1
|
Dhakal A, Stasiak-Różańska L, Adhikari A. Novel Approaches in Production and Application of Bacterial Cellulose in Food Industries. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2025. [PMID: 40195143 DOI: 10.1007/10_2025_285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Bacterial cellulose (BC) is a polymer produced by specific species of bacteria, most often by the species Komagataeibacter xylinus and Gluconacetobacter xylinus. BC may be distinguished from other types of cellulose by its origin. It is a kind of cellulose that is highly pure and robust, which is made up of long chains of glucose units that create a 3D network. The production of BC takes place via fermentation. During this process, the bacteria utilize sugar and produce cellulose as a byproduct. BC has been extensively researched for its potential use in the medical industry, food industry, and many other fields. Application includes development of an artificial skin for wound dressing because of its remarkable inter- and intramolecular hydrogen bonding and thermal and mechanical strength. BC has a large potential to be used in the food industry, where it can be combined with other polysaccharides to be used in food products as additives, edible film/coating, or active food packaging material to prolong the shelf life of the product and reduce the rate of chemical reactions and microbial growth in food products.
Collapse
Affiliation(s)
- Aakankshya Dhakal
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Lidia Stasiak-Różańska
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Achyut Adhikari
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| |
Collapse
|
2
|
Prabsangob N, Hangsalad S, Udomrati S. Okra cellulose crystals stabilized Pickering emulsion: A practical tool for soybean oil inclusion to improve nutritive profile of sausages. Food Chem X 2025; 27:102356. [PMID: 40170692 PMCID: PMC11960646 DOI: 10.1016/j.fochx.2025.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/11/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025] Open
Abstract
Pickering emulsions stabilized by okara cellulose crystals and the cellulose crystals modified with tannic acid were prepared and used to substitute porcine fat for sausage preparation. Both used cellulosic materials could effectively preserve dispersibility and heat stability of the emulsions. There was improved sausage stability when the emulsions stabilized by the cellulosic materials were used to replace pork backfat in the sausage formulation. The sausages added with the cellulosic material-based emulsions, especially the ones stabilized by the okara cellulose grafted with tannic acid, possessed better oxidative stability during storage than the control added with porcine fat. Moreover, lowered lipolysis degree could be found for the sausages added with the cellulosic materials stabilized emulsions as compared to the control formulation. Therefore, incorporation of the emulsions stabilized by the cellulosic materials might be a feasible way to improve nutritive profile by lowering saturated fatty acid content and energy uptake of the sausages.
Collapse
Affiliation(s)
- Nopparat Prabsangob
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Sasitorn Hangsalad
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Sunsanee Udomrati
- Department of Food Chemistry and Physics, Institute of Food Research and Product Development, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
3
|
Zhou Y, Li M, Duan Y, Hu K, Cai M, Zhang H. Combined frequency ultrasound and controlled germination to improve protein composition, conformation, interactions, and structures in sprouted wheat flour. Int J Biol Macromol 2025; 308:142473. [PMID: 40154682 DOI: 10.1016/j.ijbiomac.2025.142473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
To improve the composition and structure of wheat protein, the varieties in the composition, conformation and interactions of proteins in germinated wheat flour treated with single-frequency (60 kHz, SFWF), dual-frequency (20 + 60 kHz, DFWF), and triple-frequency (20 + 40 + 60 kHz, TFWF) ultrasound in five days were investigated, as well as their mechanisms. The results showed DFWF produced the lower ratio of gliadins to glutenin and higher gliadins with glutenin (germination, 48 h) and TFWF had highest gliadins at 72 h. The obvious decline of fluorescence intensities at 72 h of germination time in DFWF and TFWF revealed that combined frequency ultrasound could significantly influence the protein conformation by regulating the posttranslational modification. Moreover, dual-frequency and triple-frequency ultrasound treatment could generate superior ionic, hydrogen bonds and hydrophobic interactions at 24 h and 72 h, respectively. Besides, SDS-PAGE confirmed the changes in the subunits of protein of DFWF and TFWF at 72 h and 120 h, and the starch granules of DFWF had the densest starch protein matrix complex at 24 h. These findings demonstrated that treatment with combined frequency ultrasound could be a potential and valid method to improve the quality and properties of germinated wheat flour.
Collapse
Affiliation(s)
- Yuze Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Minghui Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Kai Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Thonpho A, Baimark Y, Tanisood S, Srihanam P. Effects of Guar Gum and Sodium Benzoate on the Properties and Hydrophilicity of Silk Fibroin Hydrogels. Polymers (Basel) 2025; 17:425. [PMID: 39940626 PMCID: PMC11820424 DOI: 10.3390/polym17030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Silk fibroin (SF)-based hydrogels were prepared by the simple evaporation method. The outcomes of SF-based hydrogels were assessed for consideration in terms of practical and convenient use. Guar gum (GG) and sodium benzoate (SB) are blending reagents to the SF solution and are poured into the petri dish to make the hydrogels. After leaving the mixture solution for three days to solidify, all SF-based hydrogels were peeled off and characterized. The SF-blend guar gum (SF-GG) and SF-GG-blend sodium benzoate (SF-GG-SB) could be constructed, but in different textures and levels of transparency. The SB affected the solid texture and resulted in a higher water contact angle (WCA) value of the prepared SF hydrogel than of the SF-GG. The results from Fourier transform infrared spectroscopy (FTIR) indicated all the main functional groups of substances that were contained in the blending hydrogels. Moreover, some interactions between the functional groups were also detected. A thermogravimetric analyzer (TGA) was used to determine the hydrogel decomposition as a function of temperature. The DTG thermograms, which exhibit the maximum decomposition temperature, revealed that the interaction forces between blending substances and SF, as well as their structure, are the reason for the thermal stability of the SF-based hydrogels. SF-GG-SB hydrogels have higher tensile strength than the SF-GG hydrogels. In conclusion, the appearance, texture, hydrophilicity, thermal stability, and tensile strength of the SF-based hydrogels were affected by the types and concentrations of the blending substances. This suggests that the SF-based hydrogel properties could be designed and adjusted to attain desirable textures for fitting target applications.
Collapse
Affiliation(s)
| | | | | | - Prasong Srihanam
- Biodegradable Polymers Research Unit, Centre of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand; (A.T.); (Y.B.); (S.T.)
| |
Collapse
|
5
|
García-Guzmán L, Velazquez G, Arzate-Vázquez I, Castaño-Rivera P, Guerra-Valle M, Castaño J, Guadarrama-Lezama AY. Preparation of Nanocomposite Biopolymer Films from Commelina coelestis Willd Starch and Their Nanostructures as a Potential Replacement for Single-Use Polymers. Foods 2024; 13:4129. [PMID: 39767071 PMCID: PMC11675869 DOI: 10.3390/foods13244129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
This study explored the effect of incorporating cellulose and starch nanoparticles, obtained from the Commelina coelestis Willd plant, on the physical and chemical properties of starch-based films derived from the same plant. Additionally, the synergistic effect of combining the nanostructures was assessed. The nanocomposite biopolymer films were prepared by the casting method using 1 and 3 wt% concentrations of the nanostructures (CNCs: cellulose nanocrystals, CNFs: cellulose nanofibers, SNCs: starch nanocrystals), or their blend. The physicochemical (swelling capacity and water solubility), morphological (SEM and AFM), thermal (DSC and TGA), and mechanical properties (tensile strength, elongation at break, and Young's modulus) of the films were evaluated. The nanocomposite biopolymer films exhibited better dimensional stability (40-60%) than the control films. Tensile strength (8-300%) and Young's modulus (15-690%) were improved. Moreover, these films displayed enhanced thermal stability, withstanding temperatures exceeding 305 °C. FTIR spectra evidenced intermolecular interaction among the matrix and nanostructures. Microscopic analyses further supported the integrity of the films, which displayed a homogeneous surface and the absence of fractures. In addition, the nanocomposite biopolymer films prepared with 1 wt% cellulose nanocrystals and nanofibers had a lower opacity than those with a higher percentage (3 wt%). Overall, our findings suggest that the Commelina coelestis Willd is a promising starch source that can be used to obtain nanocomposite biopolymer films as an alternative to produce novel, efficient, and eco-friendly materials with adequate thermo-mechanical properties intended to replace conventional plastic materials in single-use applications such as those used in the food packaging industry.
