1
|
Deng C, Zhang T, Zhang X, Gu T, Xu L, Yu Z, Zheng M, Zhou Y. Multiscale structure and precipitation mechanism of debranched starch precipitated by different alcohols. Int J Biol Macromol 2023; 241:124562. [PMID: 37088190 DOI: 10.1016/j.ijbiomac.2023.124562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Alcohol solution is a cheap, simple, and effective precipitating solvent frequently used for separating debranched starch (DBS), yet little is known about the precipitation mechanism of DBS by different alcohols. This study precipitated DBS from pullulanase-hydrolyzed starch using ethanol, n-butanol, and isopentanol. The multiscale structures of DBS were characterized, including chain length, single/double helix, and crystalline. The chain conformation and precipitation mechanism of DBS in different alcohols was investigated using molecular dynamics (MD) simulation. DBS precipitated by n-butanol contained the largest proportion of short chain (DP6-24, 83.2 %), the highest V-type crystallinity (21.1 %), and the largest single-helix content (24.7 %). A single helix conformation of DBS chain was determined in alcohols, where alcohol molecules entered the helix cavity. Intra/inter-molecular hydrogen bonds stabilized the helix, with a large number of hydrogen bonds leading to strong molecular interaction and stable helical structure. The solvent accessible surface area of DBS chain decreased by 7.88-19.32 % in alcohols, and the radial distribution function revealed that the first solvent layer of DBS chain at 0.29 nm was closely related to hydrogen bonding. This study provides a basis for the choice of precipitation solvent for preparing DBS with different chain lengths and physicochemical properties.
Collapse
Affiliation(s)
- Changyue Deng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Tiantian Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Xiumei Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Tingting Gu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Li Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Ahsani Arani Y, Noormohammadi Z, Rasekh B, Yazdian F, kazemi H. Evaluation of SDS-coated iron nanostructure on the gene expression of bio surfactant-producing genes by Pseudomonas aeruginosa. Eng Life Sci 2022; 22:584-593. [PMID: 36093361 PMCID: PMC9444714 DOI: 10.1002/elsc.202200002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/22/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022] Open
Abstract
Bio surfactants are natural surfactants that induce emulsification, displacement, increased solubility, and mobility of hydrophobic organic compounds. In this study, the gene expression of biosurfactant production genes by Pseudomonas aeruginosa in the presence of sodium dodecyl sulfate coated iron nanostructure (Fe/SDS) were evaluated. Emulsification Index and Surface Tension reduction test to check stability and emulsification the rhamnolipid were done. Purification was evaluated using thin layer chromatography (TLC) and expression of rhlA, mvfR, lasR, rhlR genes was determined using q-PCR technique. Binding of nanoparticles to bio surfactants was confirmed by TEM. The best emulsification index, was by the sample that exposed to 1 mg/L Fe/SDS nanoparticles for 2 days. Rhamnolipid produced in the presence of nanoparticles had an acceptable ability to reduce surface tension. The Rf (retention factor) value obtained was 0.63 by chromatography. q-PCR results showed that the expression of rhlA, mvfR, lasR, rhlR genes was significantly increased in Fe/SDS treated cells, which indicates the significant positive effect (P < 0.05) of nanoparticles on biosurfactant production of treated cells. While, SDS and Fe alone were not affected significantly (P > 0.05) on the expression of these genes. Our findings indicated the importance of nanoparticles in increasing the expression of genes involved in the bio surfactant production pathway of Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Yaser Ahsani Arani
- Department of Biology Science and Research BranchIslamic Azad UniversityTehranIran
| | - Zahra Noormohammadi
- Department of Biology Science and Research BranchIslamic Azad UniversityTehranIran
| | - Behnam Rasekh
- Environment & Biotechnology Research DivisionResearch Institute of Petroleum Industry (RIPI)TehranIran
| | - Fatemeh Yazdian
- Department of Life Science EngineeringFaculty of New Science and TechnologiesUniversity of TehranTehranIran
| | - Hojjat kazemi
- Analytical Chemistry Research GroupResearch Institute of Petroleum Industry (RIPI)TehranIran
| |
Collapse
|
3
|
Kalajahi ST, Mofradnia SR, Yazdian F, Rasekh B, Neshati J, Taghavi L, Pourmadadi M, Haghirosadat BF. Inhibition performances of graphene oxide/silver nanostructure for the microbial corrosion: molecular dynamic simulation study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49884-49897. [PMID: 35220537 DOI: 10.1007/s11356-022-19247-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/11/2022] [Indexed: 05/06/2023]
