1
|
Guo X, Fu Y, Peng J, Fu Y, Dong S, Ding RB, Qi X, Bao J. Emerging anticancer potential and mechanisms of snake venom toxins: A review. Int J Biol Macromol 2024; 269:131990. [PMID: 38704067 DOI: 10.1016/j.ijbiomac.2024.131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.
Collapse
Affiliation(s)
- Xijun Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Junbo Peng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ying Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
2
|
Santos LC, Oliveira VQ, Teixeira SC, Correia TML, Andrade LOSB, Polloni L, Marques LM, Clissa PB, Baldo C, Ferro EAV, Gusmão ACMDM, Silva MJB, Sanabani SS, Ávila VDMR, Lopes DS. PLA 2-MjTX-II from Bothrops moojeni snake venom exhibits antimetastatic and antiangiogenic effects on human lung cancer cells. Toxicon 2024; 243:107742. [PMID: 38705486 DOI: 10.1016/j.toxicon.2024.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Phospholipases A2 (PLA2s) from snake venom possess antitumor and antiangiogenic properties. In this study, we evaluated the antimetastatic and antiangiogenic effects of MjTX-II, a Lys49 PLA2 isolated from Bothrops moojeni venom, on lung cancer and endothelial cells. Using in vitro and ex vivo approaches, we demonstrated that MjTX-II reduced cell proliferation and inhibited fundamental processes for lung cancer cells (A549) growth and metastasis, such as adhesion, migration, invasion, and actin cytoskeleton decrease, without significantly interfering with non-tumorigenic lung cells (BEAS-2B). Furthermore, MjTX-II caused cell cycle alterations, increased reactive oxygen species production, modulated the expression of pro- and antiangiogenic genes, and decreased vascular endothelial growth factor (VEGF) expression in HUVECs. Finally, MjTX-II inhibited ex vivo angiogenesis processes in an aortic ring model. Therefore, we conclude that MjTX-II exhibits antimetastatic and antiangiogenic effects in vitro and ex vivo and represents a molecule that hold promise as a pharmacological model for antitumor therapy.
Collapse
Affiliation(s)
- Luísa Carregosa Santos
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Vinícius Queiroz Oliveira
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Samuel Cota Teixeira
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | | | - Lorena Polloni
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, (UFU), Uberlândia, MG, Brazil
| | - Lucas Miranda Marques
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | | | - Cristiani Baldo
- Department of Biochemistry and Biotechnology, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Eloisa Amália Vieira Ferro
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | - Marcelo José Barbosa Silva
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation in Dermatology and Immunodeficiency, São Paulo Institute of Tropical Medicine, School of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Veridiana de Melo Rodrigues Ávila
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, (UFU), Uberlândia, MG, Brazil.
| | - Daiana Silva Lopes
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil.
| |
Collapse
|
3
|
Jia S, Li L, Yu C, Peng F. Natural products' antiangiogenic roles in gynecological cancer. Front Pharmacol 2024; 15:1353056. [PMID: 38751791 PMCID: PMC11094279 DOI: 10.3389/fphar.2024.1353056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Gynecological cancers pose a significant threat to women's health. Although the pathogenesis of gynecological cancer remains incompletely understood, angiogenesis is widely acknowledged as a fundamental pathological mechanism driving tumor cell growth, invasion, and metastasis. Targeting angiogenesis through natural products has emerged as a crucial strategy for treating gynecological cancer. In this review, we conducted comprehensive searches in PubMed, Embase, Web of Science, Science Direct, and CNKI databases from the first publication until May 2023 to identify natural products that target angiogenesis in gynecologic tumors. Our findings revealed 63 natural products with anti-angiogenic activity against gynecological cancer. These results underscore the significance of these natural products in augmenting their anticancer effects by modulating other factors within the tumor microenvironment via their impact on angiogenesis. This article focuses on exploring the potential of natural products in targeting blood vessels within gynecological cancer to provide novel research perspectives for targeted vascular therapy while laying a solid theoretical foundation for new drug development.
Collapse
Affiliation(s)
- Shangmei Jia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | | | - Chenghao Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Kandile NG, Ahmed ME, Mohamed MI, Mohamed HM. Therapeutic applications of sustainable new chitosan derivatives and its nanocomposites: Fabrication and characterization. Int J Biol Macromol 2024; 254:127855. [PMID: 37939771 DOI: 10.1016/j.ijbiomac.2023.127855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Chitosan (CS) is a biologically active biopolymer used in different medical applications due to its biodegradability, biocompatibility, and nontoxicity. Nanotechnology is an exciting and quick developing field in medical applications. Nanoparticles have shown great potential in the treatment of cancer and inflammation. In the present work modification of chitosan and its (Ag, Au, or ZnO) nanocomposites by N-aminophthalimide (NAP) occurred through the reaction with epichlorohydrin (ECH) as a crosslinker in the presence or absence of glutaraldehyde (GA) under different reaction conditions using microwave irradiation to give modified chitosan derivatives CS-2, CS-6, and their nanocomposites. Modified chitosan derivatives were characterized using different tools. CS-2 and CS-6 derivatives displayed enhancement of thermal stability and crystallinity compared to chitosan. Additionally, CS-2, CS-6, and their nanocomposites exhibited improvements in antitumor activity against HeLa cancer cells and enzymatic inhibitory against trypsin and α-chymotrypsin enzymes compared to chitosan. However, CS-2 revealed the highest cell growth inhibition% toward HeLa cells (89.02 ± 1.46 %) and the enzymatic inhibitory toward α-chymotrypsin enzyme (17.13 ± 1.59 %). Furthermore, CS-Au-2 showed the highest enzymatic inhibitory against trypsin enzyme (28.14 ± 1.76 %). These results suggested that the new chitosan derivatives CS-2, CS-6, and their nanocomposites could be a platform for medical applications against HeLa cells, trypsin, and α-chymotrypsin enzymes.
