1
|
Ghosh K, Takahashi D, Kotake T. Plant type II arabinogalactan: Structural features and modification to increase functionality. Carbohydr Res 2023; 529:108828. [PMID: 37182471 DOI: 10.1016/j.carres.2023.108828] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
Type II arabinogalactans (AGs) are a highly diverse class of plant polysaccharides generally encountered as the carbohydrate moieties of certain extracellular proteoglycans, the so-called arabinogalactan-proteins (AGPs), which are found on plasma membranes and in cell walls. The basic structure of type II AG is a 1,3-β-D-galactan main chain with 1,6-β-D-galactan side chains. The side chains are further decorated with other sugars such as α-l-arabinose and β-d-glucuronic acid. In addition, AGs with 1,6-β-D-galactan as the main chain, which are designated as 'type II related AG' in this review, can also be found in several plants. Due to their diverse and heterogenous features, the determination of carbohydrate structures of type II and type II related AGs is not easy. On the other hand, these complex AGs are scientifically and commercially attractive materials whose structures can be modified by chemical and biochemical approaches for specific purposes. In the current review, what is known about the chemical structures of type II and type II related AGs from different plant sources is outlined. After that, structural analysis techniques are considered and compared. Finally, structural modifications that enhance or alter functionality are highlighted.
Collapse
Affiliation(s)
- Kanika Ghosh
- Department of Chemistry, Bidhan Chandra College, Asansol, 713304, West Bengal, India.
| | - Daisuke Takahashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan; Green Bioscience Research Center, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| |
Collapse
|
2
|
Liu Y, Zhang Y, Mei N, Li W, Yang T, Xie J. Three acidic polysaccharides derived from sour jujube seeds protect intestinal epithelial barrier function in LPS induced Caco-2 cell inflammation model. Int J Biol Macromol 2023; 240:124435. [PMID: 37062376 DOI: 10.1016/j.ijbiomac.2023.124435] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 04/18/2023]
Abstract
Normal intestinal epithelial barrier function plays a key role in the prevention of many diseases such as infectious enteritis, inflammatory bowel disease, obesity, etc. In this study, three novel acidic polysaccharides ZY-2, ZY-3 and ZY-4 were isolated from sour jujube (Ziziphus jujuba Mill. var. Spinosa) seeds and purified by DEAE Sephrose Fast Flow gel. The molecular weight of ZY-2, ZY-3 and ZY-4 was 7.76 kDa, 10.71 kDa and 8.31 kDa respectively, mainly composed of different proportions of mannose, rhamnose, glucose, glucuronic acid, galacturonic acid, galactose, xylose and arabinose. 1H NMR and Congo red experiment results showed that the three polysaccharides mainly contained both α-type and β-type glycosidic bonds with obvious triple helix structural traits. The polysaccharides could up-regulate the expression levels of occludin and ZO-1 in LPS-induced inflammation Caco-2 cells, and reduce IL-6, IL-8, IL-1β and TNF-α significantly. In conclusion, the acidic polysaccharides from sour jujube seeds exhibited great potential in protection intestinal epithelial barrier function through anti-inflammatory effects.
Collapse
Affiliation(s)
- Ying Liu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yanqing Zhang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Nanju Mei
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wei Li
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Tan Yang
- School of Chinese Materia Medica, Tianjin University of Chinese Medicine, Tianjin 301617, China
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Unique Mode of Antiviral Action of a Marine Alkaloid against Ebola Virus and SARS-CoV-2. Viruses 2022; 14:v14040816. [PMID: 35458549 PMCID: PMC9028129 DOI: 10.3390/v14040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/24/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Lamellarin α 20-sulfate is a cell-impenetrable marine alkaloid that can suppress infection that is mediated by the envelope glycoprotein of human immunodeficiency virus type 1. We explored the antiviral action and mechanisms of this alkaloid against emerging enveloped RNA viruses that use endocytosis for infection. The alkaloid inhibited the infection of retroviral vectors that had been pseudotyped with the envelope glycoprotein of Ebola virus and SARS-CoV-2. The antiviral effects of lamellarin were independent of the retrovirus Gag-Pol proteins. Interestingly, although heparin and dextran sulfate suppressed the cell attachment of vector particles, lamellarin did not. In silico structural analyses of the trimeric glycoprotein of the Ebola virus disclosed that the principal lamellarin-binding site is confined to a previously unappreciated cavity near the NPC1-binding site and fusion loop, whereas those for heparin and dextran sulfate were dispersed across the attachment and fusion subunits of the glycoproteins. Notably, lamellarin binding to this cavity was augmented under conditions where the pH was 5.0. These results suggest that the final action of the alkaloid against Ebola virus is specific to events following endocytosis, possibly during conformational glycoprotein changes in the acidic environment of endosomes. Our findings highlight the unique biological and physicochemical features of lamellarin α 20-sulfate and should lead to the further use of broadly reactive antivirals to explore the structural mechanisms of virus replication.
