Morgun AV, Teplyashina EA, Lopatina OL, Gorina YV, Kharitonova EV, Khilazheva ED, Shuvaev AN. Blood-Brain Barrier Breakdown in Stress and Neurodegeneration: Biochemical Mechanisms and New Models for Translational Research. BIOCHEMISTRY (MOSCOW) 2021; 86:746-760. [PMID: 34225598 DOI: 10.1134/s0006297921060122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Blood-brain barrier (BBB) is a structural and functional element of the neurovascular unit (NVU), which includes cells of neuronal, glial, and endothelial nature. The main functions of NVU include maintenance of the control of metabolism and chemical homeostasis in the brain tissue, ensuring adequate blood flow in active regions, regulation of neuroplasticity processes, which is realized through intercellular interactions under normal conditions, under stress, in neurodegeneration, neuroinfection, and neurodevelopmental diseases. Current versions of the BBB and NVU models, static and dynamic, have significantly expanded research capabilities, but a number of issues remain unresolved, in particular, personification of the models for a patient. In addition, application of both static and dynamic models has an important problem associated with the difficulty in reproducing pathophysiological mechanisms responsible for the damage of the structural and functional integrity of the barrier in the diseases of the central nervous system. More knowledge on the cellular and molecular mechanisms of BBB and NVU damage in pathology is required to solve this problem. This review discusses current state of the cellular and molecular mechanisms that control BBB permeability, pathobiochemical mechanisms and manifestations of BBB breakdown in stress and neurodegenerative diseases, as well as the problems and prospects of creating in vitro BBB and NVU models for translational studies in neurology and neuropharmacology. Deciphering BBB (patho)physiology will open up new opportunities for further development in the related areas of medicine such as regenerative medicine, neuropharmacology, and neurorehabilitation.
Collapse
Affiliation(s)
- Alla B Salmina
- Division of Brain Sciences, Research Center of Neurology, Moscow, 125367, Russia. .,Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Yuliya K Komleva
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Nataliya A Malinovskaya
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Andrey V Morgun
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Elena A Teplyashina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Olga L Lopatina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Yana V Gorina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Ekaterina V Kharitonova
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Elena D Khilazheva
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| | - Anton N Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, 660022, Russia
| |
Collapse
|
12
|
Lee WJ, Shin YW, Chang H, Shin HR, Kim WW, Jung SW, Choi SH, Kim M, Nah SY. Cognitive improvement effect of gintonin might be associated with blood-brain barrier permeability enhancement: dynamic contrast-enhanced MRI pilot study. Transl Clin Pharmacol 2021; 29:21-32. [PMID: 33854998 PMCID: PMC8020362 DOI: 10.12793/tcp.2021.29.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/19/2021] [Accepted: 02/04/2021] [Indexed: 11/28/2022] Open
Abstract
Along with the multiple neuroprotective effect, recent studies suggest that gintonin might increase the blood brain barrier permeability. We evaluated the effect of gintonin on the vascular permeability changes in different brain segments, using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). In this 8-week, randomized, open label pilot study, ten participants with subjective memory impairment but preserved cognitive function assigned to gintonin-enriched fraction (GEF) 300 mg/day or placebo groups. Korean versions of the Alzheimer's disease assessment scale (ADAS-K) and DCE-MRI parameters including Ktrans and Vp in different brain segments were evaluated at baseline and at 8 weeks after treatment. Nine participants completed the study protocol. No adverse events occurred during the observation period for 8 weeks in both groups. Following gintonin administration, increment trends of the brain permeability that did not reach a statistical significance were observed in the left hippocampus (Ktrans and Vp, both, p = 0.062), left thalamus and in left putamen (Ktrans, p = 0.062), and left insula and right amygdala (Vp, p = 0.062), but not in the control placebo group. The increment of the Ktrans value in the left thalamus from the baseline was highly correlated with the change of the ADAS scores (r = -0.900, p = 0.037). Gintonin might enhance the blood-brain barrier (BBB) permeability in the brain structures involved in cognitive functions. Further efficacy exploration for the synergistic effect of gintonin's BBB permeability enhancement to its other cognitive enhancing mechanisms are warranted. TRIAL REGISTRATION Clinical Research Information Service Identifier: KCT0003418.
