1
|
Lan X, Du T, Zhuo J, Wang T, Shu R, Li Y, Zhang W, Ji Y, Wang Y, Yue X, Wang J. Advances of biomacromolecule-based antibacterial hydrogels and their performance evaluation for wound healing: A review. Int J Biol Macromol 2024; 279:135577. [PMID: 39270907 DOI: 10.1016/j.ijbiomac.2024.135577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Biomacromolecule hydrogels possess excellent mechanical properties and biocompatibility, but their inability to combat bacteria restricts their application in the biomedical field. With the increasing requirements and demands for hydrogel dressings, wound dressings with antibacterial properties of biomacromolecule hydrogels reinforced by adding antibacterial agents have attracted much attention, and related reviews are emerging. In this paper, the advances of biomacromolecule antibacterial hydrogels (including chitosan, sodium alginate, Hyaluronic acid, cellulose and gelatin) were first overviewed, and the antibacterial agents incorporated into hydrogels were classified (including metals and their derivatives, carbon-based materials, and native compounds). A series of performance evaluations of antibacterial hydrogels in the process of promoting wound healing were then reviewed, including basic properties (mechanical, rheological, injectable and self-healing, etc.), in vitro experiments (hemostasis, antibacterial, anti-inflammatory, anti-oxidation, biocompatibility) and in vivo experiments (in vivo model, histomorphology analysis, cytokines). Finally, the future development of biomacromolecule-based antibacterial hydrogels for wound healing is prospected. This work can provide a useful reference for researchers to prepare practical new wound hydrogel dressings.
Collapse
Affiliation(s)
- Xi Lan
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Tianyu Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China
| | - Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Rode, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Thai Tran BL, Van Vo T, Chu TP, Bach DT, Nguyen TQ, Bao Luu PH, Thuy Tran VT, Duong HH, Nguyen NH, Le GT, Tran TT, Tuong Tran KN, Cam Tuyen LT, Dinh TN, Uyen NN, Thu Nguyen TT, Thi Nguyen NV, Nguyen KT, Nhu Tran LT, Le PH. Antibacterial efficacy of low-dosage silver nanoparticle-sodium alginate-chitosan nanocomposite films against pure and clinical acne strains. RSC Adv 2024; 14:33267-33280. [PMID: 39434988 PMCID: PMC11492429 DOI: 10.1039/d4ra05180g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
The silver nanoparticles-sodium alginate-chitosan (AgNPs-Alg-Chi) nanocomposite film is a compelling material with demonstrated antibacterial efficacy against various pure bacterial strains. However, its potential cytotoxicity at elevated Ag doses warrants investigation. There is a notable dearth of studies assessing its antibacterial effectiveness against clinically relevant bacterial strains, notably Cutibacterium acnes. This study aims to assess the antibacterial efficacy of the low-dose AgNPs-Alg-Chi nanocomposite films on both pure bacterial strains and strains isolated from clinical samples obtained from 65 acne patients. The films were synthesized using green methods, incorporating kumquat (Citrus japonica) extract as a silver ion-reducing agent. The material characterization methods include UV-Vis and FTIR spectroscopies, SEM-EDS, XPS, cell culture, and MTT assay. We successfully fabricated the AgNPs-Alg-Chi nanocomposite films with a low-loading dose of Ag NPs (≤11 μg mL-1, and 37.8 ± 11.5 nm in size). The AgNPs-Alg-Chi nanocomposite film demonstrated comparable antibacterial efficacy to the AgNPs-Chi solution, with MIC values ranging from 3.67 to 5.50 μg mL-1 (p > 0.05) across all strains. Importantly, the AgNPs-Alg-Chi films demonstrated excellent biocompatibility with human keratinocytes (HaCaT cells), maintaining cell viability above 70%. The present AgNPs-Alg-Chi nanocomposite films synthesized by a green approach demonstrated potent antibacterial activity, making them promising for further development into suitable products for human use.
Collapse
Affiliation(s)
- Bao Lam Thai Tran
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Thanh Van Vo
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Teng-Ping Chu
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology New Taipei City 243303 Taiwan
- International PhD Program in Plasma and Thin Film Technology, Ming Chi University of Technology New Taipei City 243303 Taiwan
| | - Duong Thai Bach
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Thai Quang Nguyen
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Phuong Hong Bao Luu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 41-43 Dinh Tien Hoang Street Ho Chi Minh City Vietnam
| | - Vy Thi Thuy Tran
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Hieu Hoang Duong
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Nhi Hoang Nguyen
- Faculty of Public Health, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Gai Thi Le
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Thu Thi Tran
- Faculty of Traditional Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | | | - Le Thi Cam Tuyen
- Faculty of Chemical Engineering, Can Tho University 3/2 Street Can Tho City Vietnam
| | - Truong Ngoc Dinh
- Department of Physics and Biophysics, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
- Department of Biomedical Engineering, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Ngo Ngoc Uyen
- Department of Biomedical Engineering, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Tram Thi Thu Nguyen
- Department of Biomedical Engineering, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
- Department of Chemistry, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Ngoc-Van Thi Nguyen
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Kien Trung Nguyen
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Le Thi Nhu Tran
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy 179 Nguyen Van Cu Street Can Tho City Vietnam
| | - Phuoc Huu Le
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology New Taipei City 243303 Taiwan
- International PhD Program in Plasma and Thin Film Technology, Ming Chi University of Technology New Taipei City 243303 Taiwan
| |
Collapse
|
3
|
Brebu M, Pamfil D, Stoica I, Aflori M, Voicu G, Stoleru E. Photo-crosslinked chitosan-gelatin xerogel-like coating onto "cold" plasma functionalized poly(lactic acid) film as cell culture support. Carbohydr Polym 2024; 339:122288. [PMID: 38823936 DOI: 10.1016/j.carbpol.2024.122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
This paper reports on biofunctionalisation of a poly(lactic acid) (PLA) film by surface activation through cold plasma treatment followed by coating with a chitosan-gelatin xerogel. The UV cross-linking of the xerogel precursor was simultaneously performed with the fixation onto the PLA support. This has a strong effect on surface properties, in terms of wettability, surface free energy, morphology and micromechanical features. The hydrophilic - hydrophobic character of the surface, determined by contact angle measurements, was tuned along the process, passing from moderate hydrophobic PLA to enhanced hydrophilic plasma activated surface, which favors coating adhesion, then to moderate hydrophobic chitosan-gelatin coating. The coating has a Lewis amphoteric surface, with a porous xerogel-like morphology, as revealed by scanning electron microscopy images. By riboflavin mediated UV cross-linking the chitosan-gelatin coating becomes high adhesive and with a more pronounced plasticity, as shown by AFM force-distance spectroscopy. Thus prepared surface-coated PLA supports were successfully tested for growth of dermal fibroblasts, which are known for their induction potential of chondrogenic cells, which is very important in cartilage tissue engineering.
Collapse
Affiliation(s)
- Mihai Brebu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania
| | - Daniela Pamfil
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania
| | - Iuliana Stoica
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania
| | - Magdalena Aflori
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania
| | - Geanina Voicu
- "Medical and Pharmaceutical BioNanoTechnologies" Laboratory (BioNanoMed) Institute of Cellular Biology and Pathology, "Nicolae Simionescu" 8, BP Hasdeu Street, 050568 Bucharest, Romania
| | - Elena Stoleru
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487, Iasi, Romania.
| |
Collapse
|
4
|
Mishra A, Omoyeni T, Singh PK, Anandakumar S, Tiwari A. Trends in sustainable chitosan-based hydrogel technology for circular biomedical engineering: A review. Int J Biol Macromol 2024; 276:133823. [PMID: 39002912 DOI: 10.1016/j.ijbiomac.2024.133823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Eco-friendly materials have emerged in biomedical engineering, driving major advances in chitosan-based hydrogels. These hydrogels offer a promising green alternative to conventional polymers due to their non-toxicity, biodegradability, biocompatibility, environmental friendliness, affordability, and easy accessibility. Known for their remarkable properties such as drug encapsulation, delivery capabilities, biosensing, functional scaffolding, and antimicrobial behavior, chitosan hydrogels are at the forefront of biomedical research. This paper explores the fabrication and modification methods of chitosan hydrogels for diverse applications, highlighting their role in advancing climate-neutral healthcare technologies. It reviews significant scientific advancements and trends chitosan hydrogels focusing on cancer diagnosis, drug delivery, and wound care. Additionally, it addresses current challenges and green synthesis practices that support a circular economy, enhancing biomedical sustainability. By providing an in-depth analysis of the latest evidence on climate-neutral management, this review aims to facilitate informed decision-making and foster the development of sustainable strategies leveraging chitosan hydrogel technology. The insights from this comprehensive examination are pivotal for steering future research and applications in sustainable biomedical solutions.