Collapse
Affiliation(s)
- Lucia García-Guzmán
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón esq. Paseo Tollocan s/n, Col. Residencial Colón, Toluca 50120, Estado de Mexico, Mexico;
- Tecnológico Nacional de México/Tecnológico de Estudios Superiores de San Felipe del Progreso, División Ingenieria Civil, Avenida Instituto Tecnológico S/N, Ejido, Tecnológico, San Felipe del Progreso 50640, Estado de México, Mexico
| | - Gonzalo Velazquez
- Instituto Politécnico Nacional, CICATA, Unidad Querétaro, Cerro Blanco 141, Colinas del Cimatario, CP, Santiago de Querétaro 76090, Querétaro, Mexico;
| | - Israel Arzate-Vázquez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Luis Enrique Erro s/n, Zacatenco, Gustavo A. Madero, Ciudad de México 07738, Mexico;
| | | | - Maria Guerra-Valle
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Campus Concepción, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile;
| | - Johanna Castaño
- Department of Chemical Engineering, Universidad de Concepción, Concepción P.O. Box 160-C, Chile
| | - Andrea Y. Guadarrama-Lezama
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón esq. Paseo Tollocan s/n, Col. Residencial Colón, Toluca 50120, Estado de Mexico, Mexico;
| |
Collapse
|
6
|
Wang Q, An J, Xia Q, Pan D, Du L, He J, Sun Y, Wang Y, Cao J, Zhou C. Insights into the fabrication and antibacterial effect of fibrinogen hydrolysate-carrageenan loading apigenin and quercetin composite hydrogels. Int J Biol Macromol 2024; 279:135517. [PMID: 39260642 DOI: 10.1016/j.ijbiomac.2024.135517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Escherichia coli and Staphylococcus aureus are the most prevalent pathogenic bacteria, often resulting in the foodborne disease outbreaks through food spoilage and foodborne infections. To prevent and control food spoilage and foodborne infections induced by Escherichia coli and Staphylococcus aureus, the antibacterial hydrogels were fabricated using fibrinogen hydrolysate-carrageenan (AHs-C) and flavonoids (apigenin and quercetin), and the antibacterial effect of the composite hydrogels against Escherichia coli and Staphylococcus aureus was further investigated. The results of mechanical property exhibited that the composite hydrogels with 0.2 % of apigenin and quercetin (AHs-C-Ap/Que) showed the highest hardness and swelling property compared with the separate addition of apigenin or quercetin. Scanning electron microscopy and atomic force microscopy showed that the dense networks were formed in the hydrogels of AHs-C-Ap/Que., and the average roughness of AHs-C-Ap/Que. significantly increased to 30.70 nm compared with AHs-C. 1H NMR and FTIR spectra demonstrated that apigenin and quercetin were bound to AHs-C by hydrogen bond, hydrophobic interaction and Schiff base, where the interactions between Ap/Que. and AHs-C was stronger compared with the separate addition of apigenin or quercetin. The hydrogels of AHs-C-Ap/Que. showed the highest antibacterial capacity and antibacterial adhesion against Escherichia coli and Staphylococcus aureus. The antibacterial adhesion assay showed that 99 % removal ratios for E. coli and S. aureus were observed in AHs-C-Ap/Que. hydrogels, which showed a great potential to prevent food spoilage and foodborne infections.
Collapse
Affiliation(s)
- Qiaoyan Wang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jie An
- Faculty of Engineering, The University of Hong Kong (HKU), Hong Kong 999077, China
| | - Qiang Xia
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Lihui Du
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jun He
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Ying Wang
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, Beijing 100048, China
| | - Jinxuan Cao
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, Beijing 100048, China
| | - Changyu Zhou
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
7
|
Tian R, Zhao Y, Fu Y, Yang S, Jiang L, Sui X. Sacrificial hydrogen bonds enhance the performance of covalently crosslinked composite films derived from soy protein isolate and dialdehyde starch. Food Chem 2024; 456:140055. [PMID: 38876072 DOI: 10.1016/j.foodchem.2024.140055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/29/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Soy protein films have the advantage of being eco-friendly and renewable, but their practical applications are hindered by the mechanical properties. The exceptional tensile strength and fracture toughness of natural silk stem from sacrificial hydrogen bonds it contains that effectively dissipates energy. In this study, we draw inspiration from silk's structural principles to create biodegradable films based on soy protein isolate (SPI). Notably, composite films containing sodium lignosulfonate (LS) demonstrate exceptional strain at break (up to 153%) due to the augmentation of reversible hydrogen bonding, contrasted to films with the addition of solely dialdehyde starch (DAS). The enhancement of tensile strength is realized through a combination of Schiff base cross-linking and sacrificial hydrogen bonding. Furthermore, the incorporation of LS markedly improves the films' ultraviolet (UV) blocking capabilities and hydrophobicity. This innovative design strategy holds great promise for advancing the production of eco-friendly SPI-based films that combine strength and toughness.
Collapse
Affiliation(s)
- Ran Tian
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuan Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yidan Fu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shuyuan Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
K S, K P S, C D MD, Mathew D, E K R. Microbial load reduction in stored raw beef meat using chitosan/starch-based active packaging films incorporated with cellulose nanofibers and cinnamon essential oil. Meat Sci 2024; 216:109552. [PMID: 38878411 DOI: 10.1016/j.meatsci.2024.109552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/14/2024] [Accepted: 05/28/2024] [Indexed: 07/26/2024]
Abstract
Food safety is a global concern due to the risk posed by microbial pathogens, toxins and food deterioration. Hence, materials with antibacterial and antioxidant properties have been widely studied for their packaging application to ensure food safety. The current study has been designed to fabricate the chitosan/starch-based film with cinnamon essential oil (CEO) and cellulose nanofibers for active packaging. The nanocomposite films developed in this study were characterized by using UV-Vis Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM), and Gas Chromatography-Mass Spectroscopy (GC-MS). The biodegradability, hydrodynamic, mechanical, antioxidant and antibacterial properties of the films were also evaluated. From the results, the addition of CEO and cellulose nanofibers was found to enhance the antimicrobial and material properties of the film. FE-SEM analysis has also revealed a rough and porous surface morphology for the developed nanocomposite film. FT-IR analysis further demonstrated the molecular interactions among the various components used for the preparation of the film. The film has also been shown to have antibacterial activity against Staphylococcus aureus and Escherichia coli. Furthermore, the film was found to reduce the bacterial load of the stored beef meat when used as a packaging material. The study hence provides valuable insights into the development of chitosan/starch-based films incorporated with CEO and cellulose nanofibers for active food packaging applications. This is due to its excellent antimicrobial and physicochemical properties. Hence, the nanocomposite film developed in the study can be considered to have promising applications in the food packaging industry.