Collapse
Affiliation(s)
- Woo-Jin Lee
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea
| | - Yong-Won Shin
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea
- Center for Hospital Medicine, Department of Neurosurgery, Seoul National University Hospital, Seoul 03080, Korea
| | - Hyeyeon Chang
- National Center for Mental Health, Seoul 04933, Korea
| | - Hye-Rim Shin
- Department of Neurology, Dankook University Hospital, Cheonan 31116, Korea
| | - Won-Woo Kim
- Gintonin KU Biotech Co., LTD., Anyang 14087, Korea
| | | | - Seung-Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul 03080, Korea
- Protein Metabolism and Neuroscience Dementia Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Seung-Yeol Nah
- Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
13
|
Jang M, Choi SH, Choi JH, Oh J, Lee RM, Lee NE, Cho YJ, Rhim H, Kim HC, Cho IH, Nah SY. Ginseng gintonin attenuates the disruptions of brain microvascular permeability and microvascular endothelium junctional proteins in an APPswe/PSEN-1 double-transgenic mouse model of Αlzheimer's disease. Exp Ther Med 2021; 21:310. [PMID: 33717253 PMCID: PMC7885069 DOI: 10.3892/etm.2021.9741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/30/2020] [Indexed: 11/06/2022] Open
Abstract
It has been previously indicated that gintonin, which is a novel exogenous ginseng-derived lysophosphatidic acid (LPA) receptor ligand, restores memory dysfunctions in an APPswe/PSEN-1 double-transgenic mouse model of Alzheimer's disease (AD Tg mice) by attenuating β-amyloid plaque deposition, recovering cholinergic dysfunctions and upregulating hippocampal neurogenesis in the cortex and hippocampus. Although β-amyloid plaque depositions in AD is accompanied with disruptions of brain microvessels, including the brain-blood barrier (BBB), it is unknown whether gintonin exerts protective effects on brain microvascular dysfunctions in AD Tg mice. In the present study, the effects of gintonin-enriched fraction (GEF) on the changes in β-amyloid plaque depositions, brain permeability of Evans blue, and microvascular junctional proteins were investigated in AD Tg mice. Long-term oral administration of GEF reduced β-amyloid plaque depositions in the cortex and hippocampus of AD Tg mice. GEF treatment also reduced the permeability of Evans blue through BBB and decreased immunoreactivity of platelet endothelial cell adhesion molecule-1 (a marker of BBB disruption) in the cortex and hippocampus of AD Tg mice in a dose-dependent manner. However, GEF elevated the protein expression of occludin, claudin-5 and zonula occludens-1, which are tight-junction proteins. The present results demonstrated that long-term oral GEF treatment not only attenuates β-amyloid plaque depositions in the brain but also exhibits protective effects against microvascular disruptions in AD Tg mice. Finally, GEF exhibits anti-AD effects through attenuation of β-amyloid plaque depositions and protection against brain microvascular damage in an AD animal model.
Collapse
Affiliation(s)
- Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Hee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jinhee Oh
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ra Mi Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Eun Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeon-Jin Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Brain Korea 21 Plus Program and Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
14
|
Potential Therapeutic Role of Phytochemicals to Mitigate Mitochondrial Dysfunctions in Alzheimer's Disease. Antioxidants (Basel) 2020; 10:antiox10010023. [PMID: 33379372 PMCID: PMC7823298 DOI: 10.3390/antiox10010023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by a decline in cognitive function and neuronal damage. Although the precise pathobiology of AD remains elusive, accumulating evidence suggests that mitochondrial dysfunction is one of the underlying causes of AD. Mutations in mitochondrial or nuclear DNA that encode mitochondrial components may cause mitochondrial dysfunction. In particular, the dysfunction of electron transport chain complexes, along with the interactions of mitochondrial pathological proteins are associated with mitochondrial dysfunction in AD. Mitochondrial dysfunction causes an imbalance in the production of reactive oxygen species, leading to oxidative stress (OS) and vice versa. Neuroinflammation is another potential contributory factor that induces mitochondrial dysfunction. Phytochemicals or other natural compounds have the potential to scavenge oxygen free radicals and enhance cellular antioxidant defense systems, thereby protecting against OS-mediated cellular damage. Phytochemicals can also modulate other cellular processes, including autophagy and mitochondrial biogenesis. Therefore, pharmacological intervention via neuroprotective phytochemicals can be a potential strategy to combat mitochondrial dysfunction as well as AD. This review focuses on the role of phytochemicals in mitigating mitochondrial dysfunction in the pathogenesis of AD.