Collapse
|
4
|
Zhan H, Yu G, Zheng M, Zhu Y, Ni H, Oda T, Jiang Z. Inhibitory effects of a low-molecular-weight sulfated fucose-containing saccharide on α-amylase and α-glucosidase prepared from ascophyllan. Food Funct 2022; 13:1119-1132. [PMID: 35018397 DOI: 10.1039/d1fo03331j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To find natural and safe anti-diabetic foods or potential drugs, low-molecular-weight saccharide fragments LMWAs-H (Mw 33.48 kDa) and LMWAs-L (Mw 6.71 kDa) from the sulfated polysaccharide ascophyllan of Ascophyllum nodosum using alginate lyase (EC 4.2.2.3) were investigated. The results revealed that LMWAs-H possessed potent inhibition activity against α-glucosidase or α-amylase in a concentration-dependent manner, which were higher than native ascophyllan or LMWAs-L. LMWAs-H exhibited a stronger inhibitory activity against α-glucosidase than α-amylase because it differently affects the conformational structures of these enzymes. Structural analysis revealed LMWAs-H to be →4)-α-L-Fucp-(1 → 4)-α-L-Fucp-(1 → 3)-β-D-Xylp-(1 → 3)-α-L-Fucp4S(1→ as main chain, and T-α-D-Glcp-(1→ and →3)-β-D-ManpAred residues were attached to the ends of main chain as non-reducing- and reducing-end residues, respectively. The 4-deoxy-L-erythro-hex-4-enuronosyluronate linked the O-4 position of →3,4)-β-D-ManpAred residue as side branches. Our results suggest that LMWAs-H is the main active structural motif responsible for the enzymes-inhibiting activities, which is probably derived from the fucose-containing branches of ascophyllan. Our findings reveal that the strong inhibition of LMWAs-H on α-glucosidase but mild inhibition on α-amylase is highly related to its structural properties, suggesting its desirable characteristics as an anti-diabetic agent.
Collapse
Affiliation(s)
- Hui Zhan
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
| | - Gang Yu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China.
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China. .,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China. .,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China. .,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Tatsuya Oda
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China. .,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| |
Collapse
|
5
|
Abd Manan TSB, Khan T, Wan Mohtar WHM, Mohd Hanafiah Z, Latip ASA, Mustafa SFZ, Leong SY, Shamsuddin AS, Isa MH, Hassan AKR, Ahmad A, Wan Rasdi N, Mohamad H. Algae in medicine and human health. ALGAL BIOTECHNOLOGY 2022:323-334. [DOI: 10.1016/b978-0-323-90476-6.00001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
6
|
Ray B, Ali I, Jana S, Mukherjee S, Pal S, Ray S, Schütz M, Marschall M. Antiviral Strategies Using Natural Source-Derived Sulfated Polysaccharides in the Light of the COVID-19 Pandemic and Major Human Pathogenic Viruses. Viruses 2021; 14:35. [PMID: 35062238 PMCID: PMC8781365 DOI: 10.3390/v14010035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Only a mere fraction of the huge variety of human pathogenic viruses can be targeted by the currently available spectrum of antiviral drugs. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has highlighted the urgent need for molecules that can be deployed quickly to treat novel, developing or re-emerging viral infections. Sulfated polysaccharides are found on the surfaces of both the susceptible host cells and the majority of human viruses, and thus can play an important role during viral infection. Such polysaccharides widely occurring in natural sources, specifically those converted into sulfated varieties, have already proved to possess a high level and sometimes also broad-spectrum antiviral activity. This antiviral potency can be determined through multifold molecular pathways, which in many cases have low profiles of cytotoxicity. Consequently, several new polysaccharide-derived drugs are currently being investigated in clinical settings. We reviewed the present status of research on sulfated polysaccharide-based antiviral agents, their structural characteristics, structure-activity relationships, and the potential of clinical application. Furthermore, the molecular mechanisms of sulfated polysaccharides involved in viral infection or in antiviral activity, respectively, are discussed, together with a focus on the emerging methodology contributing to polysaccharide-based drug development.
