1
|
Tan L, Fan Y, Xu X, Zhang T, Cao X, Zhang C, Liang J, Hou Y, Dou H. WIF-1 contributes to lupus-induced neuropsychological deficits via the CRYAB/STAT4-SHH axis. Arthritis Res Ther 2024; 26:183. [PMID: 39444000 PMCID: PMC11515771 DOI: 10.1186/s13075-024-03420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Neuropsychiatric systemic lupus erythematosus (NPSLE) often manifests as cognitive deterioration, with activated microglia and blood-brain barrier (BBB) disruption implicated in these neurological complications. Wnt-inhibitory factor-1 (WIF-1), a secreted protein, has been detected in the cerebrospinal fluid (CSF) of NPSLE patients. However, the contribution of WIF-1 in contributing to lupus cognitive impairment remains poorly understood. METHODS Using MRL/MpJ-Faslpr (MRL/lpr) lupus-prone mice and TLR7 agonist imiquimod (IMQ)-induced lupus mice, recombinant WIF-1 protein (rWIF-1) and adeno-associated virus (AAV) encoding sh-WIF-1 were administered via intracerebroventricular injection. Behavioral tests, histopathological examinations, flow cytometry, and molecular biology techniques were employed to investigate the underlying mechanisms. RESULTS Microinjection of rWIF-1 exacerbated cognitive deficits and mood abnormalities, increased BBB leakage and neuronal degeneration, and caused aberrant activation of microglia and synaptic pruning in the hippocampus. Conversely, lupus mice injected with AAV-shWIF-1 exhibited significant remission. In vitro, rWIF-1 induced overactivation of microglia with an increased CD86+ pro-inflammatory subpopulation, upregulated phagocytic activity, and excessive synaptic engulfment, contributing to increased BBB permeability. Furthermore, WIF-1 exerted its biological effects through the CRYAB/STAT4 pathway, transcriptionally decreasing SHH production. We also identified that symmetric dimethylarginine (SDMA) could alleviate rWIF-1-induced microglial activation and BBB damage, thereby restoring SHH levels. CONCLUSIONS In conclusion, WIF-1 exacerbates lupus-induced cognitive dysfunction in mice by triggering aberrant microglial activation and BBB disruption through the CRYAB/STAT4-SHH axis, highlighting the potential therapeutic effects of SDMA for the treatment of NPSLE.
Collapse
Affiliation(s)
- Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China
| | - Yu Fan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China
| | - Xinyi Xu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Tianshu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China
| | - Xiangyu Cao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China
| | - Chenghao Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China.
| |
Collapse
|
2
|
Chmielarz M, Bromke MA, Olbromski M, Środa-Pomianek K, Frej-Mądrzak M, Dzięgiel P, Sobieszczańska B. Lipidomics Analysis of Human HMC3 Microglial Cells in an In Vitro Model of Metabolic Syndrome. Biomolecules 2024; 14:1238. [PMID: 39456170 PMCID: PMC11506612 DOI: 10.3390/biom14101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic endotoxemia (ME) is associated with bacterial lipopolysaccharide (LPS, endotoxin) and increased levels of saturated fatty acids (SFAs) in the bloodstream, causing systemic inflammation. ME usually accompanies obesity and a diet rich in fats, especially SFAs. Numerous studies confirm the effect of ME-related endotoxin on microglial activation. Our study aimed to assess lipid metabolism and immune response in microglia pre-stimulated with TNFα (Tumor Necrosis Factor α) and then with endotoxin and palmitic acid (PA). Using ELISA, we determined cytokines IL-1β, IL-10, IL-13 (interleukin-1β, -10, -13, and TGFβ (Transforming Growth Factor β) in the culture medium from microglial cells stimulated for 24 h with TNFα and then treated with LPS (10 ng/mL) and PA (200 µM) for 24 h. HMC3 (Human Microglial Cells clone 3) cells produced negligible amounts of IL-1β, IL-10, and IL-13 after stimulation but secreted moderate levels of TGFβ. Changes in lipid metabolism accompanied changes in TREM2 (Triggering Receptor Expressed on Myeloid Cells 2) expression. HMC3 stimulation with endotoxin increased TREM2 expression, while PA treatment decreased it. Endotoxin increased ceramide levels, while PA increased triglyceride levels. These results indicated that pre-stimulation of microglia with TNFα significantly affects its interactions with LPS and PA and modulates lipid metabolism, which may lead to microglial activation silencing and neurodegeneration.