Collapse
Affiliation(s)
- Nadia G Kandile
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt
| | - Marwa ElS Ahmed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt
| | - Mansoura I Mohamed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt
| | - Hemat M Mohamed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt.
| |
Collapse
|
5
|
Sevilla-Sánchez MJ, Montoya-Gómez A, Osorno-Valencia D, Montealegre-Sánchez L, Mosquera-Escudero M, Jiménez-Charris E. Exploring the Safety of Pllans-II and Antitumoral Potential of Its Recombinant Isoform in Cervical Cancer Therapy. Cells 2023; 12:2812. [PMID: 38132131 PMCID: PMC10741390 DOI: 10.3390/cells12242812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The antitumor potential of proteins from snake venoms has been studied in recent decades, and evidence has emerged that phospholipases A2 can selectively attack cells of various types of tumors. Previous results have shown that phospholipase A2 "Pllans-II," isolated from Porthidium lansbergii lansbergii snake venom, displayed antitumoral activity on cervical cancer and did not alter the viability of non-tumorigenic cells. However, until now, there was no evidence of its safety at the local and systemic levels, nor had experiments been developed to demonstrate that its production using recombinant technology allows us to obtain a molecule with effects similar to those generated by native phospholipase. Thus, we evaluated the impact caused by Pllans-II on murine biomodels, determining whether it induced local hemorrhage or increased pro-inflammatory and liver damage markers and histological alterations in the liver and kidneys. Additionally, the protein was produced using recombinant technology using a pET28a expression vector and the BL21 (DE3) Escherichia coli strain. Equally, its enzymatic activity and anticancer effect were evaluated on cervical cancer lines such as HeLa and Ca Ski. The results demonstrated that Pllans-II did not generate hemorrhagic activity, nor did it increase the pro-inflammatory cytokines IL-6, IL-1B, or TNF-α at doses of 3.28, 1.64, and 0.82 mg/kg. There was also no evidence of organ damage, and only ALT and AST increased in mild levels at the two highest concentrations. Additionally, the recombinant version of Pllans-II showed conservation in its catalytic activity and the ability to generate death in HeLa and Ca Ski cells (42% and 23%, respectively). These results demonstrate the innocuity of Pllans-II at the lowest dose and constitute an advance in considering a molecule produced using recombinant technology a drug candidate for selective attacks against cervical cancer.
Collapse
Affiliation(s)
- María José Sevilla-Sánchez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (M.J.S.-S.); (A.M.-G.); (D.O.-V.); (L.M.-S.); (M.M.-E.)
| | - Alejandro Montoya-Gómez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (M.J.S.-S.); (A.M.-G.); (D.O.-V.); (L.M.-S.); (M.M.-E.)
| | - Daniel Osorno-Valencia
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (M.J.S.-S.); (A.M.-G.); (D.O.-V.); (L.M.-S.); (M.M.-E.)
| | - Leonel Montealegre-Sánchez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (M.J.S.-S.); (A.M.-G.); (D.O.-V.); (L.M.-S.); (M.M.-E.)
- Grupo de investigación en Ingeniería Biomédica-GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia
| | - Mildrey Mosquera-Escudero
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (M.J.S.-S.); (A.M.-G.); (D.O.-V.); (L.M.-S.); (M.M.-E.)
| | - Eliécer Jiménez-Charris
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (M.J.S.-S.); (A.M.-G.); (D.O.-V.); (L.M.-S.); (M.M.-E.)
| |
Collapse
|
6
|
Montoya-Gómez A, Tonello F, Spolaore B, Massimino ML, Montealegre-Sánchez L, Castillo A, Rivera Franco N, Sevilla-Sánchez MJ, Solano-Redondo LM, Mosquera-Escudero M, Jiménez-Charris E. Pllans-II: Unveiling the Action Mechanism of a Promising Chemotherapeutic Agent Targeting Cervical Cancer Cell Adhesion and Survival Pathways. Cells 2023; 12:2715. [PMID: 38067143 PMCID: PMC10705806 DOI: 10.3390/cells12232715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023] Open
Abstract
Despite advances in chemotherapeutic drugs used against cervical cancer, available chemotherapy treatments adversely affect the patient's quality of life. For this reason, new molecules from natural sources with antitumor potential and few side effects are required. In previous research, Pllans-II, a phospholipase A2 type-Asp49 from Porthidium lansbergii lansbergii snake venom, has shown selective attack against the HeLa and Ca Ski cervical cancer cell lines. This work suggests that the cytotoxic effect generated by Pllans-II on HeLa cells is triggered without affecting the integrity of the cytoplasmic membrane or depolarizing the mitochondrial membranes. The results allow us to establish that cell death in HeLa is related to the junction blockage between α5β1 integrins and fibronectin of the extracellular matrix. Pllans-II reduces the cells' ability of adhesion and affects survival and proliferation pathways mediated by intracellular communication with the external environment. Our findings confirmed Pllans-II as a potential prototype for developing a selective chemotherapeutic drug against cervical cancer.