Collapse
Affiliation(s)
- Anshuman Mishra
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Temitayo Omoyeni
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden; Cyprus International University Faculty of Engineering, Nicosia 99258, TRNC, Cyprus
| | - Pravin Kumar Singh
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - S Anandakumar
- Department of Chemistry, Anna University, Chennai 600025, India
| | - Ashutosh Tiwari
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden.
| |
Collapse
|
5
|
Fan D, Xie R, Liu X, Li H, Luo Z, Li Y, Chen F, Zeng W. A peptide-based pH-sensitive antibacterial hydrogel for healing drug-resistant biofilm-infected diabetic wounds. J Mater Chem B 2024; 12:5525-5534. [PMID: 38746970 DOI: 10.1039/d4tb00594e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Diabetic foot ulcers are a significant complication affecting roughly 15% of diabetic patients. These chronic wounds can be incredibly burdensome, leading to high treatment costs, potential amputations, and additional health complications. Microbiological studies reveal that bacterial infections are the primary culprit behind delayed wound healing. To solve the problem of infection at the wound site, the most fundamental thing is to kill the pathogenic bacteria. Herein, a neoteric strategy to construct novel antibacterial hydrogel COA-T3 that combined photosensitizers (PSs) and antimicrobial peptides (AMPs) via covalent coupling was proposed. Hydrogel COA-T3 composed of quaternized chitosan (QCS) and oxidized dextran (OD) was constructed for co-delivery of the photosensitizer TPI-PN and the antimicrobial peptide HHC10. In vitro and in vivo experiments demonstrated remarkable effectiveness of COA-T3 against drug-resistant bacteria. Furthermore, the hydrogel significantly promoted healing of diabetic infected wounds. This enhanced antibacterial activity is attributed to the pH-sensitive release of both PSs and AMPs within the hydrogel. Additionally, COA-T3 exhibits excellent biocompatibility, making it a promising candidate for wound dressing materials. These findings indicated that the COA-T3 hydrogel is a promising wound dressing material for promoting the healing of diabetic foot ulcers by providing an environment conducive to improved wound healing in diabetic patients.
Collapse
Affiliation(s)
- Duoyang Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China.
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, P. R. China
| | - Ruyan Xie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China.
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, P. R. China
| | - Xiaohui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China.
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, P. R. China
| | - Haohan Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China.
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, P. R. China
| | - Ziheng Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China.
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, P. R. China
| | - Yanbing Li
- Xiangya Hospital of Central South University, Changsha, P. R. China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China.
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, P. R. China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China.
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, P. R. China
| |
Collapse
|
6
|
Najihah AZ, Hassan MZ, Ismail Z. Current trend on preparation, characterization and biomedical applications of natural polysaccharide-based nanomaterial reinforcement hydrogels: A review. Int J Biol Macromol 2024; 271:132411. [PMID: 38821798 DOI: 10.1016/j.ijbiomac.2024.132411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
The tunable properties of hydrogels have led to their widespread use in various biomedical applications such as wound treatment, drug delivery, contact lenses, tissue engineering and 3D bioprinting. Among these applications, natural polysaccharide-based hydrogels, which are fabricated from materials like agarose, alginate, chitosan, hyaluronic acid, cellulose, pectin and chondroitin sulfate, stand out as preferred choices due to their biocompatibility and advantageous fabrication characteristics. Despite the inherent biocompatibility, polysaccharide-based hydrogels on their own tend to be weak in physiochemical and mechanical properties. Therefore, further reinforcement in the hydrogel is necessary to enhance its suitability for specific applications, ensuring optimal performance in diverse settings. Integrating nanomaterials into hydrogels has proven effective in improving the overall network and performance of the hydrogel. This approach also addresses the limitations associated with pure hydrogels. Next, an overview of recent trends in the fabrication and applications of hydrogels was presented. The characterization of hydrogels was further discussed, focusing specifically on the reinforcement achieved with various hydrogel materials used so far. Finally, a few challenges associated with hydrogels by using polysaccharide-based nanomaterial were also presented.
Collapse
Affiliation(s)
- A Z Najihah
- Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Mohamad Zaki Hassan
- Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Zarini Ismail
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
7
|
Liu F, Song J, Li S, Sun H, Wang J, Su F, Li S. Chitosan-based GOx@Co-MOF composite hydrogel: A promising strategy for enhanced antibacterial and wound healing effects. Int J Biol Macromol 2024; 270:132120. [PMID: 38740153 DOI: 10.1016/j.ijbiomac.2024.132120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
A novel composite hydrogel was synthesized via Schiff base reaction between chitosan and di-functional poly(ethylene glycol) (DF-PEG), incorporating glucose oxidase (GOx) and cobalt metal-organic frameworks (Co-MOF). The resulting CS/PEG/GOx@Co-MOF composite hydrogel was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and energy-dispersive X-ray spectroscopy (EDS). The results confirmed successful integration and uniform distribution of Co-MOF within the hydrogel matrix. Functionally, the hydrogel exploits the catalytic decomposition of glucose by GOx to generate gluconic acid and hydrogen peroxide (H2O2), while Co-MOF gradually releases metal ions and protects GOx. This synergy enhanced the antibacterial activity of the composite hydrogel against both Gram-positive (S. aureus) and Gram-negative bacteria (E. coli), outperforming conventional chitosan-based hydrogels. The potential of the composite hydrogel in treating wound infections was evaluated through antibacterial and wound healing experiments. Overall, CS/PEG/GOx@Co-MOF hydrogel holds great promise for the treatment of wound infections, paving the way for further research and potential clinical applications.
Collapse
Affiliation(s)
- Fangyu Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Song
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Sihan Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haozhi Sun
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jinjun Wang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao 266033, China.
| | - Feng Su
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Suming Li
- Institut Europeen des Membranes, UMR CNRS 5635, Universite de Montpellier, 34095 Montpellier, France.
| |
Collapse
|
8
|
Wawrzyńczak A, Chudzińska J, Feliczak-Guzik A. Metal and Metal Oxides Nanoparticles as Nanofillers for Biodegradable Polymers. Chemphyschem 2024; 25:e202300823. [PMID: 38353297 DOI: 10.1002/cphc.202300823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Polymeric materials, despite their many undeniable advantages, nowadays are a major environmental challenge. Thus, in recent years biodegradable polymer matrices have been widely used in various sectors, including the medicinal, chemical, and packaging industry. Their widespread use is due to the properties of biodegradable polymer matrices, among which are their adjustable physicochemical and mechanical properties, as well as lower environmental impact. The properties of biodegradable polymers can be modified with various types of nanofillers, among which clays, organic and inorganic nanoparticles, and carbon nanostructures are most commonly used. The performance of the final product depends on the size and uniformity of the used nanofillers, as well as on their distribution and dispersion in the polymer matrix. This literature review aims to highlight new research results on advances and improvements in the synthesis, physicochemical properties and applications of biodegradable polymer matrices modified with metal nanoparticles and metal oxides.
Collapse
Affiliation(s)
- Agata Wawrzyńczak
- Department of Chemistry, Adam Mickiewicz University, Poznań University 8, 61-614, Poznań, Poland
| | - Jagoda Chudzińska
- Department of Chemistry, Adam Mickiewicz University, Poznań University 8, 61-614, Poznań, Poland
| | - Agnieszka Feliczak-Guzik
- Department of Chemistry, Adam Mickiewicz University, Poznań University 8, 61-614, Poznań, Poland
| |
Collapse
|
9
|
Mawazi SM, Kumar M, Ahmad N, Ge Y, Mahmood S. Recent Applications of Chitosan and Its Derivatives in Antibacterial, Anticancer, Wound Healing, and Tissue Engineering Fields. Polymers (Basel) 2024; 16:1351. [PMID: 38794545 PMCID: PMC11125164 DOI: 10.3390/polym16101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Chitosan, a versatile biopolymer derived from chitin, has garnered significant attention in various biomedical applications due to its unique properties, such as biocompatibility, biodegradability, and mucoadhesiveness. This review provides an overview of the diverse applications of chitosan and its derivatives in the antibacterial, anticancer, wound healing, and tissue engineering fields. In antibacterial applications, chitosan exhibits potent antimicrobial properties by disrupting microbial membranes and DNA, making it a promising natural preservative and agent against bacterial infections. Its role in cancer therapy involves the development of chitosan-based nanocarriers for targeted drug delivery, enhancing therapeutic efficacy while minimising side effects. Chitosan also plays a crucial role in wound healing by promoting cell proliferation, angiogenesis, and regulating inflammatory responses. Additionally, chitosan serves as a multifunctional scaffold in tissue engineering, facilitating the regeneration of diverse tissues such as cartilage, bone, and neural tissue by promoting cell adhesion and proliferation. The extensive range of applications for chitosan in pharmaceutical and biomedical sciences is not only highlighted by the comprehensive scope of this review, but it also establishes it as a fundamental component for forthcoming research in biomedicine.
Collapse
Affiliation(s)
- Saeid Mezail Mawazi
- School of Pharmacy, Management and Science University, Shah Alam 40100, Selangor, Malaysia;
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India;
| | - Noraini Ahmad
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
10
|
Ahmad N, Bukhari SNA, Hussain MA, Ejaz H, Munir MU, Amjad MW. Nanoparticles incorporated hydrogels for delivery of antimicrobial agents: developments and trends. RSC Adv 2024; 14:13535-13564. [PMID: 38665493 PMCID: PMC11043667 DOI: 10.1039/d4ra00631c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
The prevention and treatment of microbial infections is an imminent global public health concern due to the poor antimicrobial performance of the existing antimicrobial regime and rapidly emerging antibiotic resistance in pathogenic microbes. In order to overcome these problems and effectively control bacterial infections, various new treatment modalities have been identified. To attempt this, various micro- and macro-molecular antimicrobial agents that function by microbial membrane disruption have been developed with improved antimicrobial activity and lesser resistance. Antimicrobial nanoparticle-hydrogels systems comprising antimicrobial agents (antibiotics, biological extracts, and antimicrobial peptides) loaded nanoparticles or antimicrobial nanoparticles (metal or metal oxide) constitute an important class of biomaterials for the prevention and treatment of infections. Hydrogels that incorporate nanoparticles can offer an effective strategy for delivering antimicrobial agents (or nanoparticles) in a controlled, sustained, and targeted manner. In this review, we have described an overview of recent advancements in nanoparticle-hydrogel hybrid systems for antimicrobial agent delivery. Firstly, we have provided an overview of the nanoparticle hydrogel system and discussed various advantages of these systems in biomedical and pharmaceutical applications. Thereafter, different hybrid hydrogel systems encapsulating antibacterial metal/metal oxide nanoparticles, polymeric nanoparticles, antibiotics, biological extracts, and antimicrobial peptides for controlling infections have been reviewed in detail. Finally, the challenges and future prospects of nanoparticle-hydrogel systems have been discussed.