Collapse
Affiliation(s)
- Sreekanth K
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala Pin: 686 560, India
| | - Sharath K P
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala Pin: 686 560, India
| | - Midhun Dominic C D
- Department of Chemistry, Sacred Heart College, Thevara, Kochi Pin: 682013, India
| | - Divya Mathew
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala Pin: 686 560, India
| | - Radhakrishnan E K
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala Pin: 686 560, India.
| |
Collapse
|
9
|
Li S, Hu X, Zhang S, Zhao J, Wang R, Wang L, Wang X, Yuan Y, Yue T, Cai R, Wang Z. A versatile bilayer smart packaging based on konjac glucomannan/alginate for maintaining and monitoring seafood freshness. Carbohydr Polym 2024; 340:122244. [PMID: 38858017 DOI: 10.1016/j.carbpol.2024.122244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
This study introduces a novel multi-functional double-layer intelligent packaging. It focuses on developing a dual-function system capable of real-time monitoring and freshness preservation. Specifically, cellulose nanocrystalline (CNC) was obtained through acid hydrolysis, and then CNC/soybean protein isolate (CNC/SPI) complex colloid particles were prepared via antisolvent method. These particles served as stabilizers to prepare oil-in-water (O/W) cinnamon essential oil Pickering emulsion (CSCEO). The CSCEO was then integrated into the emulsified hydrophobic layer of a konjac glucomannan (Kgm) matrix through intermolecular hydrogen bonding. Finally, alginate (Alg) matrix containing alizarin (Al) as an indicator was added to construct the bilayer structure using a layer-by-layer casting strategy. The inner layer Alg/Al was the pH/NH3-responsive indicator layer, while the outer layer Kgm/CSCEO acted as the high-barrier bacteriostatic layer. The obtained dual-function, double-layer film (Alg/Al-Kgm/CSCEO), which possesses a sensitive, reversible and rapid response towards pH/NH3, shows exceptional antibacterial and antioxidant properties, as well as excellent mechanical property, light-blocking capability and hydrophobicity. For monitoring and maintaining the actual freshness of shrimp, such a bilayer packaging displays smallest change of ∆E and TVB-N (18.65 mg/100 g) even after 72 h, which further highlighting its potential in enhancing food safety and extending shelf life.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuerong Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Shuo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jiale Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Ruinan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Zheng R, Liao G, Kang J, Xiong S, Liu Y. An intelligent myofibrillar protein film for monitoring fish freshness by recognizing differences in anthocyanin (Lycium ruthenicum)-induced color change. Food Res Int 2024; 192:114777. [PMID: 39147462 DOI: 10.1016/j.foodres.2024.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
A novel smart film MP/BNC/ACN for real-time monitoring of fish freshness was developed using myofibrillar protein (MP) and bacterial nanocellulose (BNC) as film raw materials and anthocyanin (Lycium ruthenicum, ACN) as an indicator. Firstly, the film containing 1 % ACN (MP/BNC/ACN1) was found to have a moderate thickness (0.44 ± 0.01 mm) and superior mechanical properties (tensile strength (TS) = 8.53 ± 0.11 MPa; elongation at break (EB) = 24.85 ± 1.38 %) by determining the physical structure. The covalent, electrostatic, and hydrogen bonding interactions between anthocyanin and the film matrix were identified and confirmed by FT-IR spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM) analysis. A comprehensive evaluation concluded that MP/BNC/ACN1 exhibited excellent trimethylamine (TMA) sensitivity (total color difference (ΔE), ΔETMA0-1000 = 4.47-31.05; limit of detection (LOD), LOD = 1.03) and UV stability (ΔE96h = 4.16 ± 0.13). The performance of the films in assessing fish freshness was evaluated, principal component analysis (PCA) and hierarchical cluster analysis (HCA) revealed that MP/BNC/ACN1 (ΔE2-10d = 16.84-32.05) could clearly distinguish between fresh (0-2 d), sub-fresh (4-6 d), and spoiled (8-10 d) stages of fish, which corresponded to the film colors of red, light red, and gray-black. In conclusion, this study addresses the limitation that intelligent films cannot visually discern real-time freshness during fish storage and provides a promising approach for real-time fish freshness monitoring.
Collapse
Affiliation(s)
- Renyu Zheng
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070, P. R. China
| | - Guangming Liao
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070, P. R. China
| | - Jiajia Kang
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070, P. R. China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070, P. R. China
| | - Youming Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wu'han 710119, China.
| |
Collapse
|
11
|
Shishparenok AN, Furman VV, Dobryakova NV, Zhdanov DD. Protein Immobilization on Bacterial Cellulose for Biomedical Application. Polymers (Basel) 2024; 16:2468. [PMID: 39274101 PMCID: PMC11397966 DOI: 10.3390/polym16172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
New carriers for protein immobilization are objects of interest in various fields of biomedicine. Immobilization is a technique used to stabilize and provide physical support for biological micro- and macromolecules and whole cells. Special efforts have been made to develop new materials for protein immobilization that are non-toxic to both the body and the environment, inexpensive, readily available, and easy to modify. Currently, biodegradable and non-toxic polymers, including cellulose, are widely used for protein immobilization. Bacterial cellulose (BC) is a natural polymer with excellent biocompatibility, purity, high porosity, high water uptake capacity, non-immunogenicity, and ease of production and modification. BC is composed of glucose units and does not contain lignin or hemicellulose, which is an advantage allowing the avoidance of the chemical purification step before use. Recently, BC-protein composites have been developed as wound dressings, tissue engineering scaffolds, three-dimensional (3D) cell culture systems, drug delivery systems, and enzyme immobilization matrices. Proteins or peptides are often added to polymeric scaffolds to improve their biocompatibility and biological, physical-chemical, and mechanical properties. To broaden BC applications, various ex situ and in situ modifications of native BC are used to improve its properties for a specific application. In vivo studies showed that several BC-protein composites exhibited excellent biocompatibility, demonstrated prolonged treatment time, and increased the survival of animals. Today, there are several patents and commercial BC-based composites for wounds and vascular grafts. Therefore, further research on BC-protein composites has great prospects. This review focuses on the major advances in protein immobilization on BC for biomedical applications.
Collapse
Affiliation(s)
| | - Vitalina V Furman
- The Center for Chemical Engineering, ITMO University, 197101 Saint Petersburg, Russia
| | | | - Dmitry D Zhdanov
- Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
- Department of Biochemistry, People's Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
12
|
Nath PC, Sharma R, Mahapatra U, Mohanta YK, Rustagi S, Sharma M, Mahajan S, Nayak PK, Sridhar K. Sustainable production of cellulosic biopolymers for enhanced smart food packaging: An up-to-date review. Int J Biol Macromol 2024; 273:133090. [PMID: 38878920 DOI: 10.1016/j.ijbiomac.2024.133090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Biodegradable and sustainable food packaging (FP) materials have gained immense global importance to reduce plastic pollution and environmental impact. Therefore, this review focused on the recent advances in biopolymers based on cellulose derivatives for FP applications. Cellulose, an abundant and renewable biopolymer, and its various derivatives, namely cellulose acetate, cellulose sulphate, nanocellulose, carboxymethyl cellulose, and methylcellulose, are explored as promising substitutes for conventional plastic in FP. These reviews focused on the production, modification processes, and properties of cellulose derivatives and highlighted their potential for their application in FP. Finally, we reviewed the effects of incorporating cellulose derivatives into film in various aspects of packaging properties, including barrier, mechanical, thermal, preservation aspects, antimicrobial, and antioxidant properties. Overall, the findings suggest that cellulose derivatives have the potential to replace conventional plastics in food packaging applications. This can contribute to reducing plastic pollution and lessening the environmental impact of food packaging materials. The review likely provides insights into the current state of research and development in this field and underscores the significance of sustainable food packaging solutions.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, University of Science and Technology Meghalaya, Baridua 793101, India
| | - Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Uttara Mahapatra
- Department of Chemical Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, University of Science and Technology Meghalaya, Baridua 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Tamil Nadu, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun 248007, India
| | - Minaxi Sharma
- Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| | - Shikha Mahajan
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana 141004, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
13
|
Yang S, Ding Q, Li Y, Han W. Bacterial cellulose/gelatin-based pH-responsive functional film for food freshness monitoring. Int J Biol Macromol 2024; 259:129203. [PMID: 38184031 DOI: 10.1016/j.ijbiomac.2024.129203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Food safety is related to public health and environmental safety. Therefore, it is necessary to develop accurate and effective detection methods to assess food quality and safety. In this study, a pH-responsive functional film (BC/GA/FITC/PCA) was generated for the real-time and visual monitoring of shrimp freshness. Bacterial cellulose /Gelatin (BC/GA) was used as a film-forming matrix, and fluorescein isothiocyanate (FITC) and red cabbage (PCA) were used as the response signals. The addition of FITC and PCA increased the shading capacity (< 30 %) and antioxidant properties (22.8 %) of the films. WCA (82.73 ± 0.95°), WVP (1.48 × 10-11 g·cm/cm2·s·Pa) and OTR (2.42 × 10-15 cm3·cm/cm2·s·Pa) indicated that the film possessed water resistance and oxygen barrier properties. When exposed to daylight, the film underwent a color transition from purple to green as the ammonia concentration increased. In addition, the blue-green fluorescence of the films gradually increased and the detection limit was low (170 ppb). In particular, the change in film color caused by shrimp spoilage corresponded to the TVBN value. This study work provides a new strategy for controlling and monitoring food safety and has a wide range of applications in the fields of food-active packaging and smart packaging.