Collapse
Affiliation(s)
- Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Imran Ali
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Saikat Pal
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
7
|
Wang S, Xu X, Sun C, Zhang J, He X, Zhang Z, Huang H, Yan J, Jin W, Mao G. Sulphated glucuronomannan tetramer and hexamer from Sargassum thunbergii exhibit anti-human cytomegalovirus activity by blocking viral entry. Carbohydr Polym 2021; 273:118510. [PMID: 34560939 DOI: 10.1016/j.carbpol.2021.118510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022]
Abstract
Human cytomegalovirus (HCMV) remains a major public health burden worldwide. The anti-HCMV activity of glucuronomannan oligosaccharides (Gs) and sulphated glucuronomannan oligosaccharides (SGs) was investigated. Among these Gs and SGs, G4S1 and G6S1 (higher sulphated glucuronomannan tetramer and hexamer) showed satisfactory anti-HCMV activity starting at 50 μg/mL and 10 μg/mL, respectively. The results of the morphology, western blotting, qPCR and TCID50 assay showed that they prevented lytic cytopathic changes, inhibited the expression of IE1/2 and UL44, and reduced the UL123 copy number and virus titre significantly. It was interesting to note that degree of sulphation and polymerization was more important for anti-HCMV activity. Moreover, the anti-HCMV activities of G4S1 and G6S1 were stable when stored at 4 °C, -20 °C, and -80 °C for at least three months and mainly occurred in the early stage of HCMV infection through the negative charge of the sulphate groups and the interaction between SGs and the host cells.
Collapse
Affiliation(s)
- Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Chuan Sun
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Jing Zhang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Xinyue He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou 313000, PR China
| | - Hong Huang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China
| | - Jing Yan
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China.
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou 310030, PR China.
| |
Collapse
|
8
|
Lu W, Yang Z, Chen J, Wang D, Zhang Y. Recent advances in antiviral activities and potential mechanisms of sulfated polysaccharides. Carbohydr Polym 2021; 272:118526. [PMID: 34420760 DOI: 10.1016/j.carbpol.2021.118526] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 11/24/2022]
Abstract
Natural polysaccharides derived from plants, fungi and animals are well known as ideal functional products with multiple biological activities and few side effects. Among them, natural occurring sulfated polysaccharides and those from synthetic origin are increasingly causing more attention worldwide, as they have been proved to possess broad-spectrum antiviral activities. The focus of this review is on analyzing the current state of knowledge about the origin of sulfated polysaccharides, more importantly, the potential connection between the structure and their antiviral mechanisms. Sulfated polysaccharide may interfere with a few steps in the virus life cycle (i.e. adsorption, invasion, transcription and replication) and/or improve the host antiviral immune response. Moreover, their antiviral activity was affected by degree of substitution, substitution position, molecular weight, and spatial conformation. This review may provide approach for the development of novel and potent therapeutic agents.