Collapse
Affiliation(s)
- Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab Lahore 54590 Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University Sakaka 72388 Aljouf Saudi Arabia
| | - Muhammad Usman Munir
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland Brisbane Queens-land 4072 Australia
| | - Muhammad Wahab Amjad
- 6 Center for Ultrasound Molecular Imaging and Therapeutics, School of Medicine, University of Pittsburgh 15213 Pittsburgh Pennsylvania USA
| |
Collapse
|
11
|
Liu L, Fan X, Lu Q, Wang P, Wang X, Han Y, Wang R, Zhang C, Han S, Tsuboi T, Dai H, Yeow J, Geng H. Antimicrobial research of carbohydrate polymer- and protein-based hydrogels as reservoirs for the generation of reactive oxygen species: A review. Int J Biol Macromol 2024; 260:129251. [PMID: 38211908 DOI: 10.1016/j.ijbiomac.2024.129251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Reactive oxygen species (ROS) play an important role in biological milieu. Recently, the rapid growth in our understanding of ROS and their promise in antibacterial applications has generated tremendous interest in the combination of ROS generators with bulk hydrogels. Hydrogels represent promising supporters for ROS generators and can locally confine the nanoscale distribution of ROS generators whilst also promoting cellular integration via biomaterial-cell interactions. This review highlights recent efforts and progress in developing hydrogels derived from biological macromolecules with embedded ROS generators with a focus on antimicrobial applications. Initially, an overview of passive and active antibacterial hydrogels is provided to show the significance of proper hydrogel selection and design. These are followed by an in-depth discussion of the various approaches for ROS generation in hydrogels. The structural engineering and fabrication of ROS-laden hydrogels are given with a focus on their biomedical applications in therapeutics and diagnosis. Additionally, we discuss how a compromise needs to be sought between ROS generation and removal for maximizing the efficacy of therapeutic treatment. Finally, the current challenges and potential routes toward commercialization in this rapidly evolving field are discussed, focusing on the potential translation of laboratory research outcomes to real-world clinical outcomes.
Collapse
Affiliation(s)
- Lan Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Xin Fan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Qianyun Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Pengxu Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Yuxing Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Runming Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Canyang Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Sanyang Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Tatsuhisa Tsuboi
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Jonathan Yeow
- Graduate School of Biomedical Engineering, The University of New South Wales Sydney, Sydney, NSW 2052, Australia.
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| |
Collapse
|
12
|
Li YY, Ji SF, Fu XB, Jiang YF, Sun XY. Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration. Mil Med Res 2024; 11:13. [PMID: 38369464 PMCID: PMC10874556 DOI: 10.1186/s40779-024-00519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages, ultimately impairing its normal physiological function. Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration, promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions. The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties. However, a comprehensive understanding of the underlying mechanisms remains somewhat elusive, limiting the broader application of these innovations. In this review, we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin. The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration. The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity, facilitating efficient cellular reprogramming and, consequently, promoting the regeneration of skin appendages. In summary, the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing, coupled with the restoration of multiple skin appendage functions.
Collapse
Affiliation(s)
- Ying-Ying Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Yu-Feng Jiang
- Department of Tissue Regeneration and Wound Repair, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
13
|
Li Y, Han Y, Li H, Niu X, Zhang D, Wang K. Antimicrobial Hydrogels: Potential Materials for Medical Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304047. [PMID: 37752779 DOI: 10.1002/smll.202304047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/20/2023] [Indexed: 09/28/2023]
Abstract
Microbial infections based on drug-resistant pathogenic organisms following surgery or trauma and uncontrolled bleeding are the main causes of increased mortality from trauma worldwide. The prevalence of drug-resistant pathogens has led to a significant increase in medical costs and poses a great threat to the normal life of people. This is an important issue in the field of biomedicine, and the emergence of new antimicrobial materials hydrogels holds great promise for solving this problem. Hydrogel is an important material with good biocompatibility, water absorption, oxygen permeability, adhesion, degradation, self-healing, corrosion resistance, and controlled release of drugs as well as structural diversity. Bacteria-disturbing hydrogels have important applications in the direction of surgical treatment, wound dressing, medical device coating, and tissue engineering. This paper reviews the classification of antimicrobial hydrogels, the current status of research, and the potential of antimicrobial hydrogels for one application in biomedicine, and analyzes the current research of hydrogels in biomedical applications from five aspects: metal-loaded hydrogels, drug-loaded hydrogels, carbon-material-loaded hydrogels, hydrogels with fixed antimicrobial activity and biological antimicrobial hydrogels, and provides an outlook on the high antimicrobial activity, biodegradability, biocompatibility, injectability, clinical applicability and future development prospects of hydrogels in this field.
Collapse
Affiliation(s)
- Yanni Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Yujia Han
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Deyi Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
14
|
Ge J, Li M, Fan J, Celia C, Xie Y, Chang Q, Deng X. Synthesis, characterization, and antibacterial activity of chitosan-chelated silver nanoparticles. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:45-62. [PMID: 37773055 DOI: 10.1080/09205063.2023.2265629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Bacterial infections pose a significant threat to human health and safety, necessitating the urgent resolution of the problem through the development and implementation of highly effective antibacterial agents. However, the emergence of multidrug-resistant bacteria has diminished the satisfactory effectiveness of antibacterial treatments. To overcome this obstacle, we developed effective antibacterial agents by chemical reduction for inhibiting bacterial proliferation and inducing membrane damage. Specifically, four different types of chitosan/Ag nanoparticle (CS-AgNPs-i) (i-1, 2, 3, 4) complexes were synthesized by varying the quantity of chitosan added during the synthesis process. We found that the amount of CS does not affect the morphology and size of CS-AgNPs-i, which remained at approximately 20 nm and all CS-AgNPs were mostly spherical. The zeta potential measurements indicated that the surface of CS-AgNPs carries a positive charge. Notably, elevating the chitosan concentration led to a more pronounced antibacterial impact, particularly evident in its interaction with the peptidoglycan layer on the bacterial surface. Our experimental results undeniably establish the potent antibacterial efficacy of CS-AgNPs against both Escherichia coli and Staphylococcus aureus. Employing live/dead bacterial staining, we reveal the marked capability of CS-AgNPs to effectively hinder bacterial proliferation. Furthermore, our experimental investigations revealed that CS-AgNPs possess broad-spectrum antimicrobial activity. The results of in vitro cytotoxicity experiments substantiated the high biocompatibility of CS-AgNPs with elevated chitosan loading. The study provides valuable insights into the development of nano-antibacterial agents that exhibit significant potential as a substitute to replace traditional antibiotics for medical applications.
Collapse
Affiliation(s)
- Jiu Ge
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P.R. China
| | - Mengting Li
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P.R. China
| | - Jiahui Fan
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P.R. China
| | - Christian Celia
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P.R. China
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Chieti, Italy
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P.R. China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P.R. China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P.R. China
| |
Collapse
|
15
|
Sanmugam A, Sellappan LK, Manoharan S, Rameshkumar A, Kumar RS, Almansour AI, Arumugam N, Kim HS, Vikraman D. Development of chitosan-based cerium and titanium oxide loaded polycaprolactone for cutaneous wound healing and antibacterial applications. Int J Biol Macromol 2024; 256:128458. [PMID: 38016611 DOI: 10.1016/j.ijbiomac.2023.128458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
Cerium dioxide (CeO2) based nanomaterials have emerged as promising dermal equivalents, promoting fibroblast infiltration and tissues regeneration. To enhance the antibacterial and wound healing activity, herein chitosan (CS)-CeO2 combined nano titanium dioxide (TiO2) complex loaded polycaprolactone (PCL) nanohybrid (CS-CeO2/TiO2/PCL) scaffolds were prepared through casting method. The nanohybrid scaffolds' physiochemical, morphological, mechanical, and biological properties were evaluated using advanced analytical techniques. Fourier transform infrared spectroscopy spectrum evidently depicted the various intermolecular interactions on the nanohybrid scaffolds. The developed scaffold exhibited the high swelling behavior and good degradability and permeability which is beneficial for absorbing wound transudation to fasten the healing efficacy. Moreover, CS-CeO2/TiO2/PCL scaffolds owned the better antibacterial activity against bacterial strains E. coli and S. aureus. Also, MTT assay on fibroblast (NIH 3T3) cells and immortalized human keratinocytes (HaCaT) cells indicated improved cell viability and proliferation. In vivo results revealed that the fabricated scaffold full aid to complete wound closure after 14 days which showed CS-CeO2/TiO2/PCL as the significant wound dressing material with potential antibacterial immunity.