Collapse
Affiliation(s)
- Shuo Yang
- Key Lab of Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qijun Ding
- Key Lab of Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - You Li
- Key Lab of Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wenjia Han
- Key Lab of Paper Science and Technology of Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
14
|
Qi W, Tong X, Wang M, Liu S, Cheng J, Wang H. Impact of soybean protein isolate concentration on chitosan-cellulose nanofiber edible films: Focus on structure and properties. Int J Biol Macromol 2024; 255:128185. [PMID: 37977456 DOI: 10.1016/j.ijbiomac.2023.128185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Chitosan and cellulose nanofiber films are frequently employed as biodegradable materials for food packaging. However, many exhibit suboptimal hydrophobicity and antioxidant properties. To address these shortcomings, we enhanced the performance by adding different concentrations of soybean protein isolate (SPI) to chitosan-cellulose nanofiber (CS-CNF) films. As SPI concentration varied, the turbidity, particle size, and ζ-potential of the film-forming solutions initially decreased and subsequently increased. This suggests that 1 % SPI augments the electrostatic attraction and compatibility. Rheological analysis confirmed a pronounced apparent viscosity at this concentration. Analyses using Fourier transform infrared spectra, Raman spectra, X-ray diffraction, and Scanning electron microscope revealed the presence of hydrogen bonds and electrostatic interactions between SPI and CS-CNF, indicative of superior compatibility. When SPI concentration was set at 1 %, notable enhancements in film attributes were observed: improvements in tensile strength and elongation at break, a reduction in water vapor permeability by 8.23 %, and an elevation in the contact angle by 18.85 %. Furthermore, at this concentration, the ABTS+ and DPPH scavenging capacities of the film surged by 61.53 % and 46.18 %, respectively. Meanwhile, the films we prepare are not toxic. This research offers valuable insights for the advancement and application of protein-polysaccharide-based films.
Collapse
Affiliation(s)
- Weijie Qi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohong Tong
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Mengmeng Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shi Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
15
|
Yang J, Zhong F, Liu F. Properties of sodium alginate-based nanocomposite films: Effects of aspect ratio and surface charge of cellulose nanocrystals. Int J Biol Macromol 2024; 256:128420. [PMID: 38013077 DOI: 10.1016/j.ijbiomac.2023.128420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Three cellulose nanocrystals (CNCs) were prepared to reinforce sodium alginate (SA) films. This study investigated effects of aspect ratio (L/D) and surface charge of three CNCs (CCNC, MCNC, and WCNC) on the properties of films. At CNC concentrations ≤3 wt%, MCNC, with a medium L/D but the lowest surface charge density among the three CNCs, exhibited the highest efficiency in enhancing the Young's modulus and tensile strength of films. This indicated that, apart from L/D, CNC's surface charge density also affected its reinforcing effects in anionic SA-based films. Compared with other CNCs, MCNC with the lowest charge density exhibited weaker repulsion with SA, potentially contributing to stronger interfacial interactions between them. At concentrations >3 wt%, the reinforcing efficiency of MCNC was extremely close to that of WCNC, which had the highest L/D but medium charge density. This was possibly because, according to SEM results, MCNC with the lowest absolute value of zeta potential aggregated more severely than other CNCs. However, both MCNC and WCNC were consistently more efficient than CCNC. Moreover, FTIR results revealed that WCNC formed more hydrogen bonds with SA than other CNCs. Consequently, adding WCNC was more effective in reducing films' water vapor permeability and hydrophilicity.
Collapse
Affiliation(s)
- Jinshu Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory for Food Safety, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314015, China
| | - Fang Zhong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory for Food Safety, Jiangnan University, Wuxi 214122, China.
| | - Fei Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory for Food Safety, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314015, China
| |
Collapse
|
16
|
Chang S, Guo Q, Du G, Tang J, Liu B, Shao K, Zhao X. Probiotic-loaded edible films made from proteins, polysaccharides, and prebiotics as a quality factor for minimally processed fruits and vegetables: A review. Int J Biol Macromol 2023; 253:127226. [PMID: 37802455 DOI: 10.1016/j.ijbiomac.2023.127226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/24/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Minimally processed fruits and vegetables (MPFVs) are gaining popularity in households because of their freshness, convenience, and rapid consumption, all of which align with today's busy lifestyles. However, their exposure of large surface areas during peeling and slicing can result in contamination by foodborne pathogens and spoilage bacteria, posing potential food safety concerns. In addition, enzymatic browning of MPFVs can significantly reduce their consumer appeal. Therefore, it is necessary to adopt certain methods to protect MPFVs. Recent studies have shown that utilizing biopolymer-based edible films containing probiotics is a promising approach to preserving MPFVs. These active food packaging films exhibit barrier function, antioxidant function, and antimicrobial function while protecting the viability of probiotics, which is essential to maintain the nutritional value and quality of MPFVs. This paper reviews microbial contamination in MPFVs and the preparation of probiotic-loaded edible films with common polysaccharides (alginate, gellan gum, and starch), proteins (zein, gelatin, and whey protein isolate), prebiotics (oligofructose, inulin, and fructooligosaccharides). It also explores the potential application of probiotic-loaded biopolymer films/coatings on MPFVs, and finally examines the practical application requirements from a consumer perspective.
Collapse
Affiliation(s)
- Shuaidan Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China; School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Qi Guo
- Henan Agr Univ, Coll Food Sci & Technol, Zhengzhou 450002, China
| | - Gengan Du
- Henan Univ Technol, Sch Food & Strateg Reserv, Zhengzhou 450001, China
| | - Jiayao Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health - Bloomington, Indiana University, Bloomington, Indiana 47405, United States
| | - Xubo Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
17
|
Khotsaeng N, Simchuer W, Imsombut T, Srihanam P. Effect of Glycerol Concentrations on the Characteristics of Cellulose Films from Cattail ( Typha angustifolia L.) Flowers. Polymers (Basel) 2023; 15:4535. [PMID: 38231905 PMCID: PMC10708089 DOI: 10.3390/polym15234535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Plastic waste has become a big problem for the environment globally. Biodegradable polymers are a potential replacement for plastics that can have a positive outcome both environmentally and economically. In this work, we used acid hydrolysis and alkaline treatment to extract cellulose fibers from cattails. The obtained cellulose was used as a substrate for the fabrication of cellulose film using a casting technique on plastic plates. Different concentrations of the plasticizer, glycerol, were used to prepare films for comparison, and its effects on the film's characteristics were observed. The morphology, chemical structure, and thermal stability of the cattail cellulose (CTC) films were studied using techniques such as scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and thermogravimetric analysis (TGA), respectively. Measurements of transparency, moisture content (MC), water solubility (MS), and water contact angle (WCA) were also performed. Introducing glycerol into the films increased the transparency, MC, and WS values, as well as the gap width between film textures. However, it resulted in a decrease in the WCA of the films, showing that the hydrophilicity of the films is increased by the addition of glycerol. The interaction between the functional groups of cellulose and glycerol was established from the ATR-FTIR and XRD data. The obtained results indicated that glycerol affected the thermal stability and the degree of crystallinity of the produced films. Accordingly, the hydrophilicity of the cellulose film was increased by increasing the glycerol content; therefore, cattail cellulose films can be used as a biodegradable alternative to plastic in the future.