Collapse
Affiliation(s)
- Alejandro Montoya-Gómez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| | - Fiorella Tonello
- Istituto di Neuroscienze, CNR, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.T.); (M.L.M.)
| | - Barbara Spolaore
- Dipartimento di Scienze del Farmaco, Università di Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Maria Lina Massimino
- Istituto di Neuroscienze, CNR, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.T.); (M.L.M.)
| | - Leonel Montealegre-Sánchez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
- Grupo de Investigación en Ingeniería Biomédica-GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia
| | - Andrés Castillo
- TAO-Lab, Centre for Bioinformatics and Photonics-CIBioFi, Department of Biology, Universidad del Valle, Cali 760032, Colombia; (A.C.); (N.R.F.)
| | - Nelson Rivera Franco
- TAO-Lab, Centre for Bioinformatics and Photonics-CIBioFi, Department of Biology, Universidad del Valle, Cali 760032, Colombia; (A.C.); (N.R.F.)
| | - María José Sevilla-Sánchez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| | - Luis Manuel Solano-Redondo
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| | - Mildrey Mosquera-Escudero
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| | - Eliécer Jiménez-Charris
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia; (L.M.-S.); (M.J.S.-S.); (L.M.S.-R.); (M.M.-E.)
| |
Collapse
|
7
|
Pereañez JA, Preciado LM, Rey-Suárez P. Knowledge about Snake Venoms and Toxins from Colombia: A Systematic Review. Toxins (Basel) 2023; 15:658. [PMID: 37999521 PMCID: PMC10675826 DOI: 10.3390/toxins15110658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Colombia encompasses three mountain ranges that divide the country into five natural regions: Andes, Pacific, Caribbean, Amazon, and Orinoquia. These regions offer an impressive range of climates, altitudes, and landscapes, which lead to a high snake biodiversity. Of the almost 300 snake species reported in Colombia, nearly 50 are categorized as venomous. This high diversity of species contrasts with the small number of studies to characterize their venom compositions and natural history in the different ecoregions. This work reviews the available information about the venom composition, isolated toxins, and potential applications of snake species found in Colombia. Data compilation was conducted according to the PRISMA guidelines, and the systematic literature search was carried out in Pubmed/MEDLINE. Venom proteomes from nine Viperidae and three Elapidae species have been described using quantitative analytical strategies. In addition, venoms of three Colubridae species have been studied. Bioactivities reported for some of the venoms or isolated components-such as antibacterial, cytotoxicity on tumoral cell lines, and antiplasmodial properties-may be of interest to develop potential applications. Overall, this review indicates that, despite recent progress in the characterization of venoms from several Colombian snakes, it is necessary to perform further studies on the many species whose venoms remain essentially unexplored, especially those of the poorly known genus Micrurus.
Collapse
Affiliation(s)
- Jaime Andrés Pereañez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia; (L.M.P.); (P.R.-S.)
- Research Group in Pharmaceutical Promotion and Prevention, University of Antioquia, Medellín 50010, Colombia
| | - Lina María Preciado
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia; (L.M.P.); (P.R.-S.)
| | - Paola Rey-Suárez
- Research Group in Toxinology, Pharmaceutical, and Food Alternatives, Pharmaceutical and Food Sciences Faculty, University of Antioquia, Medellín 50010, Colombia; (L.M.P.); (P.R.-S.)
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Santiago 8320000, Chile
| |
Collapse
|
8
|
The secretory phenotypes of envenomed cells: Insights into venom cytotoxicity. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:193-230. [PMID: 36707202 DOI: 10.1016/bs.apcsb.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Snake envenomation is listed as Category A Neglected Tropical Diseases (NTD) by World Health Organization, indicates a severe public health problem. The global figures for envenomation cases are estimated to be more than 1.8 million annually. Even if the affected victims survive the envenomation, they might suffer from permanent morbidity due to local envenomation. One of the most prominent local envenomation is dermonecrosis. Dermonecrosis is a pathophysiological outcome of envenomation that often causes disability in the victims due to surgical amputations, deformities, contracture, and chronic ulceration. The key venom toxins associated with this local symptom are mainly attributed to substantial levels of enzymatic and non-enzymatic toxins as well as their possible synergistic actions. Despite so, the severity of the local tissue damage is based on macroscopic observation of the bite areas. Furthermore, limited knowledge is known about the key biomarkers involved in the pathogenesis of dermonecrosis. The current immunotherapy with antivenom is also ineffective against dermonecrosis. These local effects eventually end up as sequelae. There is also a global shortage of toxins-targeted therapeutics attributed to inadequate knowledge of the actual molecular mechanisms of cytotoxicity. This chapter discusses the characterization of secretory phenotypes of dermonecrosis as an advanced tool to indicate its severity and pathogenesis in envenomation. Altogether, the secretory phenotypes of envenomed cells and tissues represent the precise characteristics of dermonecrosis caused by venom toxins.
Collapse
|
9
|
Sun S, Liang HW, Wang H, Zou Q. Light-Triggered Self-Assembly of Peptide Nanoparticles into Nanofibers in Living Cells through Molecular Conformation Changes and H-Bond Interactions. ACS NANO 2022; 16:18978-18989. [PMID: 36354757 DOI: 10.1021/acsnano.2c07895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Controlled self-assembly has attracted extensive interest in biological and nanotechnological applications. Enzymatic or biocatalytic triggered self-assembly is widely used for the diagnostic and prognostic marker in different pathologies because of their nanostructures and biological effects. However, it remains a great challenge to control the self-assembly of peptides in living cells with a high degree of spatial and temporal precision. Here we demonstrate a light-triggered platform that enables spatiotemporal control of self-assembly from nanoparticles into nanofibers in living cells through subtle molecular conformational changes and internal H-bonding interactions. The platform contained 3-methylene-2-(quinolin-8-yl) isoindolin-1-one, which acts as the light-controlled unit to disrupt the hydrophilic/lipophilic balance through the change of molecular conformation, and a peptide that can be a faster recombinant to assemble via H-bonding interactions. The process has good biocompatibility because it does not involve waste generation or oxygen consumption; moreover, the assembly rate constant was fast and up to 0.17 min-1. It is applied to the regulation of molecular assembly in living cells. As such, our findings demonstrate that light-triggered controllable assembly can be applied for initiative regulating cellular behaviors in living systems.