Collapse
Affiliation(s)
- Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Sriperumbudur 602117, India
| | - Logesh Kumar Sellappan
- Department of Biomedical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India
| | - Swathy Manoharan
- Department of Biomedical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India
| | - A Rameshkumar
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam, Erode 638401, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh 1451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, Riyadh 1451, Saudi Arabia
| | - Natrajan Arumugam
- Department of Chemistry, College of Science, King Saud University, Riyadh 1451, Saudi Arabia
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| |
Collapse
|
16
|
Capanema NSV, Mansur AAP, Carvalho SM, Martins T, Gonçalves MS, Andrade RS, Dorneles EMS, Lima LCD, de Alvarenga ÉLFC, da Fonseca EVB, de Sá MA, Lage AP, Lobato ZIP, Mansur HS. Nanosilver-Functionalized Hybrid Hydrogels of Carboxymethyl Cellulose/Poly(Vinyl Alcohol) with Antibacterial Activity for Prevention and Therapy of Infections of Diabetic Chronic Wounds. Polymers (Basel) 2023; 15:4542. [PMID: 38231902 PMCID: PMC10708083 DOI: 10.3390/polym15234542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Diabetic foot ulcers (DFUs) are considered one of the most severe chronic complications of diabetes and can lead to amputation in severe cases. In addition, bacterial infections in diabetic chronic wounds aggravate this scenario by threatening human health. Wound dressings made of polymer matrices with embedded metal nanoparticles can inhibit microorganism growth and promote wound healing, although the current clinical treatments for diabetic chronic wounds remain unsatisfactory. In this view, this research reports the synthesis and characterization of innovative hybrid hydrogels made of carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) chemically crosslinked by citric acid (CA) functionalized with silver nanoparticles (AgNPs) generated in situ using an eco-friendly aqueous process. The results assessed through comprehensive in vitro and in vivo assays demonstrated that these hybrid polymer hydrogels functionalized with AgNPs possess physicochemical properties, cytocompatibility, hemocompatibility, bioadhesion, antibacterial activity, and biocompatibility suitable for wound dressings to support chronic wound healing process as well as preventing and treating bacterial infections. Hence, it can be envisioned that, with further research and development, these polymer-based hybrid nanoplatforms hold great potential as an important tool for creating a new generation of smart dressings for treating chronic diabetic wounds and opportunistic bacterial infections.
Collapse
Affiliation(s)
- Nádia S. V. Capanema
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Alexandra A. P. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Sandhra M. Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Talita Martins
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Maysa S. Gonçalves
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, UFLA, Lavras 37200-000, Brazil; (M.S.G.); (R.S.A.); (E.M.S.D.)
| | - Rafaella S. Andrade
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, UFLA, Lavras 37200-000, Brazil; (M.S.G.); (R.S.A.); (E.M.S.D.)
| | - Elaine M. S. Dorneles
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, UFLA, Lavras 37200-000, Brazil; (M.S.G.); (R.S.A.); (E.M.S.D.)
| | - Letícia C. D. Lima
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Érika L. F. C. de Alvarenga
- Department of Natural Sciences, Universidade Federal de São João Del-Rei, UFSJ, São João Del-Rei 36301-160, Brazil; (É.L.F.C.d.A.); (E.V.B.d.F.)
| | - Emanuel V. B. da Fonseca
- Department of Natural Sciences, Universidade Federal de São João Del-Rei, UFSJ, São João Del-Rei 36301-160, Brazil; (É.L.F.C.d.A.); (E.V.B.d.F.)
| | - Marcos Augusto de Sá
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Andrey P. Lage
- Departamento de Medicina Veterinária Preventiva, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (A.P.L.); (Z.I.P.L.)
| | - Zelia I. P. Lobato
- Departamento de Medicina Veterinária Preventiva, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (A.P.L.); (Z.I.P.L.)
| | - Herman S. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| |
Collapse
|
17
|
Zhang N, Zhang X, Zhu Y, Wang D, Li R, Li S, Meng R, Liu Z, Chen D. Bimetal-Organic Framework-Loaded PVA/Chitosan Composite Hydrogel with Interfacial Antibacterial and Adhesive Hemostatic Features for Wound Dressings. Polymers (Basel) 2023; 15:4362. [PMID: 38006086 PMCID: PMC10674882 DOI: 10.3390/polym15224362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Silver-containing wound dressings have shown attractive advantages in the treatment of wound infection due to their excellent antibacterial activity. However, the introduction of silver ions or AgNPs directly into the wound can cause deposition in the body as particles. Here, with the aim of designing low-silver wound dressings, a bimetallic-MOF antibacterial material called AgCu@MOF was developed using 3, 5-pyridine dicarboxylic acid as the ligand and Ag+ and Cu2+ as metal ion sites. PCbM (PVA/chitosan/AgCu@MOF) hydrogel was successfully constructed in PVA/chitosan wound dressing loaded with AgCu@MOF. The active sites on the surface of AgCu@MOF increased the lipophilicity to bacteria and caused the bacterial membrane to undergo lipid peroxidation, which resulted in the strong bactericidal properties of AgCu@MOF, and the antimicrobial activity of the dressing PCbM was as high as 99.9%. The chelation of silver ions in AgCu@MOF with chitosan occupied the surface functional groups of chitosan and reduced the crosslinking density of chitosan. PCbM changes the hydrogel crosslinking network, thus improving the water retention and water permeability of PCbM hydrogel so that the hydrogel has the function of binding wet tissue. As a wound adhesive, PCbM hydrogel reduces the amount of wound bleeding and has good biocompatibility. PCbM hydrogel-treated mice achieved 96% wound recovery on day 14. The strong antibacterial, tissue adhesion, and hemostatic ability of PCbM make it a potential wound dressing.
Collapse
Affiliation(s)
- Nan Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiuwen Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yueyuan Zhu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ren Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuangying Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ruizhi Meng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhihui Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dan Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
- Qingdao High-Tech Industry Promotion Centre (Qingdao Technology Market Service Centre), Qingdao 266112, China
| |
Collapse
|
18
|
Wunnoo S, Lorenzo-Leal AC, Voravuthikunchai SP, Bach H. Advanced biomaterial agent from chitosan/poloxamer 407-based thermosensitive hydrogen containing biosynthesized silver nanoparticles using Eucalyptus camaldulensis leaf extract. PLoS One 2023; 18:e0291505. [PMID: 37862295 PMCID: PMC10588896 DOI: 10.1371/journal.pone.0291505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 10/22/2023] Open
Abstract
CONTEXT The emergence of multidrug-resistant (MDR) pathogens poses a significant challenge for global public health systems, increasing hospital morbidity and mortality and prolonged hospitalization. OBJECTIVE We evaluated the antimicrobial activity of a thermosensitive hydrogel containing bio-synthesized silver nanoparticles (bio-AgNPs) based on chitosan/poloxamer 407 using a leaf extract of Eucalyptus calmadulensis. RESULTS The thermosensitive hydrogel was prepared by a cold method after mixing the ingredients and left at 4°C overnight to ensure the complete solubilization of poloxamer 407. The stability of the hydrogel formulation was evaluated at room temperature for 3 months, and the absorption peak (420 nm) of the NPs remained unchanged. The hydrogel formulation demonstrated rapid gelation under physiological conditions, excellent water retention (85%), and broad-spectrum antimicrobial activity against MDR clinical isolates and ATCC strains. In this regard, minimum inhibitory concentration and minimum microbial concentration values of the bio-AgNPs ranged from 2-8 μg/mL to 8-128 μg/mL, respectively. Formulation at concentrations <64 μg/mL showed no cytotoxic effect on human-derived macrophages (THP-1 cells) with no induction of inflammation. CONCLUSIONS The formulated hydrogel could be used in biomedical applications as it possesses a broad antimicrobial spectrum and anti-inflammatory properties without toxic effects on human cells.
Collapse
Affiliation(s)
- Suttiwan Wunnoo
- Faculty of Science, Division of Biological Science, Prince of Songkhla University, Hat Yai, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkhla University, Hat Yai, Songkhla, Thailand
- Division of Infectious Disease, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ana C Lorenzo-Leal
- Division of Infectious Disease, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Supayang P Voravuthikunchai
- Faculty of Science, Division of Biological Science, Prince of Songkhla University, Hat Yai, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkhla University, Hat Yai, Songkhla, Thailand
| | - Horacio Bach
- Division of Infectious Disease, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Egorov AR, Kirichuk AA, Rubanik VV, Rubanik VV, Tskhovrebov AG, Kritchenkov AS. Chitosan and Its Derivatives: Preparation and Antibacterial Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6076. [PMID: 37763353 PMCID: PMC10532898 DOI: 10.3390/ma16186076] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
This comprehensive review illuminates the various methods of chitosan extraction, its antibacterial properties, and its multifarious applications in diverse sectors. We delve into chemical, physical, biological, hybrid, and green extraction techniques, each of which presents unique advantages and disadvantages. The choice of method is dictated by multiple variables, including the desired properties of chitosan, resource availability, cost, and environmental footprint. We explore the intricate relationship between chitosan's antibacterial activity and its properties, such as cationic density, molecular weight, water solubility, and pH. Furthermore, we spotlight the burgeoning applications of chitosan-based materials like films, nanoparticles, nonwoven materials, and hydrogels across the food, biomedical, and agricultural sectors. The review concludes by highlighting the promising future of chitosan, underpinned by technological advancements and growing sustainability consciousness. However, the critical challenges of optimizing chitosan's production for sustainability and efficiency remain to be tackled.