Collapse
Affiliation(s)
- Nuanchai Khotsaeng
- Faculty of Science and Health Technology, Kalasin University, Namon District, Kalasin 46230, Thailand;
| | - Wilaiwan Simchuer
- Faculty of Science and Technology, Loei Rajabhat University, Mueang District, Loei 42000, Thailand;
| | - Thanonchat Imsombut
- Department of Rubber and Polymer Technology, Faculty of Science and Technology, Rajabhat Mahasarakham University, Mueang District, Maha Sarakham 44000, Thailand;
| | - Prasong Srihanam
- Biodegradable Polymers Research Unit, Department of Chemistry, Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| |
Collapse
|
18
|
Xu H, Zhang J, Zhou Q, Li W, Liao X, Gao J, Zheng M, Liu Y, Zhou Y, Jiang L, Sui X, Xiao Y. Synergistic effect and mechanism of cellulose nanocrystals and calcium ion on the film-forming properties of pea protein isolate. Carbohydr Polym 2023; 319:121181. [PMID: 37567717 DOI: 10.1016/j.carbpol.2023.121181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
The current serious environmental problems have greatly encouraged the design and development of food packaging materials with environmental protection, green, and safety. This study aims to explore the synergistic effect and corresponding mechanism of cellulose nanocrystals (CNC) and CaCl2 to enhance the film-forming properties of pea protein isolate (PPI). The combination of 0.5 % CNC and 4.5 mM CaCl2 resulted in a 76.6 % increase in tensile strength when compared with pure PPI-based film. Meanwhile, this combination effectively improved the barrier performance, surface hydrophobicity, water resistance, and biodegradability of PPI-based film. The greater crystallinity, viscoelasticity, lower water mobility, and improved protein spatial conformation were also observed in CNC/CaCl2 composite film. Compared with the control, the main degradation temperature of composite film was increased from 326.23 °C to 335.43 °C. The CNC chains bonded with amino acid residue of pea protein at specific sites via non-covalent forces (e.g., hydrogen bonds, Van der Waals forces). Meanwhile, Ca2+ promoted the ordered protein aggregation at suitable rate and degree, accompanied by the formation of more disulfide bonds. Furthermore, proper Ca2+ could strengthen the cross-linking and interaction between CNC and protein, thereby establishing a stable network structure. The prepared composite films are expected to be used for strawberry preservation.
Collapse
Affiliation(s)
- Huajian Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Jinglei Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Qianxin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Weixiao Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Xiangxin Liao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Junwei Gao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
19
|
Yavari Maroufi L, Shahabi N, Fallah AA, Mahmoudi E, Al-Musawi MH, Ghorbani M. Soy protein isolate/kappa-carrageenan/cellulose nanofibrils composite film incorporated with zenian essential oil-loaded MOFs for food packaging. Int J Biol Macromol 2023; 250:126176. [PMID: 37558021 DOI: 10.1016/j.ijbiomac.2023.126176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/23/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Edible films applied in food packaging must possess excellent inhibitory and mechanical properties. Protein-based films exhibit a high capacity for film formation and offer good gas barrier properties. However, they have weak mechanical and water barrier characteristics. The objective of this research was to develop active composite films based on reinforced soy protein isolate (SPI)/Kappa-carrageenan (K) with varying concentrations of bacterial cellulose nanofibrils (BCN). Increasing the BCN concentration improved the morphological, structural, mechanical, water vapor barrier, and moisture content properties. In comparison to the pure SPI film (S), the film with a high BCN concentration demonstrated a significant decrease in WS (22.98 ± 0.78 %), MC (21.72 ± 0.68 %), WVP (1.22 ± 0.14 g mm-1 S-1 Pa-1 10-10), and EAB (57.77 ± 5.25 %) properties. It should be emphasized that there was no significant alteration in the physicomechanical properties of the optimal film (SKB0.75) containing Zenian-loaded metal-organic frameworks (ZM). However, it substantially enhanced the thermal stability of this film, which can be attributed to the strong interfacial interactions between polymer chains and ZM. Furthermore, the ZM films inhibited the growth of pathogenic bacteria and increased the DPPH antioxidant activity. Thus, SKB0.75-ZM2 films can be utilized as practical components in food packaging.
Collapse
Affiliation(s)
- Leila Yavari Maroufi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Shahabi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Aziz A Fallah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Elham Mahmoudi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 5133511996, Tabriz, Iran
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Garavand F, Nooshkam M, Khodaei D, Yousefi S, Cacciotti I, Ghasemlou M. Recent advances in qualitative and quantitative characterization of nanocellulose-reinforced nanocomposites: A review. Adv Colloid Interface Sci 2023; 318:102961. [PMID: 37515865 DOI: 10.1016/j.cis.2023.102961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/31/2023]
Abstract
Nanocellulose has received immense consideration owing to its valuable inherent traits and impressive physicochemical properties such as biocompatibility, thermal stability, non-toxicity, and tunable surface chemistry. These features have inspired researchers to deploy nanocellulose as nanoscale reinforcement materials for bio-based polymers. A simple yet efficient characterization method is often required to gain insights into the effectiveness of various types of nanocellulose. Despite a decade of continuous research and booming growth in scientific publications, nanocellulose research lacks a measuring tool that can characterize its features with acceptable speed and reliability. Implementing reliable characterization techniques is critical to monitor the specifications of nanocellulose alone or in the final product. Many techniques have been developed aiming to measure the nano-reinforcement mechanisms of nanocellulose in polymer composites. This review gives a full account of the scientific underpinnings of techniques that can characterize the shape and arrangement of nanocellulose. This review aims to deliver consolidated details on the properties and characteristics of nanocellulose in biopolymer composite materials to improve various structural, mechanical, barrier and thermal properties. We also present a comprehensive description of the safety features of nanocellulose before and after being loaded within biopolymeric matrices.
Collapse
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland.
| | - Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Diako Khodaei
- School of Food Science and Environmental Health, Environmental Sustainability and Health Institute, Technological University Dublin, Grangegorman, Dublin 7, Ireland.
| | - Shima Yousefi
- Department of Agriculture and Food Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome 'Niccolò Cusano', Rome, Italy.
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
21
|
Thongsomboon W, Baimark Y, Srihanam P. Valorization of Cellulose-Based Materials from Agricultural Waste: Comparison between Sugarcane Bagasse and Rice Straw. Polymers (Basel) 2023; 15:3190. [PMID: 37571085 PMCID: PMC10421048 DOI: 10.3390/polym15153190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Sugarcane bagasse and rice straw are major agricultural byproducts often discarded or burned as waste after cultivation, leaving their untapped potential for utilization. In this work, cellulose fibers were extracted from sugarcane bagasse and rice straw using a simple procedure: alkaline treatment with sodium hydroxide, bleaching with sodium hypochlorite, and acid hydrolysis. The obtained cellulosic materials were successfully prepared into milky white and transparent films, of which the transparency slightly decreased with the addition of glycerol. The surface of all the films appeared homogeneous with a random orientation of fibers. The rice-straw (RS) film had a more fragile texture than the sugarcane-bagasse (SBG) film. The FTIR analysis clearly indicated the functional groups of cellulose, as well as glycerol for the films mixed with glycerol. Thermal analysis showed that the native SBG film decomposed at 346 °C, higher than the native RS film (339 °C). The presence of glycerol in the films resulted in slightly lower maximum decomposition temperature (Td,max) values as well as mechanical properties. Regarding water susceptibility, the RS film had a higher percentage than the native SBG and glycerol-mixed SBG films. The extracted cellulose from both sources could form almost spherical-shaped cellulose particles. Thus, through the simple extraction method, sugarcane bagasse and rice straw could serve as excellent sources of cellulose materials for preparing cellulose films and particles, which would be advantageous to the development of cellulose-based materials.