Collapse
Affiliation(s)
- Wenjing Lu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China.
| | - Zhifeng Yang
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Juan Chen
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Di Wang
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Yu Zhang
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| |
Collapse
|
9
|
Serrano-Aroca Á, Ferrandis-Montesinos M, Wang R. Antiviral Properties of Alginate-Based Biomaterials: Promising Antiviral Agents against SARS-CoV-2. ACS APPLIED BIO MATERIALS 2021; 4:5897-5907. [PMID: 35006918 PMCID: PMC8291135 DOI: 10.1021/acsabm.1c00523] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/26/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic has made it essential to explore alternative antiviral materials. Alginate is a biodegradable, renewable, biocompatible, water-soluble and antiviral biopolymer with many potential biomedical applications. In this regard, this review shows 17 types of viruses that have been tested in contact with alginate and its related biomaterials. Most of these studies show that alginate-based materials possess little or no toxicity and are able to inhibit a wide variety of viruses affecting different organisms: in humans by the human immunodeficiency virus type 1, the hepatitis A, B, and C viruses, Sindbis virus, herpes simplex virus type 1 and 2, poliovirus type 1, rabies virus, rubella virus, and the influenza virus; in mice by the murine norovirus; in bacteria by the T4 coliphage, and in plants by the tobacco mosaic virus and the potato virus X. Many of these are enveloped positive-sense single-stranded RNA viruses, like SARS-CoV-2, which render alginate-based materials highly promising in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de
Investigación Traslacional San Alberto Magno, Universidad
Católica de Valencia San Vicente Mártir, c/Guillem de Castro
94, 46001 Valencia, Spain
| | - María Ferrandis-Montesinos
- Institute of Bioengineering, Universidad
Miguel Hernández, Campus de Elche, 03202 Elche, Alicante,
Spain
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese
Medicine, Institute of Chinese Medical Sciences, University of
Macau, Taipa, Macau 999078, China
| |
Collapse
|
10
|
Andrew M, Jayaraman G. Marine sulfated polysaccharides as potential antiviral drug candidates to treat Corona Virus disease (COVID-19). Carbohydr Res 2021; 505:108326. [PMID: 34015720 PMCID: PMC8091805 DOI: 10.1016/j.carres.2021.108326] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
The viral infection caused by SARS-CoV-2 has increased the mortality rate and engaged several adverse effects on the affected individuals. Currently available antiviral drugs have found to be unsuccessful in the treatment of COVID-19 patients. The demand for efficient antiviral drugs has created a huge burden on physicians and health workers. Plasma therapy seems to be less accomplishable due to insufficient donors to donate plasma and low recovery rate from viral infection. Repurposing of antivirals has been evolved as a suitable strategy in the current treatment and preventive measures. The concept of drug repurposing represents new experimental approaches for effective therapeutic benefits. Besides, SARS-CoV-2 exhibits several complications such as lung damage, blood clot formation, respiratory illness and organ failures in most of the patients. Based on the accumulation of data, sulfated marine polysaccharides have exerted successful inhibition of virus entry, attachment and replication with known or unknown possible mechanisms against deadly animal and human viruses so far. Since the virus entry into the host cells is the key process, the prevention of such entry mechanism makes any antiviral strategy effective. Enveloped viruses are more sensitive to polyanions than non-enveloped viruses. Besides, the viral infection caused by RNA virus types embarks severe oxidative stress in the human body that leads to malfunction of tissues and organs. In this context, polysaccharides play a very significant role in providing shielding effect against the virus due to their polyanionic rich features and a molecular weight that hinders their reactive surface glycoproteins. Significantly the functional groups especially sulfate, sulfate pattern and addition, uronic acids, monosaccharides, glycosidic linkage and high molecular weight have greater influence in the antiviral activity. Moreover, they are very good antioxidants that can reduce the free radical generation and provokes intracellular antioxidant enzymes. Additionally, polysaccharides enable a host-virus immune response, activate phagocytosis and stimulate interferon systems. Therefore, polysaccharides can be used as candidate drugs, adjuvants in vaccines or combination with other antivirals, antioxidants and immune-activating nutritional supplements and antiviral materials in healthcare products to prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Monic Andrew
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Gurunathan Jayaraman