Collapse
Affiliation(s)
- Anton R. Egorov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Anatoly A. Kirichuk
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Alexander G. Tskhovrebov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Andreii S. Kritchenkov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| |
Collapse
|
20
|
Wang X, Song R, Johnson M, A S, Shen P, Zhang N, Lara-Sáez I, Xu Q, Wang W. Chitosan-Based Hydrogels for Infected Wound Treatment. Macromol Biosci 2023; 23:e2300094. [PMID: 37158294 DOI: 10.1002/mabi.202300094] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Indexed: 05/10/2023]
Abstract
Wound infections slow down the healing process and lead to complications such as septicemia, osteomyelitis, and even death. Although traditional methods relying on antibiotics are effective in controlling infection, they have led to the emergence of antibiotic-resistant bacteria. Hydrogels with antimicrobial function become a viable option for reducing bacterial colonization and infection while also accelerating healing processes. Chitosan is extensively developed as antibacterial wound dressings due to its unique biochemical properties and inherent antibacterial activity. In this review, the recent research progress of chitosan-based hydrogels for infected wound treatment, including the fabrication methods, antibacterial mechanisms, antibacterial performance, wound healing efficacy, etc., is summarized. A concise assessment of current limitations and future trends is presented.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Rijian Song
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Sigen A
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, D04 KW52, Ireland
| | - Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Qian Xu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| |
Collapse
|
21
|
Mohite P, Rahayu P, Munde S, Ade N, Chidrawar VR, Singh S, Jayeoye TJ, Prajapati BG, Bhattacharya S, Patel RJ. Chitosan-Based Hydrogel in the Management of Dermal Infections: A Review. Gels 2023; 9:594. [PMID: 37504473 PMCID: PMC10379151 DOI: 10.3390/gels9070594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
The main objective of this review is to provide a comprehensive overview of the current evidence regarding the use of chitosan-based hydrogels to manage skin infections. Chitosan, a naturally occurring polysaccharide derived from chitin, possesses inherent antimicrobial properties, making it a promising candidate for treating various dermal infections. This review follows a systematic approach to analyze relevant studies that have investigated the effectiveness of chitosan-based hydrogels in the context of dermal infections. By examining the available evidence, this review aims to evaluate these hydrogels' overall efficacy, safety, and potential applications for managing dermal infections. This review's primary focus is to gather and analyze data from different recent studies about chitosan-based hydrogels combating dermal infections; this includes assessing their ability to inhibit the growth of microorganisms and reduce infection-related symptoms. Furthermore, this review also considers the safety profile of chitosan-based hydrogels, examining any potential adverse effects associated with their use. This evaluation is crucial to ensure that these hydrogels can be safely utilized in the management of dermal infections without causing harm to patients. The review aims to provide healthcare professionals and researchers with a comprehensive understanding of the current evidence regarding the use of chitosan-based hydrogels for dermal infection management. The findings from this review can contribute to informed decision-making and the development of potential treatment strategies in this field.
Collapse
Affiliation(s)
- Popat Mohite
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Pudji Rahayu
- Department of Pharmacy of Tanjung Karang State Health Polytechnic, Soekarno-Hatta, Bandar Lampung 35145, Lampung, Indonesia
| | - Shubham Munde
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Nitin Ade
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Vijay R Chidrawar
- SVKM's NMIMS School of Pharmacy and Technology Management, Jadcharla 509301, Telangana, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titilope J Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS Deemed-to-be-University, Shirpur 425405, Maharashtra, India
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand 388421, Gujarat, India
| |
Collapse
|
22
|
Jenkhongkarn R, Phisalaphong M. Effect of Reduction Methods on the Properties of Composite Films of Bacterial Cellulose-Silver Nanoparticles. Polymers (Basel) 2023; 15:2996. [PMID: 37514387 PMCID: PMC10384582 DOI: 10.3390/polym15142996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Composite films of bacterial cellulose-silver nanoparticles (BC-Ag) were prepared by different methods of in situ reduction of silver ions, using sodium hydroxide, ascorbic acid, chitosan, and UV irradiation. The effects of the reduction methods on their properties were investigated. The chitosan-reduced composite exhibited dispersed silver nanoparticles (AgNPs) within the nanocellulose matrix with the smallest size, while the ascorbic-reduced composite displayed the largest size. The incorporation of AgNPs tended to reduce the crystallinity of the composites, except for the ascorbic-reduced composite, which exhibited an increase in crystallinity. Mechanical testing revealed that the ascorbic-reduced composite had the highest Young's modulus of 8960 MPa, whereas the UV-reduced composite had the highest tensile strength and elongation at break. Thermal analysis of BC-Ag composites indicated similar glass transition temperature and decomposition profiles to BC, with additional weight-loss steps at high temperatures. The sodium hydroxide-reduced composite demonstrated the highest electrical conductivity of 1.1 × 10-7 S/cm. Water absorption capacity was reduced by the incorporation of AgNPs, except for the chitosan-reduced composite, which showed an enhanced water absorption capacity of 344%. All BC-Ag composites displayed very strong antibacterial activities against Staphylococcus aureus and Escherichia coli. These results also highlight the potential uses of BC-Ag composites for various applications.
Collapse
Affiliation(s)
- Ratchanon Jenkhongkarn
- Bio-Circular-Green-Economy Technology & Engineering Center (BCGeTEC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muenduen Phisalaphong
- Bio-Circular-Green-Economy Technology & Engineering Center (BCGeTEC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
23
|
Ghazzy A, Naik RR, Shakya AK. Metal-Polymer Nanocomposites: A Promising Approach to Antibacterial Materials. Polymers (Basel) 2023; 15:polym15092167. [PMID: 37177313 PMCID: PMC10180664 DOI: 10.3390/polym15092167] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
There has been a new approach in the development of antibacterials in order to enhance the antibacterial potential. The nanoparticles are tagged on to the surface of other metals or metal oxides and polymers to achieve nanocomposites. These have shown significant antibacterial properties when compared to nanoparticles. In this article we explore the antibacterial potentials of metal-based and metal-polymer-based nanocomposites, various techniques which are involved in the synthesis of the metal-polymer, nanocomposites, mechanisms of action, and their advantages, disadvantages, and applications.
Collapse
Affiliation(s)
- Asma Ghazzy
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Rajashri R Naik
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ashok K Shakya
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
24
|
Dong R, Seliem MK, Mobarak M, Xue H, Wang X, Li Q, Li Z. Dual-functional marine algal carbon-based materials with highly efficient dye removal and disinfection control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60399-60417. [PMID: 37022550 DOI: 10.1007/s11356-023-26800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
The design and simple, green preparation of dual-functional materials for the decontamination of both hazardous dyes and pathogenic microorganisms from wastewater remain challenging currently. Herein, a promising marine algal carbon-based material (named C-SA/SP) with both highly efficient dye adsorptive and antibacterial properties was fabricated based on the incorporation of sodium alginate and a low dose of silver phosphate via a facile and eco-friendly approach. The structure, removal of malachite green (MG) and congo red (CR), and their antibacterial performance were studied, and the adsorption mechanism was further interpreted by the statistical physics models, besides the classic models. The results show that the maximum simulated adsorption capacity for MG reached 2798.27 mg/g, and its minimal inhibit concentration for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was 0.4 mg/mL and 0.2 mg/mL, respectively. The mechanistic study suggests that silver phosphate exerted the effects of catalytic carbon formation and pore formation, while reducing the electronegativity of the material as well, thus improving its dye adsorptive performance. Moreover, the MG adsorption onto C-SA/SP showed vertical orientation and a multi-molecular way, and its adsorption sites were involved in the adsorption process with the increase of temperature. Overall, the study indicates that the as-made dual-functional materials have good applied prospects for water remediation.
Collapse
Affiliation(s)
- Ruitao Dong
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China
| | - Moaaz K Seliem
- Faculty of Earth Science, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Mohamed Mobarak
- Physics Department, Faculty of Science, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Hanjing Xue
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China
| | - Xuemei Wang
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China
| | - Qun Li
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China
| | - Zichao Li
- College of Life Sciences, College of Chemistry and Chemical Engineering, Institute of Biomedical Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
25
|
Mirhaji SS, Soleimanpour M, Derakhshankhah H, Jafari S, Mamashli F, Rooki M, Karimi MR, Nedaei H, Pirhaghi M, Motasadizadeh H, Ghasemi A, Nezamtaheri MS, Saadatpour F, Goliaei B, Delattre C, Saboury AA. Design, optimization and characterization of a novel antibacterial chitosan-based hydrogel dressing for promoting blood coagulation and full-thickness wound healing: A biochemical and biophysical study. Int J Biol Macromol 2023; 241:124529. [PMID: 37085077 DOI: 10.1016/j.ijbiomac.2023.124529] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/23/2023]
Abstract
The use of hydrogel dressings has become increasingly popular as a scaffold for skin tissue engineering. Herein, we have developed an innovative wound dressing using chitosan, fibrinogen, nisin, and EDTA as an effective antibacterial scaffold for wound treatment. The structural and functional characteristics of the hydrogel, including morphology, mechanical strength, drug encapsulation and release, swelling behaviors, blood coagulation, cytotoxicity, and antibacterial activity, were studied. Spectroscopic studies indicated that the attachment of chitosan to fibrinogen is associated with minimal change in its secondary structure; subsequently, at higher temperatures, it is expected to preserve fibrinogen's conformational stability. Mechanical and blood coagulation analyses indicated that the incorporation of fibrinogen into the hydrogel resulted in accelerated clotting and enhanced mechanical properties. Our cell studies showed biocompatibility and non-toxicity of the hydrogel along with the promotion of cell migration. In addition, the prepared hydrogel indicated an antibacterial behavior against both Gram-positive and Gram-negative bacteria. Interestingly, the in vivo data revealed enhanced tissue regeneration and recovery within 17 days in the studied animals. Taken together, the results obtained from in vitro and histological assessments indicate that this innovatively designed hydrogel shows good potential as a candidate for wound healing.