Collapse
Affiliation(s)
- Si Sun
- National Engineering Research Center of Immunological Products, Third Military Medical University, Gaotanyan No. 30, Shapingba District, Chongqing, 400038, China
| | - Hong-Wen Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing100190, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Third Military Medical University, Gaotanyan No. 30, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
10
|
Montoya-Gómez A, Rivera Franco N, Montealegre-Sanchez LI, Solano-Redondo LM, Castillo A, Mosquera-Escudero M, Jiménez-Charris E. Pllans-II Induces Cell Death in Cervical Cancer Squamous Epithelial Cells via Unfolded Protein Accumulation and Endoplasmic Reticulum Stress. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196491. [PMID: 36235027 PMCID: PMC9573087 DOI: 10.3390/molecules27196491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
Due to the lack of chemotherapeutic drugs that selectively affect cervical cancer cells, natural sources such as snake venom are currently being investigated for molecules with antitumor potential. Pllans–II, a phospholipase A2 type–Asp49 from Porthidium lansbergii lansbergii snake venom, induced cell death in a cervical cancer cell line—Ca Ski—related to dysfunction in the ability to resolve endoplasmic reticulum stress, evidenced by sub–expression of genes such as PERK, ERO1 PDIs, HSP70, and CHOP. Western blot analysis validated the last two genes′ sub–expression at the protein level. In addition, Pllans–II presented a dose–dependent cytotoxic effect on cancer cells and an insignificant effect on healthy endothelial cells (HUVEC). Additionally, Pllans–II inhibited cancer cells′ adhesion and migration capacity, induced cell cycle arrest in the G2/M phase, and induced apoptosis stimulated possibly by the extrinsic route. These results demonstrate for the first time that Pllans–II has an antitumor effect on a squamous epithelial cervical cancer cell line and represents a possible biotechnological tool for designing a prominent antitumor agent.
Collapse
Affiliation(s)
- Alejandro Montoya-Gómez
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia
- Correspondence: (A.M.-G.); (E.J.-C.); Tel.: +57-322-272-5307 (A.M.-G.); +57-318-272-4867 (E.J.-C.)
| | - Nelson Rivera Franco
- TAO-Lab, Centre for Bioinformatics and Photonics-CIBioFi, Department of Biology, Universidad del Valle, Cali 760032, Colombia
| | | | | | - Andrés Castillo
- TAO-Lab, Centre for Bioinformatics and Photonics-CIBioFi, Department of Biology, Universidad del Valle, Cali 760032, Colombia
| | | | - Eliécer Jiménez-Charris
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali 760043, Colombia
- Correspondence: (A.M.-G.); (E.J.-C.); Tel.: +57-322-272-5307 (A.M.-G.); +57-318-272-4867 (E.J.-C.)
| |
Collapse
|
11
|
Sofyantoro F, Yudha DS, Lischer K, Nuringtyas TR, Putri WA, Kusuma WA, Purwestri YA, Swasono RT. Bibliometric Analysis of Literature in Snake Venom-Related Research Worldwide (1933-2022). Animals (Basel) 2022; 12:2058. [PMID: 36009648 PMCID: PMC9405337 DOI: 10.3390/ani12162058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Snake envenomation is a severe economic and health concern affecting countries worldwide. Snake venom carries a wide variety of small peptides and proteins with various immunological and pharmacological properties. A few key research areas related to snake venom, including its applications in treating cancer and eradicating antibiotic-resistant bacteria, have been gaining significant attention in recent years. The goal of the current study was to analyze the global profile of literature in snake venom research. This study presents a bibliometric review of snake venom-related research documents indexed in the Scopus database between 1933 and 2022. The overall number of documents published on a global scale was 2999, with an average annual production of 34 documents. Brazil produced the highest number of documents (n = 729), followed by the United States (n = 548), Australia (n = 240), and Costa Rica (n = 235). Since 1963, the number of publications has been steadily increasing globally. At a worldwide level, antivenom, proteomics, and transcriptomics are growing hot issues for research in this field. The current research provides a unique overview of snake venom research at global level from 1933 through 2022, and it may be beneficial in guiding future research.