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
11
|
Enhancement of the Antioxidant and Antimicrobial Activities of Porphyran through Chemical Modification with Tyrosine Derivatives. Molecules 2021; 26:molecules26102916. [PMID: 34068969 PMCID: PMC8156949 DOI: 10.3390/molecules26102916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
The chemical modification of porphyran hydrocolloid is attempted, with the objective of enhancing its antioxidant and antimicrobial activities. Sulfated galactan porphyran is obtained from commercial samples of the red algae Porphyra dioica using Soxhlet extraction with water at 100 °C and precipitation with isopropyl alcohol. The extracted porphyran is then treated with modified L-tyrosines in aqueous medium in the presence of NaOH, at ca. 70 °C. The modified tyrosines L1 and L2 are prepared through a Mannich reaction with either thymol or 2,4-di-tert-butylphenol, respectively. While the reaction with 2,4-di-tert-butylphenol yields the expected tyrosine derivative, a mixture of products is obtained with thymol. The resulting polysaccharides are structurally characterized and the respective antioxidant and antimicrobial activities are determined. Porphyran treated with the N-(2-hydroxy-3,5-di-tert-butyl-benzyl)-L-tyrosine derivative, POR-L2, presents a noticeable superior radical scavenging and antioxidant activity compared to native porphyran, POR. Furthermore, it exhibited some antimicrobial activity against S. aureus. The surface morphology of films prepared by casting with native and modified porphyrans is studied by SEM/EDS. Both POR and POR-L2 present potential applicability in the production of films and washable coatings for food packaging with improved protecting characteristics.
Collapse
|
12
|
Sangtani R, Ghosh A, Jha HC, Parmar HS, Bala K. Potential of algal metabolites for the development of broad-spectrum antiviral therapeutics: Possible implications in COVID-19 therapy. Phytother Res 2021; 35:2296-2316. [PMID: 33210447 PMCID: PMC7753317 DOI: 10.1002/ptr.6948] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 01/25/2023]
Abstract
Covid-19 pandemic severely affected human health worldwide. Till October 19, 2020, total confirmed patients of COVID-19 are 39,944,882, whereas 1,111,998 people died across the globe. Till to date, we do not have any specific medicine and/or vaccine to treat COVID-19; however, research is still going on at war footing. So far vaccine development is concerned, here it is noteworthy that till now three major variants (named A, B, and C) of severe acute respiratory syndrome-coronavirus2 (SARS-CoV-2) have been recognized. Increased mutational rate and formation of new viral variants may increase the attrition rate of vaccines and/or candidate chemotherapies. Herbal remedies are chemical cocktails, thus open another avenue for effective antiviral therapeutics development. In fact, India is a large country, which is densely populated, but the overall severity of COVID-19 per million populations is lesser than any other country of the world. One of the major reasons for the aforesaid difference is the use of herbal remedies by the Government of India as a preventive measure for COVID-19. Therefore, the present review focuses on the epidemiology and molecular pathogenesis of COVID-19 and explores algal metabolites for their antiviral properties.
Collapse
Affiliation(s)
- Rimjhim Sangtani
- Discipline of Biosciences and Biomedical EngineeringIndian Institute of TechnologyIndoreIndia
| | - Atreyee Ghosh
- Discipline of Biosciences and Biomedical EngineeringIndian Institute of TechnologyIndoreIndia
| | - Hem C. Jha
- Discipline of Biosciences and Biomedical EngineeringIndian Institute of TechnologyIndoreIndia
| | | | - Kiran Bala
- Discipline of Biosciences and Biomedical EngineeringIndian Institute of TechnologyIndoreIndia
| |
Collapse
|
13
|
Salarbashi D, Jahanbin K, Tafaghodi M, Fahmideh‐Rad E. Prunus armeniaca gum exudates: An overview on purification, structure, physicochemical properties, and applications. Food Sci Nutr 2021; 9:1240-1255. [PMID: 33598208 PMCID: PMC7866599 DOI: 10.1002/fsn3.2107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
Prunus armeniaca gum exudate (PAGE) is obtained from the trunk branches of apricot trees. PAGE is a high-molecular-weight polysaccharide with arabinogalactan structure. The physicochemical and rheological characteristics of this gum have been investigated in various researches. PAGE offers a good potential for use as an emulsifying, binding, and stabilizing agent in food and pharmaceutical industries. It also can be used as an organic additive in tissue culture media, synthesizing of metallic nanoparticles, binding potential in tablets, antioxidant agent, and corrosion inhibitor. For desirable emulsifying, stabilizing, shelf life-enhancing properties, and antioxidant activity of PAGE, it can be used as additive in many foods. We present here a comprehensive review on the existing literatures on characterization of this source of polysaccharide to explore its potential applications in various systems.