Collapse
Affiliation(s)
| | - Marjan Soleimanpour
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Mamashli
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Meisam Rooki
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Iran
| | | | - Hadi Nedaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mitra Pirhaghi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Fatemeh Saadatpour
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Cédric Delattre
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France; Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
26
|
Biodegradable Block Poly(ester amine)s with Pendant Hydroxyl Groups for Biomedical Applications. Polymers (Basel) 2023; 15:polym15061473. [PMID: 36987253 PMCID: PMC10058592 DOI: 10.3390/polym15061473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
The article presents the results of the synthesis and characteristics of the amphiphilic block terpolymers, built of a hydrophilic polyesteramine block, and hydrophobic blocks made of lactidyl and glycolidyl units. These terpolymers were obtained during the copolymerization of L-lactide with glycolide carried out in the presence of previously produced macroinitiators with protected amine and hydroxyl groups. The terpolymers were prepared to produce a biodegradable and biocompatible material containing active hydroxyl and/or amino groups, with strong antibacterial properties and high surface wettability by water. The control of the reaction course, the process of deprotection of functional groups, and the properties of the obtained terpolymers were made based on 1H NMR, FTIR, GPC, and DSC tests. Terpolymers differed in the content of amino and hydroxyl groups. The values of average molecular mass oscillated from about 5000 g/mol to less than 15,000 g/mol. Depending on the length of the hydrophilic block and its composition, the value of the contact angle ranged from 50° to 20°. The terpolymers containing amino groups, capable of forming strong intra- and intermolecular bonds, show a high degree of crystallinity. The endotherm responsible for the melting of L-lactidyl semicrystalline regions appeared in the range from about 90 °C to close to 170 °C, with a heat of fusion from about 15 J/mol to over 60 J/mol.
Collapse
|
27
|
Francisco P, Neves Amaral M, Neves A, Ferreira-Gonçalves T, Viana AS, Catarino J, Faísca P, Simões S, Perdigão J, Charmier AJ, Gaspar MM, Reis CP. Pluronic ® F127 Hydrogel Containing Silver Nanoparticles in Skin Burn Regeneration: An Experimental Approach from Fundamental to Translational Research. Gels 2023; 9:200. [PMID: 36975649 PMCID: PMC10048756 DOI: 10.3390/gels9030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Presently, skin burns are considered one of the main public health problems and lack therapeutic options. In recent years, silver nanoparticles (AgNPs) have been widely studied, playing an increasingly important role in wound healing due to their antibacterial activity. This work is focused on the production and characterization of AgNPs loaded in a Pluronic® F127 hydrogel, as well as assessing its antimicrobial and wound-healing potential. Pluronic® F127 has been extensively explored for therapeutic applications mainly due to its appealing properties. The developed AgNPs had an average size of 48.04 ± 14.87 nm (when prepared by method C) and a negative surface charge. Macroscopically, the AgNPs solution presented a translucent yellow coloration with a characteristic absorption peak at 407 nm. Microscopically, the AgNPs presented a multiform morphology with small sizes (~50 nm). Skin permeation studies revealed that no AgNPs permeated the skin after 24 h. AgNPs further demonstrated antimicrobial activity against different bacterial species predominant in burns. A chemical burn model was developed to perform preliminary in vivo assays and the results showed that the performance of the developed AgNPs loaded in hydrogel, with smaller silver dose, was comparable with a commercial silver cream using higher doses. In conclusion, hydrogel-loaded AgNPs is potentially an important resource in the treatment of skin burns due to their proven efficacy by topical administration.
Collapse
Affiliation(s)
- Pedro Francisco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mariana Neves Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Afonso Neves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Ana S. Viana
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - José Catarino
- Faculdade de Medicina Veterinária, Universidade Lusoófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal
| | - Pedro Faísca
- Faculdade de Medicina Veterinária, Universidade Lusoófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisbon, Portugal
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - João Perdigão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Adília J. Charmier
- DREAMS, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisbon, Portugal
| | - M. Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
28
|
Bao Y, Zhang HQ, Chen L, Cai HH, Liu ZL, Peng Y, Li Z, Dai FY. Artemisinin-Loaded Silk Fibroin/Gelatin Composite Hydrogel for Wound Healing and Tumor Therapy. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
29
|
Trombino S, Sole R, Di Gioia ML, Procopio D, Curcio F, Cassano R. Green Chemistry Principles for Nano- and Micro-Sized Hydrogel Synthesis. Molecules 2023; 28:molecules28052107. [PMID: 36903352 PMCID: PMC10004334 DOI: 10.3390/molecules28052107] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 03/06/2023] Open
Abstract
The growing demand for drug carriers and green-technology-based tissue engineering materials has enabled the fabrication of different types of micro- and nano-assemblies. Hydrogels are a type of material that have been extensively investigated in recent decades. Their physical and chemical properties, such as hydrophilicity, resemblance to living systems, swelling ability and modifiability, make them suitable to be exploited for many pharmaceutical and bioengineering applications. This review deals with a brief account of green-manufactured hydrogels, their characteristics, preparations, importance in the field of green biomedical technology and their future perspectives. Only hydrogels based on biopolymers, and primarily on polysaccharides, are considered. Particular attention is given to the processes of extracting such biopolymers from natural sources and the various emerging problems for their processing, such as solubility. Hydrogels are catalogued according to the main biopolymer on which they are based and, for each type, the chemical reactions and the processes that enable their assembly are identified. The economic and environmental sustainability of these processes are commented on. The possibility of large-scale processing in the production of the investigated hydrogels are framed in the context of an economy aimed at waste reduction and resource recycling.
Collapse
|
30
|
Moreno Ruiz YP, de Almeida Campos LA, Alves Agreles MA, Galembeck A, Macário Ferro Cavalcanti I. Advanced Hydrogels Combined with Silver and Gold Nanoparticles against Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:antibiotics12010104. [PMID: 36671305 PMCID: PMC9855178 DOI: 10.3390/antibiotics12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
The development of multidrug-resistant (MDR) microorganisms has increased dramatically in the last decade as a natural consequence of the misuse and overuse of antimicrobials. The World Health Organization (WHO) recognizes that this is one of the top ten global public health threats facing humanity today, demanding urgent multisectoral action. The UK government foresees that bacterial antimicrobial resistance (AMR) could kill 10 million people per year by 2050 worldwide. In this sense, metallic nanoparticles (NPs) have emerged as promising alternatives due to their outstanding antibacterial and antibiofilm properties. The efficient delivery of the NPs is also a matter of concern, and recent studies have demonstrated that hydrogels present an excellent ability to perform this task. The porous hydrogel structure with a high-water retention capability is a convenient host for the incorporation of the metallic nanoparticles, providing an efficient path to deliver the NPs properly reducing bacterial infections caused by MDR pathogenic microorganisms. This article reviews the most recent investigations on the characteristics, applications, advantages, and limitations of hydrogels combined with metallic NPs for treating MDR bacteria. The mechanisms of action and the antibiofilm activity of the NPs incorporated into hydrogels are also described. Finally, this contribution intends to fill some gaps in nanomedicine and serve as a guide for the development of advanced medical products.
Collapse
Affiliation(s)
- Yolice Patricia Moreno Ruiz
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, Cidade Universitária, Recife 50740-560, Pernambuco, Brazil
| | - Luís André de Almeida Campos
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
| | - Maria Andressa Alves Agreles
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
| | - André Galembeck
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Av. Jorn. Aníbal Fernandes, Cidade Universitária, Recife 50740-560, Pernambuco, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, Pernambuco, Brazil
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife 50670-901, Pernambuco, Brazil
- Correspondence: ; Tel.: +55-81-98648-2081
| |
Collapse
|
31
|
Malik US, Duan Q, Niazi MBK, Jahan Z, Liaqat U, Sher F, Gan Y, Hou H. Vanillin cross-linked hydrogel membranes interfacial reinforced by carbon nitride nanosheets for enhanced antibacterial activity and mechanical properties. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Wang G, Yang F, Huang W, Zhou Y, Huang R, Yang Q, Yan B. Recyclable Mussel-Inspired Magnetic Nanocellulose@Polydopamine-Ag Nanocatalyst for Efficient Degradation of Refractory Organic Pollutants and Bacterial Disinfection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52359-52369. [PMID: 36346778 DOI: 10.1021/acsami.2c13915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Development of a novel strategy to tackle bacterial-contaminated complex industrial wastewaters containing refractory organic pollutants is of great demand. In this study, polydopamine (PDA)-coated magnetic cellulose nanofiber (MCNF)-loaded silver nanoparticle (AgNP) (MCNF/PDA-Ag) nanocomposites were designed and applied for efficient degradation of organic dye pollutants and inactivation of Escherichia coli (E. coli) in wastewater. In the presence of NaBH4, MCNF/PDA-Ag could achieve a high catalytic reduction rate of 6.54 min-1 for the removal of methylene blue. Similarly, it showed good catalytic reduction performance for methyl orange (0.63 min-1) and 4-nitrophenol (2.94 min-1). The MCNF/PDA-Ag nanocomposites can be easily magnetically recycled and reused with negligible loss of catalytic performance. Moreover, this nanocatalyst also exhibited excellent disinfection performance against E. coli, with more than 99% disinfection ratio at very low doses (50 μg/mL). Overall, this work provides new insights into a delicate design of advanced magnetically recyclable silver nanocomposites with ultrahigh catalytic rates and excellent antibacterial properties from sustainable nature biomass.