Collapse
Affiliation(s)
- Mateusz Chmielarz
- Department of Clinical Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (M.C.); (M.F.-M.)
| | - Mariusz Aleksander Bromke
- Department of Biochemistry and Immunochemistry, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland;
| | - Mateusz Olbromski
- Department of Human Morphology and Embryology, Faculty of Medicine, Division of Histology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wrocław, Poland; (M.O.); (P.D.)
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 3a, 50-368 Wroclaw, Poland;
| | - Magdalena Frej-Mądrzak
- Department of Clinical Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (M.C.); (M.F.-M.)
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Faculty of Medicine, Division of Histology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wrocław, Poland; (M.O.); (P.D.)
| | - Beata Sobieszczańska
- Department of Clinical Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (M.C.); (M.F.-M.)
| |
Collapse
|
3
|
Nian Z, Mao Y, Xu Z, Deng M, Xu Y, Xu H, Chen R, Xu Y, Huang N, Mao F, Xu C, Wang Y, Niu M, Chen A, Xue X, Zhang H, Guo G. Multi-omics analysis uncovered systemic lupus erythematosus and COVID-19 crosstalk. Mol Med 2024; 30:81. [PMID: 38862942 PMCID: PMC11167821 DOI: 10.1186/s10020-024-00851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Studies have highlighted a possible crosstalk between the pathogeneses of COVID-19 and systemic lupus erythematosus (SLE); however, the interactive mechanisms remain unclear. We aimed to elucidate the impact of COVID-19 on SLE using clinical information and the underlying mechanisms of both diseases. METHODS RNA-seq datasets were used to identify shared hub gene signatures between COVID-19 and SLE, while genome-wide association study datasets were used to delineate the interaction mechanisms of the key signaling pathways. Finally, single-cell RNA-seq datasets were used to determine the primary target cells expressing the shared hub genes and key signaling pathways. RESULTS COVID-19 may affect patients with SLE through hematologic involvement and exacerbated inflammatory responses. We identified 14 shared hub genes between COVID-19 and SLE that were significantly associated with interferon (IFN)-I/II. We also screened and obtained four core transcription factors related to these hub genes, confirming the regulatory role of the IFN-I/II-mediated Janus kinase/signal transducers and activators of transcription (JAK-STAT) signaling pathway on these hub genes. Further, SLE and COVID-19 can interact via IFN-I/II and IFN-I/II receptors, promoting the levels of monokines, including interleukin (IL)-6/10, tumor necrosis factor-α, and IFN-γ, and elevating the incidence rate and risk of cytokine release syndrome. Therefore, in SLE and COVID-19, both hub genes and core TFs are enriched within monocytes/macrophages. CONCLUSIONS The interaction between SLE and COVID-19 promotes the activation of the IFN-I/II-triggered JAK-STAT signaling pathway in monocytes/macrophages. These findings provide a new direction and rationale for diagnosing and treating patients with SLE-COVID-19 comorbidity.