Collapse
Affiliation(s)
- Davoud Salarbashi
- Nanomedicine Research CenterGonabad University of Medical SciencesGonabadIran
- Department of Food science and NutritionSchool of MedicineGonabad University of Medical SciencesGonabadIran
| | - Kambiz Jahanbin
- Department of Food Science and TechnologyFaculty of AgricultureShahrood University of TechnologyShahroodIran
| | - Mohsen Tafaghodi
- Nanotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutics DepartmentSchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Elham Fahmideh‐Rad
- Applied Sciences Department, Applied Chemistry SectionHigher College of Technology (HCT)MuscatSultanate of Oman
| |
Collapse
|
14
|
Biris-Dorhoi ES, Michiu D, Pop CR, Rotar AM, Tofana M, Pop OL, Socaci SA, Farcas AC. Macroalgae-A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients 2020; 12:E3085. [PMID: 33050561 PMCID: PMC7601163 DOI: 10.3390/nu12103085] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Nowadays, one of the most important research directions that concerns the scientific world is to exploit the earth's resources in a sustainable way. Considering the increasing interest in finding new sources of bioactive molecules and functional products, many research studies focused their interest on demonstrating the sustainability of exploiting marine macroalgal biomass as feedstock for wastewater treatment and natural fertilizer, conversion into green biofuels, active ingredients in pharmaceutical and nutraceutical products, or even for the production of functional ingredients and integration in the human food chain. The objective of the present paper was to provide an overview on the recent progress in the exploitation of different macroalgae species as a source of bioactive compounds, mainly emphasizing the latter published data regarding their potential bioactivities, health benefits, and industrial applications.
Collapse
Affiliation(s)
- Elena-Suzana Biris-Dorhoi
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Delia Michiu
- Department of Food Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania;
| | - Carmen R. Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Ancuta M. Rotar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Maria Tofana
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Oana L. Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Sonia A. Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Anca C. Farcas
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| |
Collapse
|
15
|
Yu G, Chen Y, Bao Q, Jiang Z, Zhu Y, Ni H, Li Q, Oda T. A low-molecular-weight ascophyllan prepared from Ascophyllum nodosum: Optimization, analysis and biological activities. Int J Biol Macromol 2020; 153:107-117. [PMID: 32135255 DOI: 10.1016/j.ijbiomac.2020.02.334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 01/04/2023]
Abstract
In this study, a low-molecular-weight saccharide fragment (LMWAs-L) was prepared from alginate lyase (EC 4.2.2.3) hydrolyzed ascophyllan by ultra-filtration separation method. LMWAs-L was a homogeneous saccharide fraction with an average molecular weight of 6.96 kDa. Enzymolysis process optimization experiments revealed that the optimum process parameters for preparing LMWAs-L were the enzyme concentration 0.02 U/mL, initial pH 6.8, and enzymolysis temperature 43 °C. After optimization, the yield of LMWAs-L was increased to 9.74% higher than that without optimization. Interestingly, LMWAs-L exhibited stronger enhancing activities on the proliferation and migration of human skin fibroblasts cells in vitro and better antibacterial activities as compared to native ascophyllan at the same mass concentration. Our study establishes a simple way to prepare low-molecular-weight saccharide with beneficial bioactivities from ascophyllan efficiently. This is the first report to reveal that ascophyllan and its low-molecular-weight saccharide have the potentials to be developed as natural biological dressing and antibacterial agents.