Abstract
Steel is one of the mainly used materials in the oil and gas industry. However, it is susceptible to the marine corrosion, which 20% of the total marine corrosion is caused by microbiologically influenced corrosion (MIC). The economic and environmental impacts of corrosion are significant, and it is crucial to fight against corrosion in a proper sustainability context and environmental-friendly methods. In this study, the graphene oxide/silver nanostructure (GO-Ag) inhibitory effect on the corrosion of steel in the presence of sulfate reducing bacteria (SRB) was investigated, via weight loss (WL) and Tafel polarization measurements. Moreover, molecular dynamic (MD) simulations were performed to obtain a deep understanding of the corrosion inhibition effect of GO-Ag. GO-Ag showed a significant antibacterial effect at 80 ppm. Moreover, WL and Tafel polarization measurements illustrated a great inhibition efficiency, which reached up to 84% reduction of WL and 98% reduction of corrosion current density (Icorr) after 7 days of incubation with GO-Ag. Based on MD simulations, bonding energy reached to the larger value in the presence of GO-Ag, which indicated the ability of graphene oxide nanosheets to be adsorbed on the steel surface and prevent the access of corrosive agents to the steel surface. The radial distribution function (RDF) results implied distance between corrosive agent (water and SRB) and steel surface (Fe atoms), which indicated protection of the steel surface due to the effective adsorption of GO nanosheets through the active sites of the steel surface. The mean square displacement (MSD) result showed smaller displacement of the corrosive particles on the surface of steel, resulting that the GO-Ag molecules bonded with Fe molecules on the surface of steel.
Collapse
Affiliation(s)
- Sara Taghavi Kalajahi
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, North Kargar Street, 1439957131, Tehran, Iran.
| | - Behnam Rasekh
- Environment and Biotechnology Division, West Blvd. of Azadi Sport Complex, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-137, Tehran, Iran
| | - Jaber Neshati
- Energy and Environment Research Center, West Blvd. of Azadi Sport Complex, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-137, Tehran, Iran
| | - Lobat Taghavi
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Bibi Fatemeh Haghirosadat
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
4
|
Yang L, Yang Y, Li T, Xiao Y, Bao L, Wang J. Understanding the thermoplasticization mechanism of polysaccharide at molecular level via computer simulations. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Moradi S, Moradi P, Ansari M, Khosravi R, Farhadian N, Batooie N, Shahlaei M. Investigating the protective effects of carbohydrate coatings on the structure and dynamic of l‐asparaginase against heat stress; a molecular dynamic simulation. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Modabber G, Sepahi AA, Yazdian F, Rashedi H. Surfactin production in the bioreactor: Emphasis on magnetic nanoparticles application. Eng Life Sci 2020; 20:466-475. [PMID: 33204233 PMCID: PMC7645645 DOI: 10.1002/elsc.201900163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/15/2020] [Accepted: 05/18/2020] [Indexed: 11/15/2022] Open
Abstract
Surfactin is one of the main lipopeptide biosurfactants produced by different species of Bacillus subtilis. This study aims to analyze the effect of starch-coated Fe0 and Fe3+ nanoparticles on the biomass and biosurfactant production of Bacillus subtilis. Out of 70 soil samples, 20 Bacillus were isolated and genome sequenced by biochemical methods and 16S rRNA gene. Quantitative and qualitative screening methods were used to isolate and detect biosurfactant production. For the aim of this study, 61 and 63 (Bacillus subtilis subsp. Inaquosorum) were selected. Then, hemolytic activity, biomass amount, surfactant production, and reduction of surface tension in Minimal Salt Medium containing Fe0 and Fe3+ nanoparticles were examined after 48, 72, and 96 h of culture. Strain 61 was the best bacterium and Fe3+ was the best nanoparticle. The results were compared with the results of non-nanoparticle bioreactor. The results showed the amount of biomass, surfactin, and surface tension decrease, 72 h after growth in 61 strain containing Fe3+ reached the highest values. Surfactin from strain 61 culture in the Fe3+nanoparticle bioreactor after 72 h of growth showed higher production than the same strain culture after 72 h without Fe3+, if continuing the research, this strain can be commercialized in the future.