Collapse
Affiliation(s)
- Guihua Wang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
| | - Fan Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou450000, China
| | - Wenhuan Huang
- Sinopec, Shengli Oilfield, Chunliang Oil Prod Plant, Dongying, Shandong256600, China
| | - Yifan Zhou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
| | - Rongfu Huang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan610065, China
| | - Qin Yang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
| |
Collapse
|
33
|
Hamidi S, Monajjemzadeh F, Siahi‐Shadbad M, Khatibi SA, Farjami A. Antibacterial activity of natural polymer gels and potential applications without synthetic antibiotics. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Samin Hamidi
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Farnaz Monajjemzadeh
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical and Food Control Department, Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammadreza Siahi‐Shadbad
- Pharmaceutical and Food Control Department, Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | - Seyed Amin Khatibi
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
34
|
Bhat MA, Rather RA, Shalla AH. Texture and rheological features of strain and pH sensitive chitosan-imine graphene-oxide composite hydrogel with fast self-healing nature. Int J Biol Macromol 2022; 222:3129-3141. [DOI: 10.1016/j.ijbiomac.2022.10.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
35
|
Dadashi J, Ali Ghasemzadeh M, Alipour S, Zamani F. A review on catalytic reduction/degradation of organic pollution through silver-based hydrogels. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
Osorio Echavarría J, Gómez Vanegas NA, Orozco CPO. Chitosan/carboxymethyl cellulose wound dressings supplemented with biologically synthesized silver nanoparticles from the ligninolytic fungus Anamorphous Bjerkandera sp. R1. Heliyon 2022; 8:e10258. [PMID: 36060464 PMCID: PMC9437809 DOI: 10.1016/j.heliyon.2022.e10258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/08/2021] [Accepted: 08/02/2022] [Indexed: 01/08/2023] Open
Abstract
Chitosan (CHI) and carboxymethyl cellulose (CMC) are naturally sourced materials with excellent physical, chemical, and biological properties, which make them a promising tool for the development of different medical devices. In this research, CHI-CMC wound dressings were manufactured, by using different colloidal suspensions of silver nanoparticles (AgNPs) synthesized from the ligninolytic fungus Anamorphous Bjerkandera sp. R1, called CS and SN. Transmission electron microscopy (TEM), UV-Vis spectroscopy, and dynamic light scattering (DLS) analysis were used to characterize AgNPs. The wound dressings were characterized, by scanning electron microscopy (SEM), optical microscopy and their mechanical, antimicrobial, and biological properties were evaluated. The results of the different characterizations revealed the formation of spherical AgNPs with a mean size between 10 and 70 nm for the different mixtures worked. The mechanical properties of CHI-CMS-AgNPs doped with CS and SN suspensions showed superior mechanical properties with respect to CHI-CMC wound dressings. Compared to the latter, CHI-CMC-AgNPs wound dressings yielded better antibacterial activity against the pathogen Escherichia coli. In biological assays, it was observed that manufactured CHI-CMC-AgNPs wound dressings were not toxic when in contact with human skin fibroblasts (Detroit). This study, then, suggests that this type of wound dressings with a chitosan matrix and carboxymethyl cellulose doped with biologically synthesized nanoparticles from the fungus Bjerkandera sp., may be an ideal alternative for the manufacture of new wound dressings.
Collapse
Affiliation(s)
- Jerónimo Osorio Echavarría
- Bioprocess Group, Department of Chemical Engineering, University of Antioquia, Street 70 # 52 – 21, Medellin 1226, Colombia
- Corresponding author.
| | - Natalia Andrea Gómez Vanegas
- Bioprocess Group, Department of Chemical Engineering, University of Antioquia, Street 70 # 52 – 21, Medellin 1226, Colombia
| | - Claudia Patricia Ossa Orozco
- Biomaterials Research Group, Bioengineering Program, University of Antioquia, Street 70 # 52 – 21, Medellin 1226, Colombia
| |
Collapse
|
37
|
Saeedi M, Vahidi O, Moghbeli MR, Ahmadi S, Asadnia M, Akhavan O, Seidi F, Rabiee M, Saeb MR, Webster TJ, Varma RS, Sharifi E, Zarrabi A, Rabiee N. Customizing nano-chitosan for sustainable drug delivery. J Control Release 2022; 350:175-192. [PMID: 35914615 DOI: 10.1016/j.jconrel.2022.07.038] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/12/2022]
Abstract
Chitosan is a natural polymer with acceptable biocompatibility, biodegradability, and mechanical stability; hence, it has been widely appraised for drug and gene delivery applications. However, there has been no comprehensive assessment to tailor-make chitosan cross-linkers of various types and functionalities as well as complex chitosan-based semi- and full-interpenetrating networks for drug delivery systems (DDSs). Herein, various fabrication methods developed for chitosan hydrogels are deliberated, including chitosan crosslinking with and without diverse cross-linkers. Tripolyphosphate, genipin and multi-functional aldehydes, carboxylic acids, and epoxides are common cross-linkers used in developing biomedical chitosan for DDSs. Methods deployed for modifying the properties and performance of chitosan hydrogels, via their composite production (semi- and full-interpenetrating networks), are also cogitated here. In addition, recent advances in the fabrication of advanced chitosan hydrogels for drug delivery applications such as oral drug delivery, transdermal drug delivery, and cancer therapy are discussed. Lastly, thoughts on what is needed for the chitosan field to continue to grow is also debated in this comprehensive review article.
Collapse
Affiliation(s)
- Mostafa Saeedi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, P.O. Box 16846, Tehran, Iran
| | - Omid Vahidi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, P.O. Box 16846, Tehran, Iran
| | - Mohammad Reza Moghbeli
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Narmak, P.O. Box 16846, Tehran, Iran
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Farzad Seidi
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Rabiee
- Biomaterial Groups, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China; School of Engineering, Saveetha University, Chennai, India; Department of Materials Engineering, UFPI, Teresina, Brazil
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea.
| |
Collapse
|
38
|
Ebhodaghe SO. A short review on chitosan and gelatin-based hydrogel composite polymers for wound healing. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 33:1595-1622. [DOI: 10.1080/09205063.2022.2068941] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
39
|
Sethi S, Thakur S, Sharma D, Singh G, Sharma N, Kaith BS, Khullar S. Malic acid cross-linked chitosan based hydrogel for highly effective removal of chromium (VI) ions from aqueous environment. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Qureshi AUR, Arshad N, Rasool A, Islam A, Rizwan M, Haseeb M, Rasheed T, Bilal M. Chitosan and carrageenan‐based biocompatible hydrogel platforms for cosmeceutical, drug delivery and biomedical applications. STARCH-STARKE 2022. [DOI: 10.1002/star.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Nasima Arshad
- School of Chemistry University of the Punjab Lahore 54590 Pakistan
| | - Atta Rasool
- School of Chemistry University of the Punjab Lahore 54590 Pakistan
| | - Atif Islam
- Department of Polymer Engineering and Technology University of the Punjab Lahore 54590 Pakistan
| | - Muhammad Rizwan
- Department of Chemistry The University of Lahore Lahore 54000 Pakistan
| | - Muhammad Haseeb
- Department of Chemistry The University of Lahore Lahore 54000 Pakistan
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials King Fahd University of Petroleum and Minerals (KFUPM) Dhahran 31261 Saudi Arabia
| | - Muhammad Bilal
- School of Life Science and Food Engineering Huaiyin Institute of Technology Huai'an 223003 China
| |
Collapse
|
41
|
Liang J, Zeng H, Qiao L, Jiang H, Ye Q, Wang Z, Liu B, Fan Z. 3D Printed Piezoelectric Wound Dressing with Dual Piezoelectric Response Models for Scar-Prevention Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30507-30522. [PMID: 35768948 DOI: 10.1021/acsami.2c04168] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
During the long process of wound defect repair, the bioelectric stimulation around the wound gradually decreases, which can cause gradual down-regulation of the wound healing cascade response, disordered deposition of collagen fibers, and abnormal remodeling of the extracellular matrix (ECM). All these combined will eventually result in delayed wound healing and scar tissue formation. To resolve these issues, a novel ZnO nanoparticles modified PVDF/sodium alginate (SA) piezoelectric hydrogel scaffold (ZPFSA) is prepared by 3D printing technology. The prepared ZPFSA scaffold has dual piezoelectric response models, mainly consisting of vertical swelling and horizontal friction, which can be used to simulate and amplify endogenous bioelectricity to promote wound healing and prevent scar formation. Compared with other composite scaffolds, ZPFSA 0.5 (contain 0.5% ZnO nanoparticles) exhibits good biocompatibility, excellent antimicrobial properties, and stable piezoelectric response, so that it can significantly accelerate the wound healing and effectively prevent the scar tissue formation within 2 weeks thanks to the cascade regulation in wound healing, including cell migration, vascularization, collagen remodeling, and the expression of related growth factors. The proposed dual piezoelectric response models will provide a new solution to accelerate wound healing process, prevent scar formation, and extend new application range of piezoelectric materials in wound dressing.