Collapse
Affiliation(s)
- Gang Yu
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Yanhong Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China.; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Qingyun Bao
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China.; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Yanbing Zhu
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China.; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China.; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Qingbiao Li
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Key Laboratory of Systemic Utilization and In-depth Processing of Economic Seaweed, Xiamen Southern Ocean Research Center, Xiamen 361021, China.; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Tatsuya Oda
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
16
|
Yang J, Cao MX, Hu WY, Wei YY, Hu TJ. Sophorasubprosrate polysaccharide suppress the inflammatory reaction of RAW264.7 cells infected with PCV2 via regulation NF-κB/MAPKs/c-Jun signal pathway and histone acetylation modification. Int J Biol Macromol 2020; 159:957-965. [PMID: 32442564 DOI: 10.1016/j.ijbiomac.2020.05.128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to investigate the regulation of Sophorasubprosrate polysaccharide (SSP) on inflammatory response and histone acetylation modification of RAW264.7 cells (mouse mononuclear macrophage cell line) infected with porcine circovirus type 2 (PCV2). We further explored the role of inflammatory response and histone acetylation modification on the basis of the original study. The results showed that SSP decreased the secretion levels of TNF-α and IL-6 and the intracellular iNOS, COX-2 enzyme activities and their mRNA expression levels in PCV2 infected RAW264.7 cells, but increased the level of IL-10 secretion and its mRNA expression. SSP inhibited the phosphorylation levels of proteins of p65, ERK1/2, p38 and c-Jun in RAW264.7 cells infected with PCV2. The activities of HAT and HDAC enzymes and the mRNA expression levels of HAT1 and HDAC1 were increased when the PCV2-infected RAW264.7 cells were treated by SSP. Meanwhile, the expression of acetylation modification of histones both H3 and H4 was obviously inhibited. In conclusion, SSP may reduce the acetylation levels of both H3 and H4 and activate NF-κB/MAPKs/c-Jun signaling pathway by increasing the activity of HADC enzyme and the expression of HDAC mRNA, further inhibiting inflammatory response by regulating the gene expression levels of inflammatory factors. The findings indicated that the molecular mechanism of how traditional Chinese medicine polysaccharide regulates inflammatory signal pathways and inflammatory factors by regulating histone acetylation.
Collapse
Affiliation(s)
- Jian Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China; School of Life Sciences, Longyan University, Longyan 364000, PR China; Fujian Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Longyan University, Longyan 364000, PR China
| | - Mi-Xia Cao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Wen-Yue Hu
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Ying-Yi Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Ting-Jun Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
17
|
Huang LH, Liu H, Chen JY, Sun XY, Yao ZH, Han J, Ouyang JM. Seaweed Porphyra yezoensis polysaccharides with different molecular weights inhibit hydroxyapatite damage and osteoblast differentiation of A7R5 cells. Food Funct 2020; 11:3393-3409. [PMID: 32232300 DOI: 10.1039/c9fo01732a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular calcification (VC) is a common pathological manifestation in patients with cardiovascular diseases, leading to high mortality in patients with chronic kidney diseases. The deposition of hydroxyapatite (HAP) crystals on vascular smooth muscle cells leads to cell damage, which promotes osteogenic transformation. In this study, four different molecular weights (MWs ) of Porphyra yezoensis polysaccharides (PYP1, PYP2, PYP3, and PYP4 with MWs of 576, 49.5, 12.6, and 4.02 kDa, respectively) were used to coat HAP, and the differences in toxicity and calcification of HAP on A7R5 cells before and after coating were studied. The results showed that PYPs could effectively reduce HAP damage to the A7R5 cells. Under the protection of PYPs, cell viability increased and lactate dehydrogenase release, active oxygen level, and cell necrosis rate decreased; also, the amount of the HAP crystals adhering to cell surfaces and entering cells decreased. PYPs with low molecular weights presented better protective effects than high-molecular-weight PYPs. PYPs also inhibited the osteogenic transformation of the A7R5 cells induced by HAP and decreased alkaline phosphatase (ALP) activity and expressions of bone/chondrocyte phenotype genes (runt-related factor 2, ALP, osteopontin, and osteocalcin). In the adenine-induced chronic renal failure (CRF) mouse VC model, PYP4 was found to obviously inhibit the aortic calcium level, and it also inhibited the serum creatinine, serum phosphorus and serum BUN levels. PYP4 (least molecular weight) showed the best inhibitory effect on calcification and may be considered as a candidate drug with therapeutic potential for inhibiting cellular damage and osteoblast differentiation induced by the HAP crystals.