Collapse
Affiliation(s)
- Fajar Sofyantoro
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Donan Satria Yudha
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Kenny Lischer
- Faculty of Engineering, University of Indonesia, Jakarta 16424, Indonesia
| | - Tri Rini Nuringtyas
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | | - Wisnu Ananta Kusuma
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Yekti Asih Purwestri
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Respati Tri Swasono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
12
|
Rezaei A, Asgari S, Komijani S, Sadat SN, Sabatier JM, Nasrabadi D, Pooshang Bagheri K, Shahbazzadeh D, Akbari Eidgahi MR, De Waard M, Mirzahoseini H. Discovery of Leptulipin, a New Anticancer Protein from theIranian Scorpion, Hemiscorpius lepturus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072056. [PMID: 35408455 PMCID: PMC9000277 DOI: 10.3390/molecules27072056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022]
Abstract
Cancer is one of the leading causes of mortality in the world. Unfortunately, the present anticancer chemotherapeutics display high cytotoxicity. Accordingly, the discovery of new anticancer agents with lower side effects is highly necessitated. This study aimed to discover an anticancer compound from Hemiscorpius lepturus scorpion venom. Bioactivity-guided chromatography was performed to isolate an active compound against colon and breast cancer cell lines. 2D electrophoresis and MALDI-TOF were performed to identify the molecule. A partial protein sequence was obtained by mass spectrometry, while the full-length was deciphered using a cDNA library of the venom gland by bioinformatics analyses and was designated as leptulipin. The gene was cloned in pET-26b, expressed, and purified. The anticancer effect and mechanism action of leptulipin were evaluated by MTT, apoptosis, and cell cycle assays, as well as by gene expression analysis of apoptosis-related genes. The treated cells displayed inhibition of cell proliferation, altered morphology, DNA fragmentation, and cell cycle arrest. Furthermore, the treated cells showed a decrease in BCL-2 expression and an increase in Bax and Caspase 9 genes. In this study, we discovered a new anticancer protein from H. lepturus scorpion venom. Leptulipin showed significant anticancer activity against breast and colon cancer cell lines.
Collapse
Affiliation(s)
- Ali Rezaei
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 3514799422, Iran; (A.R.); (D.N.)
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.K.); (S.N.S.); (D.S.)
| | - Saeme Asgari
- Department of Biochemistry and Biophysics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 5157944533, Iran;
| | - Samira Komijani
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.K.); (S.N.S.); (D.S.)
| | - Seyedeh Narjes Sadat
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.K.); (S.N.S.); (D.S.)
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology (INP), Faculté de Pharmacie, Université D’Aix-Marseille, UMR 7051, 27 Bd Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Davood Nasrabadi
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 3514799422, Iran; (A.R.); (D.N.)
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.K.); (S.N.S.); (D.S.)
- Correspondence: (K.P.B.); (M.R.A.E.); (M.D.W.); (H.M.)
| | - Delavar Shahbazzadeh
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.K.); (S.N.S.); (D.S.)
| | - Mohammad Reza Akbari Eidgahi
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 3514799422, Iran; (A.R.); (D.N.)
- Correspondence: (K.P.B.); (M.R.A.E.); (M.D.W.); (H.M.)
| | - Michel De Waard
- L’Institut du Thorax, INSERM, CNRS, University of Nantes, 44000 Nantes, France
- LabEx “Ion Channels, Science & Therapeutics”, 65560 Valbonne, France
- Smartox Biotechnology, 6 Rue Des Platanes, 38120 Saint-Egrève, France
- Correspondence: (K.P.B.); (M.R.A.E.); (M.D.W.); (H.M.)
| | - Hasan Mirzahoseini
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (S.K.); (S.N.S.); (D.S.)
- Correspondence: (K.P.B.); (M.R.A.E.); (M.D.W.); (H.M.)
| |
Collapse
|
13
|
Van Petten de Vasconcelos Azevedo F, Lopes DS, Zóia MAP, Correia LIV, Saito N, Fonseca BB, Polloni L, Teixeira SC, Goulart LR, de Melo Rodrigues Ávila V. A New Approach to Inhibiting Triple-Negative Breast Cancer: In Vitro, Ex Vivo and In Vivo Antiangiogenic Effect of BthTx-II, a PLA 2-Asp-49 from Bothrops jararacussu Venom. Biomolecules 2022; 12:258. [PMID: 35204758 PMCID: PMC8961627 DOI: 10.3390/biom12020258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 12/10/2022] Open
Abstract
Phospholipases A2 (PLA2) represent a superfamily of enzymes widely distributed in living organisms, with a broad spectrum of pharmacological activities and therapeutic potential. Anti-angiogenic strategies have become one of the main tools in fighting cancer. In this sense, the present work reports the inhibition of tumor angiogenesis induced by Asp-49 BthTX-II using in vitro, ex vivo and in vivo approaches. We demonstrate that BthTx-II inhibited cell adhesion, proliferation, and migration of human umbilical vein endothelial cells (HUVEC), as well as caused a reduction in the levels of endothelial growth factor (VEGF) during in vitro angiogenesis assays. BthTx-II was also able to inhibit the sprouting angiogenic process, by the ex vivo germination assay of the aortic ring; in addition, this toxin inhibited the migration and proliferation of HUVEC in co-culture with triple-negative breast cancer cells (e.g., MDA-MB-231 cells). Finally, in vivo tumor suppression and anti-angiogenic activities were analyzed using MDA-MB-231 cells with Matrigel injected into the chorioallantoic membrane of chicken embryo (CAM) for 7 days treatment with BthTx-II, showing a considerable reduction in vessel caliber, on the size and weight of tumors. Together, these results suggest an important antiangiogenic and antitumor role for BthTx-II, as a potential prototype for the development of new tools and antitumor drugs in cancer therapy.
Collapse
Affiliation(s)
- Fernanda Van Petten de Vasconcelos Azevedo
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (L.I.V.C.); (L.P.)
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.A.P.Z.); (N.S.); (L.R.G.)
| | - Daiana Silva Lopes
- Multidisciplinary Institute of Health, Federal University of Bahia, Vitoria da Conquista, Salvador 40170-110, BA, Brazil;
| | - Mariana Alves Pereira Zóia
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.A.P.Z.); (N.S.); (L.R.G.)
| | - Lucas Ian Veloso Correia
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (L.I.V.C.); (L.P.)