Collapse
Affiliation(s)
- Zekai Nian
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yicheng Mao
- Ophthalmology College, Wenzhou Medical University, Wenzhou, China
| | - Zexia Xu
- Department of Nephrology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ming Deng
- Public Health and Management College, Wenzhou Medical University, Wenzhou, China
| | - Yixi Xu
- School of Public Administration, Hangzhou Normal University, Hangzhou, China
| | - Hanlu Xu
- Ophthalmology College, Wenzhou Medical University, Wenzhou, China
| | - Ruoyao Chen
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yiliu Xu
- Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, China
| | - Nan Huang
- Public Health and Management College, Wenzhou Medical University, Wenzhou, China
| | - Feiyang Mao
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Chenyu Xu
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yulin Wang
- Public Health and Management College, Wenzhou Medical University, Wenzhou, China
| | - Mengyuan Niu
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Aqiong Chen
- Department of Rheumatology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Huidi Zhang
- Department of Nephrology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-Related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Fallahi S, Zangbar HS, Farajdokht F, Rahbarghazi R, Ghiasi F, Mohaddes G. Mesenchymal stem cell-derived exosomes improve neurogenesis and cognitive function of mice with methamphetamine addiction: A novel treatment approach. CNS Neurosci Ther 2024; 30:e14719. [PMID: 38783536 PMCID: PMC11116483 DOI: 10.1111/cns.14719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Methamphetamine (METH) is a psychostimulant substance with highly addictive and neurotoxic effects, but no ideal treatment option exists to improve METH-induced neurocognitive deficits. Recently, mesenchymal stem cells (MSCs)-derived exosomes have raised many hopes for treating neurodegenerative sequela of brain disorders. This study aimed to determine the therapeutic potential of MSCs-derived exosomes on cognitive function and neurogenesis of METH-addicted rodents. METHODS Male BALB/c mice were subjected to chronic METH addiction, followed by intravenous administration of bone marrow MSCs-derived exosomes. Then, the spatial memory and recognition memory of animals were assessed by the Barnes maze and the novel object recognition test (NORT). The neurogenesis-related factors, including NeuN and DCX, and the expression of Iba-1, a microglial activation marker, were assessed in the hippocampus by immunofluorescence staining. Also, the expression of inflammatory cytokines, including TNF-α and NF-κB, were evaluated by western blotting. RESULTS The results showed that BMSCs-exosomes improved the time spent in the target quadrant and correct-to-wrong relative time in the Barnes maze. Also, NORT's discrimination index (DI) and recognition index (RI) were improved following exosome therapy. Additionally, exosome therapy significantly increased the expression of NeuN and DCX in the hippocampus while decreasing the expression of inflammatory cytokines, including TNF-α and NF-κB. Besides, BMSC-exosomes down-regulated the expression of Iba-1. CONCLUSION Our findings indicate that BMSC-exosomes mitigated METH-caused cognitive dysfunction by improving neurogenesis and inhibiting neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Solmaz Fallahi
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Fereshteh Farajdokht
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
- Neurosciences Research CenterTabriz University of Medical SciencesTabrizIran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Fariba Ghiasi
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
| | - Gisou Mohaddes
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Department of PhysiologyTabriz University of Medical SciencesTabrizIran
- Department of Neuroscience and Cognition, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
- Department of Biomedical EducationCalifornia Health Sciences University, College of Osteopathic MedicineClovisCaliforniaUSA
| |
Collapse
|
5
|
Lv H, Yu X, Wang P, Luo M, Luo Y, Lu H, Wang K, Xi A, Wen C, Xu Z. Locus coeruleus tyrosine hydroxylase positive neurons mediated the peripheral and central therapeutic effects of transcutaneous auricular vagus nerve stimulation (taVNS) in MRL/lpr mice. Brain Stimul 2024; 17:49-64. [PMID: 38145753 DOI: 10.1016/j.brs.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023] Open
Abstract
OBJECTIVE This study aims to investigate the effects of transcutaneous auricular vagus nerve stimulation (taVNS) on the development of systemic lupus erythematosus (SLE) in MRL/lpr mice. METHODS MRL/lpr mice were treated with taVNS for ten weeks. Locus coeruleus (LC) tyrosine hydroxylase positive (TH+) neurons were selectively lesioned by stereotactic injection of 6-hydroxydopamine (6-OHDA) or selectively activated by chemogenetic methods. Sympathetic denervation was conducted by intraperitoneal injection of 6-OHDA. RESULTS TaVNS activated the TH + neurons in LC. TaVNS produced central therapeutic effects by reducing the number of hippocampal microglia, and increasing the number of surviving LC TH+ neurons in MRL/lpr mice. TaVNS also retarded the development of lymphadenectasis and splenomegaly, decreased the proportion of double-negative T (DNT) cells, and alleviated nephritis in MRL/lpr mice. The lesion of LC TH+ neurons eliminated both these central and peripheral therapeutic effects of taVNS, while chemogenetic activation of LC TH+ neurons mimicked most central and peripheral protective effects of taVNS in MRL/lpr mice. Furthermore, taVNS regulated the autonomic nervous system in MRL/lpr mice. CONCLUSION This study provides direct evidence that taVNS can retard the development of peripheral and central symptoms of SLE, which is mediated by the LC TH+ neurons.