Collapse
Affiliation(s)
- Ling-Hong Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Wang G, Luo A, Fan Y, Chun Z, Pu S, Pan Y, Ma J, Miao R. Isolation, structural characteristics, and in vitro and in vivo antioxidant activity of the acid polysaccharide isolated from Pholiota nameko. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_109_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Zeng A, Yang R, Yu S, Zhao W. A novel hypoglycemic agent: polysaccharides from laver (Porphyra spp.). Food Funct 2020; 11:9048-9056. [DOI: 10.1039/d0fo01195a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The laver crude polysaccharides were extracted, purified, and subsequently degraded using H2O2. One low-molecular-weight polysaccharide PD-1 showing the highest inhibition activity against α-amylase might be used as a novel agent for T2DM management.
Collapse
Affiliation(s)
- Aoqiong Zeng
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P.R. China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P.R. China
| | - Shuhuai Yu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P.R. China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P.R. China
| |
Collapse
|
20
|
Lin L, Yang J, Yang Y, Zhi H, Hu X, Chai D, Liu Y, Shen X, Wang J, Song Y, Zeng A, Li X, Feng H. Phosphorylation of Radix Cyathula officinalis polysaccharide improves its immune-enhancing activity. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1700996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lang Lin
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Jie Yang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Yan Yang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Hui Zhi
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Xin Hu
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Dongkun Chai
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Yunjie Liu
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Xiaojun Shen
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Jie Wang
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Yunqi Song
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Aimei Zeng
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Xinyu Li
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| | - Haibo Feng
- Department of Veterinary Medicine, College of Animal Science, Southwest University, Rongchang, People’s Republic of China
| |
Collapse
|
21
|
Wittine K, Saftić L, Peršurić Ž, Kraljević Pavelić S. Novel Antiretroviral Structures from Marine Organisms. Molecules 2019; 24:molecules24193486. [PMID: 31561445 PMCID: PMC6804230 DOI: 10.3390/molecules24193486] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 11/24/2022] Open
Abstract
In spite of significant advancements and success in antiretroviral therapies directed against HIV infection, there is no cure for HIV, which scan persist in a human body in its latent form and become reactivated under favorable conditions. Therefore, novel antiretroviral drugs with different modes of actions are still a major focus for researchers. In particular, novel lead structures are being sought from natural sources. So far, a number of compounds from marine organisms have been identified as promising therapeutics for HIV infection. Therefore, in this paper, we provide an overview of marine natural products that were first identified in the period between 2013 and 2018 that could be potentially used, or further optimized, as novel antiretroviral agents. This pipeline includes the systematization of antiretroviral activities for several categories of marine structures including chitosan and its derivatives, sulfated polysaccharides, lectins, bromotyrosine derivatives, peptides, alkaloids, diterpenes, phlorotannins, and xanthones as well as adjuvants to the HAART therapy such as fish oil. We critically discuss the structures and activities of the most promising new marine anti-HIV compounds.
Collapse
Affiliation(s)
- Karlo Wittine
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Lara Saftić
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| | - Željka Peršurić
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Sandra Kraljević Pavelić
- University of Rijeka, Department of Biotechnology, Centre for high-throughput technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| |
Collapse
|
22
|
Chai Y, Kan L, Zhao M. Enzymatic extraction optimization, anti-HBV and antioxidant activities of polysaccharides from Viscum coloratum (Kom.) Nakai. Int J Biol Macromol 2019; 134:588-594. [DOI: 10.1016/j.ijbiomac.2019.04.173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
|