Collapse
Affiliation(s)
| | | | - Prasong Srihanam
- Biodegradable Polymers Research Unit, Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand; (W.T.); (Y.B.)
| |
Collapse
|
22
|
Development of antimicrobial gelatin-ulvan-beeswax composite films: Optimization of formulation using mixture design methodology. Int J Biol Macromol 2023; 231:123384. [PMID: 36690230 DOI: 10.1016/j.ijbiomac.2023.123384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
A new generation of antimicrobial film was developed by incorporation of ulvan extracted from Ulva intestinalis into gelatin from common carp scale and its water sensitivity was reduced with addition of beeswax. Optimum composition of gelatin (0-100%w/w), ulvan (0-100%w/w) and beeswax (0-10%w/w) for achieving composite films with minimum water solubility (S) and water vapor permeability (WVP) and maximum tensile strength (TS), elongation at break point (EAB) and antibacterial effect on E. coli (EC) were investigated using mixture design methodology. Both pure gelatin and ulvan films and their composites had relatively good mechanical and optical properties. Addition of ulvan to gelatin produced composite films with good antibacterial properties but water resistance of all the films was weak. Addition of beeswax up to ∼5 % improved the water resistance and mechanical properties of the films without jeopardizing their antibacterial properties. The final optimum formulation with a desirability of 0.709 was achieved as 52.18 % of gelatin, 40.83 % of ulvan and 6.97 % of beeswax resulting in a minimum possible S (40 %) and WVP (1.86 10-10 g/ms Pa) and maximum possible TS (6.23 MPa) and EAB (89 %) with good EC (7.66 mm). Finally, good mechanical, thermal and microstructural properties of the optimum composite film was confirmed. Altogether, a combination of ulvan and beeswax can be a promising solution for development of gelatin films with both antimicrobial properties and lower water sensitivity.
Collapse
|
23
|
Xiao Y, Xu H, Zhou Q, Li W, Gao J, Liao X, Yu Z, Zheng M, Zhou Y, Sui X, Liu Y. Influence mechanism of wheat bran cellulose and cellulose nanocrystals on the storage stability of soy protein isolate films: Conformation modification and molecular interaction perspective. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Edible oleofilms with high vegetable oil content obtained from novel soy protein isolate/gelatin/chitosan nanofiber emulgels. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Investigation on the coacervation of fish scale gelatin hydrogel with seafood waste hydrolysates for the development of artificial fish bait: Physico-chemical, thermodynamic, and morpho-structural properties. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
A structural explanation for protein digestibility changes in different food matrices. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Conformational and thermal properties of gluten in wheat dough as affected by bacterial cellulose. Int J Biol Macromol 2022; 220:175-182. [PMID: 35981670 DOI: 10.1016/j.ijbiomac.2022.08.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Bacterial cellulose (BC), an important category of polysaccharides, was investigated as a texture improver in bakery products. This study focused on the changes in the conformational and thermal properties of gluten in the wheat dough system as affected by BC. Significant reductions in the free-SH content, fluorescence intensity, and surface hydrophobicity index (H0) were observed as a result of the increased BC addition. The electrophoresis profile (SDS-PAGE) and size exclusion (SE-HPLC) revealed the variation in molecular weight distribution, and the increase in the content of the 40-91 kDa molecular weight was at the expense of a decrease in the amount of the corresponding 10-40 kDa. When 0.1 % BC was added, both the α-helix and β-sheet contents increased as a result of enhanced chemical interactions, thereby contributing to the gluten matrix with higher thermal stability. Further supplementation interfered with the current ordered gluten structure, which could be supported by the lower α-helix/β-sheet content ratio and the decreased degradation temperature (Td) of gluten with 0.2 % BC. However, the observed decrease in the ratio of β-turns to β-sheets and weight loss at 600 °C indicated that a reconstructed gluten matrix induced by extra BC addition was formed to maintain the structural stability.
Collapse
|
28
|
Fabrication and characterization of pullulan-based composite films incorporated with bacterial cellulose and ferulic acid. Int J Biol Macromol 2022; 219:121-137. [PMID: 35931293 DOI: 10.1016/j.ijbiomac.2022.07.236] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/20/2022] [Accepted: 07/30/2022] [Indexed: 01/13/2023]
Abstract
Pullulan-based composite films incorporated with bacterial cellulose (BC) and ferulic acid (FA) were prepared by solution casting method. The rheological, morphological, barrier, optical, anti-fogging, and antioxidant properties of pullulan-based composite films doped with BC and FA were investigated. The rheological results showed that all film-forming solution was pseudoplastic fluid and its viscosity increased with the increase of BC content. An appropriate BC (2 %) and FA were uniformly dispersed in pullulan to form uniform and dense composite films. With the increase of BC content, the roughness and opacity of composite films increased while their UV-vis barrier performance was improved by incorporating BC and FA. Fourier transform infrared spectrometer analysis demonstrated that hydrogen bond interactions among pullulan, BC, and FA were found, and incorporating BC could increase the crystallinity of the composite films, thus enhancing their mechanical, barrier, hydrophobic, and thermal stability properties. Pullulan-based composite films incorporated with 2 % BC and FA (P-BC2-FA) showed better mechanical properties, water, oxygen, and carbon dioxide barrier performances, and its water contact angle value also increased compared with control, respectively. P-BC2-FA film showed superior anti-fogging and antioxidant activities. These results indicate that the P-BC2-FA film are expected to be a potential target of bioactive packaging.
Collapse
|
29
|
Zhao C, Zhu J, Zhang C, Wang W, Qu W, Wang W, Li W, Wu H. Preparation of mechanically strong and active composite films based on fish myofibrillar proteins: The dual effects of oxidized polyphenol crosslinking and layered double hydroxide reinforcement. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Recent advances in the study of modified cellulose in meat products: Modification method of cellulose, meat quality improvement and safety concern. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Papadaki A, Manikas AC, Papazoglou E, Kachrimanidou V, Lappa I, Galiotis C, Mandala I, Kopsahelis N. Whey protein films reinforced with bacterial cellulose nanowhiskers: Improving edible film properties via a circular economy approach. Food Chem 2022; 385:132604. [PMID: 35303655 DOI: 10.1016/j.foodchem.2022.132604] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/06/2022] [Accepted: 02/27/2022] [Indexed: 11/29/2022]
Abstract
Edible films were developed using whey protein concentrate (WPC) and a natural bio-polymer, namely bacterial cellulose (BC). BC was produced via fermentation from orange peels and subsequently acid-hydrolyzed to obtain BC nanowhiskers (BCNW) with high crystallinity (XRD analysis). Morphology of BCNW was analyzed by SEM, TEM, and AFM. WPC/BCNW film composites, containing different amounts of BCNW (0.5-15%, w/w) were developed and characterized. WPC/BCNW film composite was analyzed by Raman spectroscopy, indicating the successful incorporation and the homogenous distribution of BCNW into the WPC film matrix. Mechanical characterization showed that BCNW behaved as a reinforcing filler in the WPC film, increasing tensile strength and Young's modulus by 32% and 80%, respectively. In addition, water vapor permeability was reduced by 33.9% upon the addition of 0.5% BCNW. This study presented a sustainable approach towards the production of WPC films with improved tensile and water barrier properties, suggesting its potential application as a packaging material.
Collapse
Affiliation(s)
- Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Anastasios C Manikas
- Foundation of Research and Technology Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou St, Platani, 26504 Patras, Greece; Department Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Eleonora Papazoglou
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Vasiliki Kachrimanidou
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Iliada Lappa
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Costas Galiotis
- Foundation of Research and Technology Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou St, Platani, 26504 Patras, Greece; Department Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Ioanna Mandala
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece.
| |
Collapse
|
32
|
Weng S, Sáez-Orviz S, Marcet I, Rendueles M, Díaz M. Novel Bovine Plasma Protein Film Reinforced with Nanofibrillated Cellulose Fiber as Edible Food Packaging Material. MEMBRANES 2021; 12:membranes12010031. [PMID: 35054557 PMCID: PMC8781310 DOI: 10.3390/membranes12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/25/2022]
Abstract
Proteins, such as those in blood from slaughterhouses, are a good option for developing edible films. However, films made exclusively from proteins have low strength and high water solubility, which makes them difficult to use in the food industry. The use of cellulosic material, such as nanofibrillated cellulose (NFC), can improve the properties of these films. In the present work, bovine plasma was acidified and treated with ethanol to precipitate its proteins, and these proteins were used to prepare films reinforced with several concentrations of NFC. In addition, control films prepared with untreated bovine plasma and reinforced with NFC were prepared as well. These new edible films were characterized according to their mechanical properties, water vapor permeability, light transmittance, and microstructure. Furthermore, the film with the best properties was selected to be additivated with nisin to test its antimicrobial properties by wrapping meat previously contaminated with Staphylococcus aureus. In this sense, films prepared with the extracted proteins showed better properties than the films prepared with untreated plasma. In addition, the results showed that the reinforcement of the films with a 10% (w/w) of NFC decreased their water solubility and improved their puncture strength and water vapor barrier properties. Finally, the addition of nisin to the films prepared with extracted protein from bovine plasma and NFC gave them antimicrobial properties against S. aureus.