Collapse
|
15
|
Biological evidence of gintonin efficacy in memory disorders. Pharmacol Res 2020; 163:105221. [PMID: 33007419 DOI: 10.1016/j.phrs.2020.105221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Gintonin is a novel glycolipoprotein, which has been abundantly found in the root of Korean ginseng. It holds lysophosphatidic acids (LPAs), primarily identified LPA C18:2, and is an exogenous agonist of LPA receptors (LPARs). Gintonin maintains blood-brain barrier integrity, and it has recently been studied in several models of neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Gintonin demonstrated neuroprotective activity by providing action against neuroinflammation-, apoptosis- and oxidative stress-mediated neurodegeneration. Gintonin showed an emerging role as a modulator of synaptic transmission and neurogenesis and also potentially regulated autophagy in primary cortical astrocytes. It also ameliorated the toxic agent-induced and genetic models of cognitive deficits in experimental NDDs. As a novel agonist of LPARs, gintonin regulated several G protein-coupled receptors (GPCRs) including GPR40 and GPR55. However, further study needs to be investigated to understand the underlying mechanism of action of gintonin in memory disorders.
Collapse
|
16
|
Kim DG, Kim HJ, Choi SH, Nam SM, Kim HC, Rhim H, Cho IH, Rhee MH, Nah SY. Gintonin influences the morphology and motility of adult brain neurons via LPA receptors. J Ginseng Res 2020; 45:401-407. [PMID: 34025133 PMCID: PMC8134845 DOI: 10.1016/j.jgr.2020.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/10/2020] [Accepted: 06/30/2020] [Indexed: 11/02/2022] Open
Abstract
Background Gintonin is an exogenous ginseng-derived G-protein-coupled lysophosphatidic acid (LPA) receptor ligand. LPA induces in vitro morphological changes and migration through neuronal LPA1 receptor. Recently, we reported that systemic administration of gintonin increases blood-brain barrier (BBB) permeability via the paracellular pathway and its binding to brain neurons. However, little is known about the influences of gintonin on in vivo neuron morphology and migration in the brain. Materials and methods We examined the effects of gintonin on in vitro migration and morphology using primary hippocampal neural precursor cells (hNPC) and in vivo effects of gintonin on adult brain neurons using real time microscopic analysis and immunohistochemical analysis to observe the morphological and locational changes induced by gintonin treatment. Results We found that treating hNPCs with gintonin induced morphological changes with a cell rounding following cell aggregation and return to individual neurons with time relapses. However, the in vitro effects of gintonin on hNPCs were blocked by the LPA1/3 receptor antagonist, Ki16425, and Rho kinase inhibitor, Y27632. We also examined the in vivo effects of gintonin on the morphological changes and migration of neurons in adult mouse brains using anti-NeuN and -neurofilament H antibodies. We found that acute intravenous administration of gintonin induced morphological and migrational changes in brain neurons. Gintonin induced some migrations of neurons with shortened neurofilament H in the cortex. The in vivo effects of gintonin were also blocked by Ki16425. Conclusion The present report raises the possibility that gintonin could enter the brain and exert its influences on the migration and morphology of adult mouse brain neurons and possibly explains the therapeutic effects of neurological diseases behind the gintonin administration.
Collapse
Key Words
- Adult brain neuron
- BBB, blood brain barrier
- BSA, bovine serum albumin
- DAPI, 4′,6-diamidino-2-phenylindole
- DMEM, Dulbecco's modified Eagle's medium
- DMSO, dimethyl sulfoxide
- EGF, epidermal growth factor
- FITC, fluorescein isothiocyanate
- Gintonin
- HBSS, Hanks' Balanced Salt Solution
- LPA receptors
- LPA, Lysophatidic Acid
- MEM, Modified Eagle's medium
- Morphology and migration
- NECAB1, Neuronal calcium binding proteins 1
- NFH, neurofilament H
- OCT, optimum cutting temperature
- PFA, paraformaldehyde
- ROCK, Rho-associated protein kinase
- bFGF, fibroblast growth factor
- hNPC, hippocampal neural precursor cells
Collapse
Affiliation(s)
- Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute, Cheomdanro 61, Daegu, Republic of Korea.,Department of Anatomy, School of Medicine and Institute for Environmental Science, Wonkwang University, Iksan, Republic of Korea
| | - Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sung Min Nam
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, Brain Korea 21 Plus Program, and Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Man Hee Rhee
- Laboratory of Veterinary Physiology & Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Calabrese EJ. Hormesis and Ginseng: Ginseng Mixtures and Individual Constituents Commonly Display Hormesis Dose Responses, Especially for Neuroprotective Effects. Molecules 2020; 25:E2719. [PMID: 32545419 PMCID: PMC7321326 DOI: 10.3390/molecules25112719] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