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.A.P.Z.); (N.S.); (L.R.G.)
| | - Natieli Saito
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.A.P.Z.); (N.S.); (L.R.G.)
| | | | - Lorena Polloni
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (L.I.V.C.); (L.P.)
| | - Samuel Cota Teixeira
- Department of Immunology, Biomedical Sciences Institute, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil;
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.A.P.Z.); (N.S.); (L.R.G.)
| | - Veridiana de Melo Rodrigues Ávila
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (L.I.V.C.); (L.P.)
| |
Collapse
|
14
|
Teodoro A, Gonçalves FJ, Oliveira H, Marques S. Venom of Viperidae: A Perspective of its Antibacterial and Antitumor
Potential. Curr Drug Targets 2022; 23:126-144. [DOI: 10.2174/1389450122666210811164517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022]
Abstract
:
The emergence of multi-drug resistant bacteria and limitations on cancer treatment represent
two important challenges in modern medicine. Biological compounds have been explored with
a particular focus on venoms. Although they can be lethal or cause considerable damage to humans,
venom is also a source rich in components with high therapeutic potential.
:
Viperidae family is one of the most emblematic venomous snake families and several studies highlighted
the antibacterial and antitumor potential of viper toxins. According to the literature, these
activities are mainly associated to five protein families - svLAAO, Disintegrins, PLA2, SVMPs and
C-type lectins- that act through different mechanisms leading to the inhibition of the growth of bacteria,
as well as, cytotoxic effects and inhibition of metastasis process. In this review, we provide
an overview of the venom toxins produced by species belonging to the Viperidae family, exploring
their roles during the envenoming and their pharmacological properties, in order to demonstrate its
antibacterial and antitumor potential.
Collapse
Affiliation(s)
- André Teodoro
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando J.M. Gonçalves
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sérgio Marques
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
15
|
Abdullah NAH, Rusmili MRA, Zainal Abidin SA, Shaikh MF, Hodgson WC, Othman I. Isolation and Characterization of A2-EPTX-Nsm1a, a Secretory Phospholipase A 2 from Malaysian Spitting Cobra ( Naja sumatrana) Venom. Toxins (Basel) 2021; 13:toxins13120859. [PMID: 34941697 PMCID: PMC8709200 DOI: 10.3390/toxins13120859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 02/07/2023] Open
Abstract
Phospholipase A2 (PLA2) toxins are one of the main toxin families found in snake venom. PLA2 toxins are associated with various detrimental effects, including neurotoxicity, myotoxicity, hemostatic disturbances, nephrotoxicity, edema, and inflammation. Although Naja sumatrana venom contains substantial quantities of PLA2 components, there is limited information on the function and activities of PLA2 toxins from the venom. In this study, a secretory PLA2 from the venom of Malaysian N. sumatrana, subsequently named A2-EPTX-Nsm1a, was isolated, purified, and characterized. A2-EPTX-Nsm1a was purified using a mass spectrometry-guided approach and multiple chromatography steps. Based on LC-MSMS, A2-EPTX-Nsm1a was found to show high sequence similarity with PLA2 from venoms of other Naja species. The PLA2 activity of A2-EPTX-Nsm1 was inhibited by 4-BPB and EDTA. A2-EPTX-Nsm1a was significantly less cytotoxic in a neuroblastoma cell line (SH-SY5Y) compared to crude venom and did not show a concentration-dependent cytotoxic activity. To our knowledge, this is the first study that characterizes and investigates the cytotoxicity of an Asp49 PLA2 isolated from Malaysian N. sumatrana venom in a human neuroblastoma cell line.
Collapse
Affiliation(s)
- Nur Atiqah Haizum Abdullah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia; (S.A.Z.A.); (M.F.S.)
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
- Correspondence: or (N.A.H.A.); (I.O.)
| | - Muhamad Rusdi Ahmad Rusmili
- Kulliyyah of Pharmacy, Kuantan Campus, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan 25200, Malaysia;
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia; (S.A.Z.A.); (M.F.S.)
| | - Mohd Farooq Shaikh
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia; (S.A.Z.A.); (M.F.S.)
| | - Wayne C. Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia; (S.A.Z.A.); (M.F.S.)
- Correspondence: or (N.A.H.A.); (I.O.)
| |
Collapse
|
16
|
Teixeira SC, da Silva MS, Gomes AAS, Moretti NS, Lopes DS, Ferro EAV, Rodrigues VDM. Panacea within a Pandora's box: the antiparasitic effects of phospholipases A 2 (PLA 2s) from snake venoms. Trends Parasitol 2021; 38:80-94. [PMID: 34364805 DOI: 10.1016/j.pt.2021.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Parasitic diseases affect millions of individuals worldwide, mainly in low-income regions. There is no cure for most of these diseases, and the treatment relies on drugs that have side effects and lead to drug resistance, emphasizing the urgency to find new treatments. Snake venom has been gaining prominence as a rich source of molecules with antiparasitic potentials, such as phospholipases A2 (PLA2s). Here, we compile the findings involving PLA2s with antiparasitic activities against helminths, Plasmodium, Toxoplasma, and trypanosomatids. We indicate their molecular features, highlighting the possible antiparasitic mechanisms of action of these proteins. We also demonstrate interactions between PLA2s and some parasite membrane components, shedding light on potential targets for drug design that may provide better treatment for the illnesses caused by parasites.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia (UFU), MG, Brazil.
| | - Marcelo Santos da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Nilmar Silvio Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Daiana Silva Lopes
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Eloisa Amália Vieira Ferro
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia (UFU), MG, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil.