Collapse
|
33
|
Rojas-Lema S, Nilsson K, Trifol J, Langton M, Gomez-Caturla J, Balart R, Garcia-Garcia D, Moriana R. “Faba bean protein films reinforced with cellulose nanocrystals as edible food packaging material”. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Interactions of the molecular assembly of polysaccharide-protein systems as encapsulation materials. A review. Adv Colloid Interface Sci 2021; 295:102398. [PMID: 33931199 DOI: 10.1016/j.cis.2021.102398] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 01/05/2023]
Abstract
Studying the interactions of biopolymers like polysaccharides and proteins is quite important mainly due to the wide number of applications such as the stabilization and encapsulation of active compounds in complex systems. Complexation takes place when materials like proteins and polysaccharides are blended to promote the entrapment of active compounds. The interaction forces between the charged groups in the polymeric chains allow the miscibility of the components in the complex system. Understanding the interactions taking place between the polymers as well as between the wall material and the active compound is important when designing delivery systems. However, some features of the biopolymers like structure, functional groups, or electrical charge as well as extrinsic parameters like pH or ratios might affect the structure and the performance of the complex system when used in encapsulation applications. This work summarizes the recent progress of the polysaccharide/protein complexes for encapsulation and the influence of the pH on the structural modifications during the complexation process.
Collapse
|
35
|
Lionetto F, Esposito Corcione C. Recent Applications of Biopolymers Derived from Fish Industry Waste in Food Packaging. Polymers (Basel) 2021; 13:2337. [PMID: 34301094 PMCID: PMC8309529 DOI: 10.3390/polym13142337] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Fish waste is attracting growing interest as a new raw material for biopolymer production in different application fields, mainly in food packaging, with significant economic and environmental advantages. This review paper summarizes the recent advances in the valorization of fish waste for the preparation of biopolymers for food packaging applications. The issues related to fishery industry waste and fish by-catch and the potential for re-using these by-products in a circular economy approach have been presented in detail. Then, all the biopolymer typologies derived from fish waste with potential applications in food packaging, such as muscle proteins, collagen, gelatin, chitin/chitosan, have been described. For each of them, the recent applications in food packaging, in the last five years, have been overviewed with an emphasis on smart packaging applications. Despite the huge industrial potential of fish industry by-products, most of the reviewed applications are still at lab-scale. Therefore, the technological challenges for a reliable exploitation and recovery of several potentially valuable molecules and the strategies to improve the barrier, mechanical and thermal performance of each kind of biopolymer have been analyzed.
Collapse
Affiliation(s)
- Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via Arnesano, 73100 Lecce, Italy;
| | | |
Collapse
|
36
|
Li Z, Zhang Y, Anankanbil S, Guo Z. Applications of nanocellulosic products in food: Manufacturing processes, structural features and multifaceted functionalities. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Du H, Liu C, Unsalan O, Altunayar-Unsalan C, Xiong S, Manyande A, Chen H. Development and characterization of fish myofibrillar protein/chitosan/rosemary extract composite edible films and the improvement of lipid oxidation stability during the grass carp fillets storage. Int J Biol Macromol 2021; 184:463-475. [PMID: 34171252 DOI: 10.1016/j.ijbiomac.2021.06.121] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023]
Abstract
Biofilm composition from fish myofibrillar protein (FMP) and chitosan solution (CS) incorporated with rosemary extract (RE) was developed and applied to monitor the freshness of fish fillets. The effects of different concentrations of RE as well as physical, mechanical, structural and functional properties of FMP/CS films were investigated. Films containing RE showed reduced water solubility and water vapor permeability and enhanced tensile strength and elongation at break. Results also showed good compatibility of the components and good dispersion of RE in the matrix. However, the content of RE (0.2%, v/v) added in the composite films produced aggregations and had negative effects on their film-forming properties. The antioxidant capacity of composite films was related to the level of RE and demonstrated by the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging assay. Chilled grass carp fillets wrapped with different films to evaluate the preservative effect. Results of thiobarbituric acid reactive substances, pH value, Free amino acid and total volatile basic nitrogen indicated that FMP/CS/RE composite film could protect the fish fillet well and inhibit the lipid oxidation. The developed FMP/CS/RE composite films possess the potential to be applied as edible films in the food packaging industry and food cold chain transportation.
Collapse
Affiliation(s)
- Hongying Du
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China.
| | - Chen Liu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Ozan Unsalan
- Ege University, Faculty of Science, Department of Physics, 35100 Bornova, Izmir, Turkey
| | - Cisem Altunayar-Unsalan
- Ege University Central Research Testing and Analysis Laboratory Research and Application Center, 35100 Bornova, Izmir, Turkey
| | - Shanbai Xiong
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex TW8 9GA, UK
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
38
|
Silva SMF, Ribeiro HL, Mattos ALA, Borges MDF, Rosa MDF, de Azeredo HMC. Films from cashew byproducts: cashew gum and bacterial cellulose from cashew apple juice. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:1979-1986. [PMID: 33897034 DOI: 10.1007/s13197-020-04709-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/10/2020] [Accepted: 08/11/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT Cashew is a major crop in several tropical countries. Its cultivation is mostly aimed to the production of cashew nuts, whereas its byproducts (including cashew tree gum and cashew apples) are underutilized. In this study, cashew tree gum (CG) has been combined to nanofibrillated bacterial cellulose (NFBC) produced from cashew apple juice, at different ratios (from CG-only to NFBC-only), to produce edible films. While the CG-only dispersion (at 1 wt%) behaved as a quasi-Newtonian fluid, the addition of NFBC provided a shear-thinning behavior, making the dispersions easier to process, especially to cast. Moreover, the films containing increasing NFBC contents exhibited better physico-mechanical performance. When compared to the CG-only film, the films containing at least 25% NFBC presented remarkably higher strength and modulus (even similar to some conventional petroleum-derived polymers), lower water vapor permeability (WVP), and lower water solubility, although at the expense of lower elongation and higher opacity values. The combined use of both polysaccharides was demonstrated to be useful to overcome the limitations of both CG-only films (very low viscosity, poor tensile properties and very high WVP) and NFBC-only films (very high viscosity, making the dispersions difficult to mix and spread). Moreover, the use of different NFBC/CG ratios allow properties to be tuned to meet specific demands for different food packaging or coating purposes. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Sarah Maria Frota Silva
- Chemical Engineering Department, Federal University of Ceara, Campus Pici, Fortaleza, CE 60455-760 Brazil
| | - Hálisson Lucas Ribeiro
- Chemical Engineering Department, Federal University of Ceara, Campus Pici, Fortaleza, CE 60455-760 Brazil
| | | | - Maria de Fátima Borges
- Embrapa Agroindústria Tropical, R. Dra. Sara Mesquita, 2270, Pici, Fortaleza, CE 60511-110 Brazil
| | | | - Henriette Monteiro Cordeiro de Azeredo
- Embrapa Agroindústria Tropical, R. Dra. Sara Mesquita, 2270, Pici, Fortaleza, CE 60511-110 Brazil
- Embrapa Instrumentação, R. 15 de novembro, 1452, São Carlos, SP 13560-970 Brazil
| |
Collapse
|
39
|
|
40
|
Wang FP, Zhao XJ, Wahid F, Zhao XQ, Qin XT, Bai H, Xie YY, Zhong C, Jia SR. Sustainable, superhydrophobic membranes based on bacterial cellulose for gravity-driven oil/water separation. Carbohydr Polym 2021; 253:117220. [DOI: 10.1016/j.carbpol.2020.117220] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
|
41
|
Pereira GVDS, Vasconcelos da Silva Pereira G, Paixão Xavier Neves EM, de Arimateia Rodrigues do Rego J, Brasil DDSB, de Fátima Henriques Lourenço L, Sarkis Peixoto Joele MR. Glycerol and fatty acid influences on the rheological and technological properties of composite films from residues of Cynoscion acoupa. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Basumatary IB, Mukherjee A, Katiyar V, Kumar S. Biopolymer-based nanocomposite films and coatings: recent advances in shelf-life improvement of fruits and vegetables. Crit Rev Food Sci Nutr 2020; 62:1912-1935. [DOI: 10.1080/10408398.2020.1848789] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Indra Bhusan Basumatary
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| | - Avik Mukherjee
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| | - Vimal Katiyar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, Assam, India
| |
Collapse
|
43
|
Zhang W, Zhang Y, Cao J, Jiang W. Improving the performance of edible food packaging films by using nanocellulose as an additive. Int J Biol Macromol 2020; 166:288-296. [PMID: 33129905 DOI: 10.1016/j.ijbiomac.2020.10.185] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Due to the environmental pollution problems caused by plastic-based packaging, the development of edible food packaging films is imminent. However, the performance of most edible packaging films is insufficient to meet practical applications, so recent studies have focused on the research of various fillers to improve film properties. This article reviews recent applications of cellulose nanocrystals (CNC) and cellulose nanofiber (CNF) in edible food packaging films including the effect on thickness, optical properties, barrier properties, water sensitivity, mechanical properties, antioxidant and antimicrobial properties. The main conclusion of this review is that the incorporation of CNC and CNF could significantly improve the performance of edible food packaging films. Particular finding is that although CNC and CNF can be used as excellent addition to improve the performance of edible food packaging films, there is a key "optimum" concentration. In addition, we also found that CNC and CNF as excellent controlled release agents and stabilizers significantly increased the antioxidant and antibacterial properties of edible food packaging films.