This paper demonstrates that ginseng mixtures and individual ginseng chemical constituents commonly induce hormetic dose responses in numerous biological models for endpoints of biomedical and clinical relevance, typically providing a mechanistic framework. The principal focus of ginseng hormesis-related research has been directed toward enhancing neuroprotection against conditions such as Alzheimer's and Parkinson's Diseases, stroke damage, as well as enhancing spinal cord and peripheral neuronal damage repair and reducing pain. Ginseng was also shown to reduce symptoms of diabetes, prevent cardiovascular system damage, protect the kidney from toxicities due to immune suppressant drugs, and prevent corneal damage, amongst other examples. These findings complement similar hormetic-based chemoprotective reports for other widely used dietary-type supplements such as curcumin, ginkgo biloba, and green tea. These findings, which provide further support for the generality of the hormetic dose response in the biomedical literature, have potentially important public health and clinical implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
18
|
Pluimer BR, Colt M, Zhao Z. G Protein-Coupled Receptors in the Mammalian Blood-Brain Barrier. Front Cell Neurosci 2020; 14:139. [PMID: 32581715 PMCID: PMC7283493 DOI: 10.3389/fncel.2020.00139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
The mammalian neurovascular unit (NVU) is comprised of neurons, glia, and vascular cells. The NVU is the nexus between the cardiovascular and central nervous system (CNS). The central component of the NVU is the blood-brain barrier (BBB) which consists of a monolayer of tightly connected endothelial cells covered by pericytes and further surrounded by astrocytic endfeet. In addition to preventing the diffusion of toxic species into the CNS, the BBB endothelium serves as a dynamic regulatory system facilitating the transport of molecules from the bloodstream to the brain and vis versa. The structural integrity and transport functions of the BBB are maintained, in part, by an orchestra of membrane receptors and transporters including members of the superfamily of G protein-coupled receptors (GPCRs). Here, we provide an overview of GPCRs known to regulate mammalian BBB structure and function and discuss how dysregulation of these pathways plays a role in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Brock R. Pluimer
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Mark Colt
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Zhen Zhao
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Neuroscience Graduate Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
19
|
Hashimoto Y, Campbell M. Tight junction modulation at the blood-brain barrier: Current and future perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183298. [PMID: 32353377 DOI: 10.1016/j.bbamem.2020.183298] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/09/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is the one of the most robust physical barriers in the body, comprised of tight junction (TJ) proteins in brain microvascular endothelial cells. The need for drugs to treat central nervous systems diseases is ever increasing, however the presence of the BBB significantly hampers the uptake of drugs into the brain. To overcome or circumvent the barrier, many kinds of techniques are being developed. Modulating the paracellular route by disruption of the TJ complex has been proposed as a potential drug delivery system to treat brain diseases, however, it has several limitations and is still in a developmental stage. However, recent significant advance in medical equipment /tools such as targeted ultra-sound technologies may resolve these limitations. In this review, we introduce recent advances in site- or molecular size-selective BBB disruption/modulation technologies and we include details on pharmacological inhibitory molecules against intercellular TJ proteins to modulate the BBB.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin 2, Ireland.
| | - Matthew Campbell
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin 2, Ireland.
| |
Collapse
|
20
|
Zhao N, Cheng M, Lv W, Wu Y, Liu D, Zhang X. Peptides as Potential Biomarkers for Authentication of Mountain-Cultivated Ginseng and Cultivated Ginseng of Different Ages Using UPLC-HRMS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2263-2275. [PMID: 31986019 DOI: 10.1021/acs.jafc.9b05568] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The growth conditions and age of Panax ginseng are vital for determining the quality of the ginseng plant. However, the considerable difference in price according to the cultivation method and period of P. ginseng leads to its adulteration in the trade market. We herein focused on ginseng peptides and the possibility of these peptides to be used as biomarker(s) for discrimination of P. ginseng. We applied an ultraperformance liquid chromatography-high resolution mass spectrometry-based peptidomics approach to characterize ginseng peptides and discover novel peptide biomarkers for authentication of mountain-cultivated ginseng (MCG). We identified 52 high-confidence peptides and screened 20 characteristic peptides differentially expressed between MCG and cultivated ginseng (CG). Intriguingly, 6 differential peptides were expressed significantly in MCG and originated from dehydrins that accumulated during cold or drought conditions. In addition, 14 other differential peptides that were significantly expressed in CG derived from ginseng major protein, an essential protein for nitrogen storage. These biological associations confirmed the reliability and credibility of the differential peptides. Additionally, we determined several robust peptide biomarkers for discrimination of MCG through a precise selection process. These findings demonstrate the potential of peptide biomarkers for identification and quality control of P. ginseng in addition to ginsenoside analysis.