Collapse
Affiliation(s)
- Glayol Modabber
- Department of Microbiology, Faculty of Biological SciencesIslamic Azad UniversityTehranIran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biological SciencesIslamic Azad UniversityTehranIran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and TechnologiesUniversity of TehranTehranIran
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of EngineeringUniversity of TehranTehranIran
| |
Collapse
|
7
|
Fatollahi P, Ghasemi M, Yazdian F, Sadeghi A. Ectoine production in bioreactor by Halomonas elongata DSM2581: Using MWCNT and Fe-nanoparticle. Biotechnol Prog 2020; 37:e3073. [PMID: 32862555 DOI: 10.1002/btpr.3073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/27/2022]
Abstract
Halomonas elongate produces ectoine to protect itselt from environmental stresses. In this research, important factors in the production of ectoine were optimized using statistical methods to achieve the best production efficiency in bioreactor. Screening important variables (ectoine, hydroxyectoine, l-aspartic acid, and glutamate) on H. elongate growth showed that ectoine and l-aspartic acid directly affect ectoine production. Two nanostructures, multiwalled carbon nanotube (MWCNT) and iron oxide nanoparticle (Fe2 O3 NPs), were used to increase the availability of substrate for the microorganism. The results showed that Fe2 O3 nanoparticles and MWCNT could have a negative or positive effect on bacterial growth and ectoine production depending on the concentration of nanoparticles. At optimized conditions, the amounts of bacterial growth and ectoine production in fermenter were 10.4 g/L and 14.25 g/L, respectively. Therefore, it could be concluded that nanoparticles improve bacterial growth and ectoine production at optimized concentrations.
Collapse
Affiliation(s)
- Parvaneh Fatollahi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mina Ghasemi
- Faculty of Engineering, Islamic Azad University, West Tehran Branch, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Akram Sadeghi
- Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII), AREEO, Karaj, Iran
| |
Collapse
|
8
|
Malmir S, Karbalaei A, Pourmadadi M, Hamedi J, Yazdian F, Navaee M. Antibacterial properties of a bacterial cellulose CQD-TiO 2 nanocomposite. Carbohydr Polym 2020; 234:115835. [PMID: 32070499 DOI: 10.1016/j.carbpol.2020.115835] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
Antibacterial dressing can prevent the occurrence of many infections of wounds. Bacterial cellulose (BC) has the ability to carry and transfer the medicine to achieve a wound healing bandage. In this study, Carbon Quantum Dots-Titanium dioxide (CQD-TiO2) nanoparticles (NP) were added to BC as antibacterial agents. FTIR Spectroscopy illuminated that NPs were well-bonded to BC. Interestingly, MIC test proved that BC/CQD-TiO2 nanostructure (NS) has anti-bacterial properties against Staphylococcus aureus. The findings indicated that, CQD-TiO2 NPs have stronger antibacterial properties with better tensile strength compared to CQD NPs, in a concentration-dependent manner. Toxicity of CQD-TiO2 NPs on human L929 fibroblast cells was also evaluated. Most importantly, the results of the scratch test indicated that the NS was effective in wound healing in L929 cells. The approach in this study may provide an alternative to make an antibacterial wound dressing to achieve an effective drug-based bandage.
Collapse
Affiliation(s)
- Samira Malmir
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Atiyeh Karbalaei
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrab Pourmadadi
- Protein Research Center, Shahid Beheshti University, GC, Tehran, Iran.
| | - Javad Hamedi
- Microbial Technology and Products (MTP) Research Center, University of Tehran, Tehran, Iran; Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Fatemeh Yazdian
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran.
| | - Mona Navaee
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
9
|
Sabaghian S, Yazdian F, Rasekh B, Shekarriz M, Mansouri N. Investigating the effect of starch/Fe 3O 4 nanoparticles on biodesulfurization using molecular dynamic simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1667-1676. [PMID: 31755060 DOI: 10.1007/s11356-019-06453-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
The application of dibenzothiophene (DBT) as a source of energy leads to air pollution. The key solution to overcome this drawback is desulfurization. Magnetic nanoparticles have shown an excellent performance in the desulfurization of dibenzothiophene. In this study, molecular dynamic (MD) simulation was considered for the first time to gain insight about the molecule interactions in the biodesulfurization (BDS) process of DBT using Rhodococcus erythropolis IGTS8, in the presence and absence of starch/magnetic nanoparticles. According to the MD simulation results, the density of the system in the presence of starch/Fe3O4 was ascending while in the absence of these nanoparticles, the density was descending. Starch/magnetic nanoparticles caused more rapid equilibrium state in the biodesulfurization process. The energy diagram showed that magnetic nanoparticles decrease the energy fluctuation and increase the difference of non-bounding energy and potential energy (8 times) compared to (BDS) without nanoparticle, which reflects higher bounded energy in the system using starch/magnetic nanoparticles. The height of RDF peak in the presence of starch/Fe3O4 was 4 times more than the RDF peak in the absence of nanoparticle. In addition, the nanoparticles decreased the fluctuations around optimal temperature in BDS up to 5% compared to other state.