Collapse
Affiliation(s)
- Wanli Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yiqin Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
44
|
Motelica L, Ficai D, Ficai A, Oprea OC, Kaya DA, Andronescu E. Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods 2020; 9:E1438. [PMID: 33050581 PMCID: PMC7601795 DOI: 10.3390/foods9101438] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
This review presents a perspective on the research trends and solutions from recent years in the domain of antimicrobial packaging materials. The antibacterial, antifungal, and antioxidant activities can be induced by the main polymer used for packaging or by addition of various components from natural agents (bacteriocins, essential oils, natural extracts, etc.) to synthetic agents, both organic and inorganic (Ag, ZnO, TiO2 nanoparticles, synthetic antibiotics etc.). The general trend for the packaging evolution is from the inert and polluting plastic waste to the antimicrobial active, biodegradable or edible, biopolymer film packaging. Like in many domains this transition is an evolution rather than a revolution, and changes are coming in small steps. Changing the public perception and industry focus on the antimicrobial packaging solutions will enhance the shelf life and provide healthier food, thus diminishing the waste of agricultural resources, but will also reduce the plastic pollution generated by humankind as most new polymers used for packaging are from renewable sources and are biodegradable. Polysaccharides (like chitosan, cellulose and derivatives, starch etc.), lipids and proteins (from vegetal or animal origin), and some other specific biopolymers (like polylactic acid or polyvinyl alcohol) have been used as single component or in blends to obtain antimicrobial packaging materials. Where the package's antimicrobial and antioxidant activities need a larger spectrum or a boost, certain active substances are embedded, encapsulated, coated, grafted into or onto the polymeric film. This review tries to cover the latest updates on the antimicrobial packaging, edible or not, using as support traditional and new polymers, with emphasis on natural compounds.
Collapse
Affiliation(s)
- Ludmila Motelica
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Denisa Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Anton Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Durmuş Alpaslan Kaya
- Department of Field Crops, Faculty of Agriculture, Hatay Mustafa Kemal University, 31030 Antakya Hatay, Turkey;
| | - Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| |
Collapse
|
45
|
Cazón P, Velázquez G, Vázquez M. Bacterial cellulose films: Evaluation of the water interaction. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100526] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Development and characterization of carboxymethyl cellulose based probiotic nanocomposite film containing cellulose nanofiber and inulin for chicken fillet shelf life extension. Int J Biol Macromol 2020; 160:409-417. [PMID: 32416305 DOI: 10.1016/j.ijbiomac.2020.05.066] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 12/19/2022]
Abstract
Bioactive packaging is an alternative new technology for preserving the quality and safety of food products with providing health benefits. In this way, the Lactobacillus plantarum, cellulose nanofiber (CNF) and inulin incorporated carboxymethyl cellulose (CMC) based probiotic nanocomposite film was prepared. The fabricated film samples were characterized by FTIR, FE-SEM, XRD and DSC analyses, that the obtained results indicated the good compatibility between CMC, CNF, and inulin. As a result, the CMC-based probiotic films containing CNF and inulin exhibited satisfactory water barrier and mechanical properties. Additionally, the viability of probiotic bacteria in the CMC-based films was significantly (p < 0.05) increased (36%) by addition of inulin as a prebiotic ingredient during storage time. Probiotic film sample showed antibacterial activity against nine pathogens and also extended the chicken fillet shelf life when wrapped on the meat. In conclusion, the application of CNF and inulin incorporated CMC-based probiotic nanocomposite film as a bioactive food packaging system opens up a new horizon for improving the shelf life of food products and providing the health benefits for consumers.
Collapse
|
47
|
Yekta R, Mirmoghtadaie L, Hosseini H, Norouzbeigi S, Hosseini SM, Shojaee-Aliabadi S. Development and characterization of a novel edible film based on Althaea rosea flower gum: Investigating the reinforcing effects of bacterial nanocrystalline cellulose. Int J Biol Macromol 2020; 158:327-337. [PMID: 32278602 DOI: 10.1016/j.ijbiomac.2020.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 01/06/2023]
Abstract
Althaea rosea flowers were used to procure the gum (ARG) needed for film preparation. Pretest studies suggested 1.5% ARG + 50% glycerol as optimum for film preparation. The reinforcement impact of 3, 5, and 8 wt% bacterial nanocrystalline cellulose (BNC) incorporation (based on the dry weight of ARG) was investigated on the structural, mechanical, physical, thermal, optical, morphological, and barrier properties of films. The Results suggested that increasing the BNC concentration until a certain level (5 wt% BNC) could improve the latter properties. However, at higher concentration (8 wt% BNC), cellulose nanoparticles tended to agglomerate, which led to the impairment of some of those properties, especially barrier properties. According to AFM and SEM results, BNC addition increased surface roughness and coarseness. All BNC-loaded films showed better functions compared to control sample (0 wt% BNC) and the film containing 5 wt% BNC was suggested as the optimum film.
Collapse
Affiliation(s)
- Reza Yekta
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Mirmoghtadaie
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Norouzbeigi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyede Marzieh Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeedeh Shojaee-Aliabadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Preparation and characterization of whey protein isolate/polydextrose-based nanocomposite film incorporated with cellulose nanofiber and L. plantarum: A new probiotic active packaging system. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108978] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Hamedi S, Shojaosadati SA, Najafi V, Alizadeh V. A novel double-network antibacterial hydrogel based on aminated bacterial cellulose and schizophyllan. Carbohydr Polym 2020; 229:115383. [DOI: 10.1016/j.carbpol.2019.115383] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/15/2019] [Accepted: 09/25/2019] [Indexed: 12/31/2022]
|
50
|
Zhu Y, Zhao X, Zhang X, Liu H. Extraction, structural and functional properties of Haematococcus pluvialis protein after pigment removal. Int J Biol Macromol 2019; 140:1073-1083. [DOI: 10.1016/j.ijbiomac.2019.08.209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/24/2019] [Accepted: 08/24/2019] [Indexed: 01/18/2023]
|