Collapse
Affiliation(s)
- Nan Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
- University of Chinese Academy of Sciences , Yuquan Road 19 , Beijing 100049 , China
| | - Mengchun Cheng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| | - Wei Lv
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
- School of Chemistry and Chemical Engineering , North Minzu University , Yinchuan 750021 , China
| | - Yulin Wu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
- Henan University of Chinese Medicine , Jinshui East Road 156 , Zhengzhou 450046 , China
| | - Dan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| |
Collapse
|
21
|
Choi SH, Lee NE, Cho HJ, Lee RM, Rhim H, Kim HC, Han M, Lee EH, Park J, Nah SY. Gintonin facilitates brain delivery of donepezil, a therapeutic drug for Alzheimer disease, through lysophosphatidic acid 1/3 and vascular endothelial growth factor receptors. J Ginseng Res 2019; 45:264-272. [PMID: 33841007 PMCID: PMC8020287 DOI: 10.1016/j.jgr.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 11/17/2022] Open
Abstract
Background Gintonin is a ginseng-derived exogenous G-protein–coupled lysophosphatidic acid (LPA) receptor ligand, which exhibits in vitro and in vivo functions against Alzheimer disease (AD) through lysophosphatidic acid 1/3 receptors. A recent study demonstrated that systemic treatment with gintonin enhances paracellular permeability of the blood–brain barrier (BBB) through the LPA1/3 receptor. However, little is known about whether gintonin can enhance brain delivery of donepezil (DPZ) (Aricept), which is a representative cognition-improving drug used in AD clinics. In the present study, we examined whether systemic administration of gintonin can stimulate brain delivery of DPZ. Methods We administered gintonin and DPZ alone or coadministered gintonin with DPZ intravenously or orally to rats. Then we collected the cerebral spinal fluid (CSF) and serum and determined the DPZ concentration through liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Results Intravenous, but not oral, coadministration of gintonin with DPZ increased the CSF concentration of DPZ in a concentration- and time-dependent manner. Gintonin-mediated enhancement of brain delivery of DPZ was blocked by Ki16425, a LPA1/3 receptor antagonist. Coadministration of vascular endothelial growth factor (VEGF) + gintonin with DPZ similarly increased CSF DPZ concentration. However, gintonin-mediated enhancement of brain delivery of DPZ was blocked by axitinip, a VEGF receptor antagonist. Mannitol, a BBB disrupting agent that increases the BBB permeability, enhanced gintonin-mediated enhancement of brain delivery of DPZ. Conclusions We found that intravenous, but not oral, coadministration of gintonin facilitates brain delivery of DPZ from plasma via LPA1/3 and VEGF receptors. Gintonin is a potential candidate as a ginseng-derived novel agent for the brain delivery of DPZ for treatment of patients with AD.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Na-Eun Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Hee-Jung Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Ra Mi Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Mun Han
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, South Korea
| | - Eun-Hee Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, South Korea
| | - Juyoung Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, South Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
22
|
Rahman MA, Hwang H, Nah SY, Rhim H. Gintonin stimulates autophagic flux in primary cortical astrocytes. J Ginseng Res 2018; 44:67-78. [PMID: 32148391 PMCID: PMC7033340 DOI: 10.1016/j.jgr.2018.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/18/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Background Gintonin (GT), a novel ginseng-derived exogenous ligand of lysophosphatidic acid (LPA) receptors, has been shown to induce cell proliferation and migration in the hippocampus, regulate calcium-dependent ion channels in the astrocytes, and reduce β-amyloid plaque in the brain. However, whether GT influences autophagy in cortical astrocytes is not yet investigated. Methods We examined the effect of GT on autophagy in primary cortical astrocytes using immunoblot and immunocytochemistry assays. Suppression of specific proteins was performed via siRNA. LC3 puncta was determined using confocal microscopy. Results GT strongly upregulated autophagy marker LC3 by a concentration- as well as time-dependent manner via G protein–coupled LPA receptors. GT-induced autophagy was further confirmed by the formation of LC3 puncta. Interestingly, on pretreatment with an mammalian target of rapamycin (mTOR) inhibitor, rapamycin, GT further enhanced LC3-II and LC3 puncta expression. However, GT-induced autophagy was significantly attenuated by inhibition of autophagy by 3-methyladenine and knockdown Beclin-1, Atg5, and Atg7 gene expression. Importantly, when pretreated with a lysosomotropic agent, E-64d/peps A or bafilomycin A1, GT significantly increased the levels of LC3-II along with the formation of LC3 puncta. In addition, GT treatment enhanced autophagic flux, which led to an increase in lysosome-associated membrane protein 1 and degradation of ubiquitinated p62/SQSTM1. Conclusion GT induces autophagy via mTOR-mediated pathway and elevates autophagic flux. This study demonstrates that GT can be used as an autophagy-inducing agent in cortical astrocytes.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Hongik Hwang
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|