| |
Collapse
|
17
|
Giribaldi J, Smith JJ, Schroeder CI. Recent developments in animal venom peptide nanotherapeutics with improved selectivity for cancer cells. Biotechnol Adv 2021; 50:107769. [PMID: 33989705 DOI: 10.1016/j.biotechadv.2021.107769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Animal venoms are a rich source of bioactive peptides that efficiently modulate key receptors and ion channels involved in cellular excitability to rapidly neutralize their prey or predators. As such, they have been a wellspring of highly useful pharmacological tools for decades. Besides targeting ion channels, some venom peptides exhibit strong cytotoxic activity and preferentially affect cancer over healthy cells. This is unlikely to be driven by an evolutionary impetus, and differences in tumor cells and the tumor microenvironment are probably behind the serendipitous selectivity shown by some venom peptides. However, strategies such as bioconjugation and nanotechnologies are showing potential to improve their selectivity and potency, thereby paving the way to efficiently harness new anticancer mechanisms offered by venom peptides. This review aims to highlight advances in nano- and chemotherapeutic tools and prospective anti-cancer drug leads derived from animal venom peptides.
Collapse
Affiliation(s)
- Julien Giribaldi
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jennifer J Smith
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Christina I Schroeder
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
18
|
Antiangiogenic effects of phospholipase A 2 Lys49 BnSP-7 from Bothrops pauloensis snake venom on endothelial cells: An in vitro and ex vivo approach. Toxicol In Vitro 2021; 72:105099. [PMID: 33486049 DOI: 10.1016/j.tiv.2021.105099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 11/20/2022]
Abstract
Antiangiogenic strategies are promising tools for cancer treatment and several other disorders. In this sense, phospholipases A2 (PLA2s) from snake venom have been described to possess antiangiogenic properties. In this study, we evaluated both in vitro and ex vivo antiangiogenic effects induced by BnSP-7, a Lys49 PLA2 isolated from Bothrops pauloensis snake venom. BnSP-7 was able to inhibit endothelial cell (HUVEC) proliferation, which was indeed confirmed by a modulation of cell cycle progression. Interestingly, BnSP-7 also inhibited the adhesion and migration of HUVECs and blocked in vitro angiogenesis in a VEGF-dependent manner, an important proangiogenic factor. Finally, BnSP-7 was capable of inhibiting sprouting angiogenic process through an ex vivo aortic ring assay. Taken together, these results indicate that BnSP-7 has potent in vitro and ex vivo antiangiogenic effect.
Collapse
|
19
|
Boda F, Banfai K, Garai K, Kovacs B, Almasi A, Scheffer D, Sinkler RL, Csonka R, Czompoly T, Kvell K. Effect of Bitis gabonica and Dendroaspis angusticeps snake venoms on apoptosis-related genes in human thymic epithelial cells. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200057. [PMID: 33402885 PMCID: PMC7745260 DOI: 10.1590/1678-9199-jvatitd-2020-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: Certain environmental toxins permanently damage the thymic epithelium, accelerate immune senescence and trigger secondary immune pathologies. However, the exact underlying cellular mechanisms and pathways of permanent immune intoxication remain unknown. The aim of the present study was to demonstrate gene expressional changes of apoptosis-related cellular pathways in human thymic epithelial cells following exposure to snake venom from Bitis gabonica and Dendroaspis angusticeps. Methods: Snake venoms were characterized by analytical methods including reversed phase high-performance liquid chromatography and sodium dodecyl sulphate-polyacrylamide gel electrophoresis, then applied on human thymic epithelial cells (1889c) for 24 h at 10 μg/mL (as used in previous TaqMan Array study). Gene expressional changes restricted to apoptosis were assayed by TaqMan Array (Human Apoptosis Plate). Results: The most prominent gene expressional changes were shown by CASP5 (≈ 2.5 million-fold, confirmed by dedicated quantitative polymerase chain reaction) and CARD9 (0.016-fold) for B. gabonica, and BIRC7 (6.46-fold) and CASP1 (0.30-fold) for D. angusticeps. Conclusion: The observed apoptotic environment suggests that pyroptosis may be the dominant pathway through which B. gabonica and D. angusticeps snake venoms trigger thymic epithelial apoptosis following envenomation.