Collapse
Affiliation(s)
- Soltan Sabaghian
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Behnam Rasekh
- Research Institute of Petroleum Industry (RIPT), P.O. Box 1485733111, Tehran, Iran.
| | - Marziyeh Shekarriz
- Chemical, Polymeric and Petrochemical Technology Development Division, Faculty of Downstream Technology Development, Research Institute of Petroleum Industry, Tehran, Iran
| | - Nabiallah Mansouri
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Effect of starch/CNT on biodesulfurization using molecular dynamic simulation. J Mol Model 2019; 25:352. [PMID: 31768651 DOI: 10.1007/s00894-019-4236-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/16/2019] [Indexed: 01/24/2023]
Abstract
Nowadays, fossil fuel is the most important source of energy. However, the sulfur oxide release through oxidation of the available sulfur and the resultant air pollution has turned into an issue. In biodesulfurization (BDS) process, the sulfur from the recalcitrant organic compounds dissolved in crude oil fractions will be removed biologically. Carbon nanotubes (CNTs) exhibit good catalytic performance in dibenzothiophene (DBT) oxidation. Molecular dynamic simulation is the best and the only way to reach this end. Through this study, molecular dynamic simulations are applied to compute the effects of starch/CNTs on BDS process of DBT during 5 ns. The changes of cell length, energy, dynamic temperature, relative concentration of DBT, and radial distribution function (RDF) in the absence and presence of starch/CNTs were investigated. Regarding to the energy diagram, the fluctuation because of temperature fluctuations reaches the stable state. The high level of the first peak in RDF diagram showed the high and long desulfurization by microorganism. All the results showed stable and reasonable equilibrium state of the system. According to the graphs, the simultaneous in the presence of starch/CNT and Rhodococcus erythropolis increase the removal efficiency of nitrate reached 85% and in the absence of nanoparticle was 35.44%.
Collapse
|
11
|
Polyhydroxybutyrate Production from Natural Gas in A Bubble Column Bioreactor: Simulation Using COMSOL. Bioengineering (Basel) 2019; 6:bioengineering6030084. [PMID: 31527529 PMCID: PMC6783825 DOI: 10.3390/bioengineering6030084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
In this study, the simulation of microorganism ability for the production of poly-β-hydroxybutyrate (PHB) from natural gas (as a carbon source) was carried out. Based on the Taguchi algorithm, the optimum situations for PHB production from natural gas in the columnar bubble reactor with 30 cm length and 1.5 cm diameter at a temperature of 32 °C was evaluated. So, the volume ratio of air to methane of 50:50 was calculated. The simulation was carried out by COMSOL software with two-dimensional symmetric mode. Mass transfer, momentum, density-time, and density-place were investigated. The maximum production of biomass concentration reached was 1.63 g/L, which shows a 10% difference in contrast to the number of experimental results. Furthermore, the consequence of inlet gas rate on concentration and gas hold up was investigated Andres the simulation results were confirmed to experimental results with less than 20% error.