Collapse
Affiliation(s)
- Jiachen Liang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Huajing Zeng
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Liang Qiao
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Hong Jiang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Qian Ye
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhilong Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
42
|
Accelerative effect of nanohydrogels based on chitosan/ZnO incorporated with citral to heal the infected full-thickness wounds; an experimental study. Int J Biol Macromol 2022; 217:42-54. [PMID: 35820486 DOI: 10.1016/j.ijbiomac.2022.07.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Antimicrobial-resistant is a major challenge in to treat infected wounds, and new formulations should be produced. Citral (Citl), chitosan (Chsn), and zinc oxide (ZnO) nanoparticles may accelerate the wound healing process in terms of their antibacterial properties. This new study aimed to investigate the effects of ointments produced from ZnO/Chsn/Citl nanoparticles (NPs) to treat the infected wounds. Following the preparation of ZnO/Chsn/Citl-NPs, swelling behavior, the release of citral, toxicity, and antibacterial properties were evaluated. Base ointment, mupirocin, and ointments made from Chsn-NPs, Chsn/Citl-NPs, and ZnO/Chsn/Citl-NPs were used to treat the mice. The ointments' effects on wound contraction, total bacterial count, and immunofluorescence staining for TNF-α, TGF-β, and bFGF were tested. The synthesis of ZnO/Chsn/Citl-NPs was validated by XRD, FT-IR, DLS, and TEM findings. In higher dilutions, chitosan/citral and ZnO/Chsn/Citl-NPs indicated better antibacterial activity. Nanoparticles were safe up to concentration of the 0.5 mg/mL. The mice in Chsn/Citl and ZnO/Chsn/Citl-NPs treated groups showed higher (P < 0.05) wound contraction ratio and expressions for bFGF, and lower total bacterial count and expressions for TGF-β and TNF-α compared to control mice. Ointments prepared from ZnO/Chsn/Citl-NPs could compete with the commercial ointment of mupirocin and can be used to treat infected wounds after clinical studies.
Collapse
|
43
|
Current Advances in the Development of Hydrogel-Based Wound Dressings for Diabetic Foot Ulcer Treatment. Polymers (Basel) 2022; 14:polym14142764. [PMID: 35890541 PMCID: PMC9320667 DOI: 10.3390/polym14142764] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are one of the most prevalent complications associated with diabetes mellitus. DFUs are chronic injuries that often lead to non-traumatic lower extremity amputations, due to persistent infection and other ulcer-related side effects. Moreover, these complications represent a significant economic burden for the healthcare system, as expensive medical interventions are required. In addition to this, the clinical treatments that are currently available have only proven moderately effective, evidencing a great need to develop novel strategies for the improved treatment of DFUs. Hydrogels are three-dimensional systems that can be fabricated from natural and/or synthetic polymers. Due to their unique versatility, tunability, and hydrophilic properties, these materials have been extensively studied for different types of biomedical applications, including drug delivery and tissue engineering applications. Therefore, this review paper addresses the most recent advances in hydrogel wound dressings for effective DFU treatment, providing an overview of current perspectives and challenges in this research field.
Collapse
|
44
|
Ali Zahid A, Chakraborty A, Shamiya Y, Ravi SP, Paul A. Leveraging the advancements in functional biomaterials and scaffold fabrication technologies for chronic wound healing applications. MATERIALS HORIZONS 2022; 9:1850-1865. [PMID: 35485266 DOI: 10.1039/d2mh00115b] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exploring new avenues for clinical management of chronic wounds holds the key to eliminating socioeconomic burdens and health-related concerns associated with this silent killer. Engineered biomaterials offer great promise for repair and regeneration of chronic wounds because of their ability to deliver therapeutics, protect the wound environment, and support the skin matrices to facilitate tissue growth. This mini review presents recent advances in biomaterial functionalities for enhancing wound healing and demonstrates a move from sub-optimal methods to multi-functionalized treatment approaches. In this context, we discuss the recently reported biomaterial characteristics such as bioadhesiveness, antimicrobial properties, proangiogenic attributes, and anti-inflammatory properties that promote chronic wound healing. In addition, we highlight the necessary mechanical and mass transport properties of such biomaterials. Then, we discuss the characteristic properties of various biomaterial templates, including hydrogels, cryogels, nanomaterials, and biomolecule-functionalized materials. These biomaterials can be microfabricated into various structures, including smart patches, microneedles, electrospun scaffolds, and 3D-bioprinted structures, to advance the field of biomaterial scaffolds for effective wound healing. Finally, we provide an outlook on the future while emphasizing the need for their detailed functional behaviour and inflammatory response studies in a complex in vivo environment for superior clinical outcomes and reduced regulatory hurdles.
Collapse
Affiliation(s)
- Alap Ali Zahid
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Shruthi Polla Ravi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
45
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Designing a new alginate-fibrinogen biomaterial composite hydrogel for wound healing. Sci Rep 2022; 12:7213. [PMID: 35508533 PMCID: PMC9068811 DOI: 10.1038/s41598-022-11282-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/29/2022] [Indexed: 01/22/2023] Open
Abstract
Wound healing is a complex process and rapid healing necessitates a proper micro-environment. Therefore, design and fabrication of an efficacious wound dressing is an impressive innovation in the field of wound healing. The fabricated wound dressing in this scenario was designed using a combination of the appropriate coagulating and anti-bacterial materials like fibrinogen (as coagulating agent), nisin (as anti-bacterial agent), ethylenediaminetetraacetic acid (as anti-bacterial agent), and alginate (as wound healing agent). Biophysical characterization showed that the interaction of fibrinogen and alginate was associated with minor changes in the secondary structure of the protein. Conformational studies showed that the protein was structurally stable at 42 °C, is the maximum temperature of the infected wound. The properties of the hydrogel such as swelling, mechanical resistance, nisin release, antibacterial activity, cytotoxicity, gel porosity, and blood coagulation were assessed. The results showed a slow release for the nisin during 48 h. Antibacterial studies showed an inhibitory effect on the growth of Gram-negative and Gram-positive bacteria. The hydrogel was also capable to absorb a considerable amount of water and provide oxygenation as well as incorporation of the drug into its structure due to its sufficient porosity. Scanning electron microscopy showed pore sizes of about 14–198 µm in the hydrogel. Cell viability studies indicated high biocompatibility of the hydrogel. Blood coagulation test also confirmed the effectiveness of the synthesized hydrogel in accelerating the process of blood clot formation. In vivo studies showed higher rates of wound healing, re-epithelialization, and collagen deposition. According to the findings from in vitro as well as in vivo studies, the designed hydrogel can be considered as a novel attractive wound dressing after further prerequisite assessments.
Collapse
|
47
|
Ahmadian Z, Gheybi H, Adeli M. Efficient wound healing by antibacterial property: Advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Functionalized chitosan/spherical nanocellulose-based hydrogel with superior antibacterial efficiency for wound healing. Carbohydr Polym 2022; 284:119202. [DOI: 10.1016/j.carbpol.2022.119202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 01/12/2023]
|
49
|
Lu H, Li X, Zhang M, Xu C, Li W, Wan L. Antibacterial Cellulose Nanocrystal-Incorporated Hydrogels With Satisfactory Vascularization for Enhancing Skin Regeneration. Front Bioeng Biotechnol 2022; 10:876936. [PMID: 35557856 PMCID: PMC9086275 DOI: 10.3389/fbioe.2022.876936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Wound healing of skin defects remains a significant clinical problem due to inflammation, infection, and dysangiogenesis; especially, the promotion of microvasculature formation in healing of chronic wound or deep skin defects is critical as it supplies oxygen and nutrients to the impaired tissue, relieving uncontrolled inflammatory responses. The cellulose nanocrystals (CNCs) in the liquid crystalline phase, which facilitates cell proliferation and migration, has been shown to improve vascularization effectively. Therefore, we developed a novel injectable hydrogel based on Schiff base and coordination of catechol and Ag. The obtained hydrogels (CCS/CCHO-Ag) exhibited in situ forming properties, satisfactory mechanical performance, controlled release of Ag, antibacterial capacity, and biocompatibility. In addition, the hydrogels could also entirely cover and firmly attach wounds with irregular shapes, so as to reduce the re-injury rate. More importantly, experiments in vitro and in vivo demonstrated that CCS/CCHO-Ag hydrogels can promote neovascularization and tissue regeneration, thanks to their anti-inflammatory and antibacterial effects. In conclusion, these multifunctional hydrogels are well on the way to becoming competitive biomedical dressings, which show tremendous potential application in the field of tissue engineering.
Collapse
Affiliation(s)
- Haibin Lu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
- Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Xiaoling Li
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mu Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Changpeng Xu
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wenqiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong, Guangzhou Sport University, Guangzhou, China
- *Correspondence: Wenqiang Li, ; Lei Wan,
| | - Lei Wan
- Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wenqiang Li, ; Lei Wan,
| |
Collapse
|
50
|
Eco-Friendly Synthesized PVA/Chitosan/Oxalic Acid Nanocomposite Hydrogels Embedding Silver Nanoparticles as Antibacterial Materials. Gels 2022; 8:gels8050268. [PMID: 35621566 PMCID: PMC9141215 DOI: 10.3390/gels8050268] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
PVA/chitosan (PVA/CS) composite hydrogels incorporating silver nanoparticles (AgNPs) were prepared by double-cross-linked procedures: freeze−thawing and electrostatic interactions. Oxalic acid (OA) was used both for solubilization and ionic cross-linking of CS. AgNPs covered by CS (CS-AgNPs) with an average diameter of 9 nm and 18% silver were obtained in the presence of CS, acting as reducing agent and particle stabilizer. The increase of the number of freeze−thaw cycles, as well as of the PVA:CS and OA:CS ratios, resulted in an increase of the gel fraction and elastic modulus. Practically, the elastic modulus of the hydrogels increased from 3.5 kPa in the absence of OA to 11.6 kPa at a 1:1 OA:CS weight ratio, proving that OA was involved in physical cross-linking. The physicochemical properties were not altered by the addition of CS-AgNPs in low concentration; however, concentrations higher than 3% resulted in low gel fraction and elastic modulus. The amount of silver released from the composite hydrogels is very low (<0.4%), showing that AgNPs were well trapped within the polymeric matrix. The composite hydrogels displayed antimicrobial activity against S. aureus, K. pneumoniae or P. gingivalis. The low cytotoxicity and the antibacterial efficacy of hydrogels recommend them for wound and periodontitis treatment.
Collapse
|