Collapse
Affiliation(s)
- Francisc Boda
- Department F1, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Krisztina Banfai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Pecs, Hungary.,Food Biotechnology Research Group, Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Kitti Garai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Pecs, Hungary.,Food Biotechnology Research Group, Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Bela Kovacs
- Department F1, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Romania
| | - Attila Almasi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Pecs, Pecs, Hungary
| | - Dalma Scheffer
- Food Biotechnology Research Group, Szentagothai Research Center, University of Pecs, Pecs, Hungary.,Soft Flow Ltd., Pecs, Hungary
| | - Reka Lambertne Sinkler
- Food Biotechnology Research Group, Szentagothai Research Center, University of Pecs, Pecs, Hungary.,Soft Flow Ltd., Pecs, Hungary
| | - Robert Csonka
- Food Biotechnology Research Group, Szentagothai Research Center, University of Pecs, Pecs, Hungary.,Soft Flow Ltd., Pecs, Hungary
| | - Tamas Czompoly
- Food Biotechnology Research Group, Szentagothai Research Center, University of Pecs, Pecs, Hungary.,Soft Flow Ltd., Pecs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Pecs, Hungary.,Food Biotechnology Research Group, Szentagothai Research Center, University of Pecs, Pecs, Hungary
| |
Collapse
|
20
|
Teixeira SC, Borges BC, Oliveira VQ, Carregosa LS, Bastos LA, Santos IA, Jardim ACG, Melo FF, Freitas LM, Rodrigues VM, Lopes DS. Insights into the antiviral activity of phospholipases A 2 (PLA 2s) from snake venoms. Int J Biol Macromol 2020; 164:616-625. [PMID: 32698062 PMCID: PMC7368918 DOI: 10.1016/j.ijbiomac.2020.07.178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Viruses are associated with several human diseases that infect a large number of individuals, hence directly affecting global health and economy. Owing to the lack of efficient vaccines, antiviral therapy and emerging resistance strains, many viruses are considered as a potential threat to public health. Therefore, researches have been developed to identify new drug candidates for future treatments. Among them, antiviral research based on natural molecules is a promising approach. Phospholipases A2 (PLA2s) isolated from snake venom have shown significant antiviral activity against some viruses such as Dengue virus, Human Immunodeficiency virus, Hepatitis C virus and Yellow fever virus, and have emerged as an attractive alternative strategy for the development of novel antiviral therapy. Thus, this review provides an overview of remarkable findings involving PLA2s from snake venom that possess antiviral activity, and discusses the mechanisms of action mediated by PLA2s against different stages of virus replication cycle. Additionally, molecular docking simulations were performed by interacting between phospholipids from Dengue virus envelope and PLA2s from Bothrops asper snake venom. Studies on snake venom PLA2s highlight the potential use of these proteins for the development of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- S C Teixeira
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - B C Borges
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - V Q Oliveira
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - L S Carregosa
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - L A Bastos
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - I A Santos
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - A C G Jardim
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - F F Melo
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - L M Freitas
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - V M Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - D S Lopes
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil; Institute of Health Sciences, Department of Bio-Function, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
21
|
Cervical cancer and potential pharmacological treatment with snake venoms. Mol Biol Rep 2020; 47:4709-4721. [PMID: 32406018 DOI: 10.1007/s11033-020-05503-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/06/2020] [Indexed: 12/24/2022]
Abstract
Cervical cancer is the fourth most common cancer worldwide in women. Apoptosis reactivation has become the main strategy for decreasing cancer proliferation. There is a need to extend the search for new drugs to implement more effective and less toxic strategies for cervical cancer treatment. Research has been carried out to find new drugs that have minimal side effects and that focus on the tumor microenvironment, particularly in the induction of cellular apoptosis and cell migration and the inhibition of angiogenesis. Potent toxins from snake venoms have shown potential as sources for the synthesis of new drugs with such characteristics. The present work aimed to describe cervical cancer characteristics, associated risk factors, current treatments and to highlight the effects of toxins isolated from the venom of snakes of the Viperidae family on cervical cancer cell lines.
Collapse
|
22
|
Montealegre-Sánchez L, Gimenes SN, Lopes DS, Teixeira SC, Solano-Redondo L, de Melo Rodrigues V, Jiménez-Charris E. Antitumoral Potential of Lansbermin-I, a Novel Disintegrin from Porthidium lansbergii lansbergii Venom on Breast Cancer Cells. Curr Top Med Chem 2019; 19:2069-2078. [DOI: 10.2174/1568026619666190806151401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022]
Abstract
Background:
Disintegrins from snake venoms bind with high specificity cell surface integrins,
which are important pharmacological targets associated with cancer development and progression.
Objective:
In this study, we isolated a disintegrin from the Porthidium lansbergii lansbergii venom and
evaluated its antitumoral effects on breast cancer cells.
Methods:
The isolation of the disintegrin was performed on RP-HPLC and the inhibition of platelet aggregation
was evaluated on human platelet-rich plasma. The inhibition of cell adhesion was also evaluated
in vitro on cultures of cell lines by the MTT method as well as the inhibition of breast cancer cell
migration by the wound healing assay. The binding of the disintegrin to integrin subunits was verified by
flow cytometry and confocal microscopy. Finally, inhibition of angiogenesis was assessed in vitro on
HUVEC cells and the concentration of VEGF was measured in the cellular supernatants.
Results:
The disintegrin, named Lansbermin-I, is a low molecular weight protein (< 10 kDa) that includes
an RGD on its sequence identified previously. Lansbermin-I showed potent inhibition of ADP and
collagen-induced platelet aggregation on human plasma and also displayed inhibitory effects on the adhesion
and migration of breast cancer MCF7 and MDA-MB 231cell lines, without affecting nontumorigenic
breast MCF-10A and lung BEAS cells. Additionally, Lansbermin-I prevented MCF7 cells to
adhere to fibronectin and collagen, and also inhibited in vitro angiogenesis on human endothelial HUVEC
cells.
Conclusion:
Our results display the first report on the antitumor and anti-metastatic effects of an RGDdisintegrin
isolated from a Porthidium snake venom by possibly interfering with α2 and/or β1-containing
integrins. Thus, Lansbermin-I could be an attractive model to elucidate the role of disintegrins against
breast cancer development.
Collapse
Affiliation(s)
| | - Sarah N.C. Gimenes
- Laboratorio de Bioquimica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlandia, MG, Brazil
| | - Daiana S. Lopes
- Instituto Multidisciplinar em Saude, Campus Anisio Teixeira, Universidade Federal da Bahia, BA, Brazil
| | - Samuel C. Teixeira
- Laboratorio de Bioquimica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlandia, MG, Brazil
| | - Luis Solano-Redondo
- Grupo Laboratorio de Herpetologia, Facultad de Ciencias, Universidad del Valle, Cali, Colombia
| | - Veridiana de Melo Rodrigues
- Laboratorio de Bioquimica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlandia, MG, Brazil
| | | |
Collapse
|