Collapse
|
12
|
Ren W, Ding Y, Gu L, Yan W, Wang C, Lyu M, Wang C, Wang S. Characterization and mechanism of the effects of Mg-Fe layered double hydroxide nanoparticles on a marine bacterium: new insights from genomic and transcriptional analyses. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:196. [PMID: 31428192 PMCID: PMC6696678 DOI: 10.1186/s13068-019-1528-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Layered double hydroxides (LDHs) have received widespread attention for their potential applications in catalysis, polymer nanocomposites, pharmaceuticals, and sensors. Here, the mechanism underlying the physiological effects of Mg-Fe layered double hydroxide nanoparticles on the marine bacterial species Arthrobacter oxidans KQ11 was investigated. RESULTS Increased yields of marine dextranase (Aodex) were obtained by exposing A. oxidans KQ11 to Mg-Fe layered double hydroxide nanoparticles (Mg-Fe-LDH NPs). Furthermore, the potential effects of Mg-Fe-LDH NPs on bacterial growth and Aodex production were preliminarily investigated. A. oxidans KQ11 growth was not affected by exposure to the Mg-Fe-LDH NPs. In contrast, a U-shaped trend of Aodex production was observed after exposure to NPs at a concentration of 10 μg/L-100 mg/L, which was due to competition between Mg-Fe-LDH NP adsorption on Aodex and the promotion of Aodex expression by the NPs. The mechanism underling the effects of Mg-Fe-LDH NPs on A. oxidans KQ11 was investigated using a combination of physiological characterization, genomics, and transcriptomics. Exposure to 100 mg/L of Mg-Fe-LDH NPs led to NP adsorption onto Aodex, increased expression of Aodex, and generation of a new Shine-Dalgarno sequence (GGGAG) and sRNAs that both influenced the expression of Aodex. Moreover, the expressions of transcripts related to ferric iron metabolic functions were significantly influenced by treatment. CONCLUSIONS These results provide valuable information for further investigation of the A. oxidans KQ11 response to Mg-Fe-LDH NPs and will aid in achieving improved marine dextranase production, and even improve such activities in other marine microorganisms.
Collapse
Affiliation(s)
- Wei Ren
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
| | - Yanshuai Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
| | - Lide Gu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
| | - Wanli Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
| | - Cang Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
- Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, 230039 Anhui People’s Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People’s Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
- Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, 230039 Anhui People’s Republic of China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005 Jiangsu People’s Republic of China
| |
Collapse
|
13
|
Moshafi MH, Ranjbar M, Ilbeigi G. Biotemplate of albumen for synthesized iron oxide quantum dots nanoparticles (QDNPs) and investigation of antibacterial effect against pathogenic microbial strains. Int J Nanomedicine 2019; 14:3273-3282. [PMID: 31190793 PMCID: PMC6526779 DOI: 10.2147/ijn.s202462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/27/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Biotemplates are attractive templates for the synthesis of nanometals and inorganic compound nanostructures. Methods: In this work, for the first time, iron oxide quantum dot nanoparticles (QDNPs) were prepared using albumen as a biotemplate. Next, the prepared nanoparticles were characterized using dynamic light scattering for determination and evaluation of the hydrodynamic diameter and zeta potential of the particles. Moreover, optical and scanning electron microscopes were applied to evaluate morphology. Spherically shaped iron oxide QDNPs were obtained with appropriate particle size and distribution. Fe(NO3)3.9H2O and egg whites were used as the source of the Fe element and particle size control agent in the aqueous medium, respectively. Afterward, the effect of calcination temperature parameters on the crystallinity purity and size of Fe nanocrystals were investigated. Also, products were characterized by various detection analyses such as thermogravimetry analysis/DTA, XRD, UV-vis, Fourier transform infrared (FT-IR,) transmission electron microscopy, and SEM. In order to investigate the antibacterial effect of the synthesized Fe nanobiological samples against bacterial strains, they were dissolved in dimethyl sulfoxide and diluted using distilled water. Then, different serial dilutions of 64 μg/mL, 32 μg/mL, 16 μg/mL, 8 μg/mL, 4 3BCg/mL, 2 μg/mL, 1 μg/mL, and 0.5 μg/mL of nanobiological samples were prepared and added to the Mueller-Hinton agar medium. Results: The minimum inhibitory concentration of the synthesized iron oxide quantum dot nanobiological was determined against pathogenic microbial strains of bacteria including Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, Micrococcus luteus, Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, and Klebsiella pneumonia on the culture medium plate. Conclusion: The present nanobiological samples can be considered as a new material candidate for antibacterial drugs.
Collapse
Affiliation(s)
- Mohammad Hasan Moshafi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghazaleh Ilbeigi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
14
|
Bavandi R, Emtyazjoo M, Saravi HN, Yazdian F, Sheikhpour M. Study of capability of nanostructured zero-valent iron and graphene oxide for bioremoval of trinitrophenol from wastewater in a bubble column bioreactor. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
Effect of zero-valent iron/starch nanoparticle on nitrate removal using MD simulation. Int J Biol Macromol 2019; 121:727-733. [DOI: 10.1016/j.ijbiomac.2018.09.183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 08/28/2018] [Accepted: 09/28/2018] [Indexed: 01/09/2023]
|