Collapse
Affiliation(s)
- Hongjie Lv
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiu Yu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ping Wang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mengxian Luo
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yijun Luo
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haimei Lu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Keer Wang
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Anran Xi
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chengping Wen
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Zhenghao Xu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Tang YY, Wang DC, Chen YY, Xu WD, Huang AF. Th1-related transcription factors and cytokines in systemic lupus erythematosus. Front Immunol 2023; 14:1305590. [PMID: 38164134 PMCID: PMC10757975 DOI: 10.3389/fimmu.2023.1305590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory disorder related to immunity dysfunction. The Th1 cell family including Th1 cells, transcription factor T-bet, and related cytokines IFNγ, TNFα, IL-2, IL-18, TGF-β, and IL-12 have been widely discussed in autoimmunity, such as SLE. In this review, we will comprehensively discuss the expression profile of the Th1 cell family in both SLE patients and animal models and clarify how the family members are involved in lupus development. Interestingly, T-bet-related age-associated B cells (ABCs) and low-dose IL-2 treatment in lupus were emergently discussed as well. Collection of the evidence will better understand the roles of the Th1 cell family in lupus pathogenesis, especially targeting IL-2 in lupus.
Collapse
Affiliation(s)
- Yang-Yang Tang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Da-Cheng Wang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - You-Yue Chen
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Sun Z, Wang Y, Pang X, Wang X, Zeng H. Mechanisms of polydatin against spinal cord ischemia-reperfusion injury based on network pharmacology, molecular docking and molecular dynamics simulation. Bioorg Chem 2023; 140:106840. [PMID: 37683540 DOI: 10.1016/j.bioorg.2023.106840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Polydatin has shown considerable pharmacological activities in ischemia-reperfusion injuries of various organs. However, its effects and mechanisms in spinal cord ischemia-reperfusion injury have not been fully established. In this study, the mechanisms of polydatin against spinal cord ischemia-reperfusion injury were investigated via network pharmacology, molecular docking and molecular dynamics simulation. METHODS Spinal cord ischemia-reperfusion injury-related targets were obtained from the GeneCards database, while polydatin-related action targets were obtained from the CTD and SwissTarget databases. A protein-protein interaction network of potential targets was constructed using the String platform. After selecting the potential key targets, GO functional enrichment and KEGG pathway enrichment analyses were performed via the Metascape database, and a network map of "drug-target-pathway-disease" constructed. The relationships between polydatin and various key targets were assessed via molecular docking. Molecular dynamics simulation was conducted for optimal core protein-compound complexes obtained by molecular docking. RESULTS Topological analysis of the PPI network revealed 14 core targets. GO functional enrichment analysis revealed that 435 biological processes, 12 cell components and 29 molecular functions were enriched while KEGG pathway enrichment analysis revealed 91 enriched signaling pathways. Molecular docking showed that polydatin had the highest binding affinity for MAPK3, suggesting that MAPK3 is a key target of polydatin against spinal cord ischemia-reperfusion injury. Molecular dynamics simulations revealed good binding abilities between polydatin and MAPK3. CONCLUSIONS Polydatin exerts its effects on spinal cord ischemia-reperfusion injury through multiple targets and pathways. MAPK3 may be a key target of polydatin in spinal cord ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhicheng Sun
- Department of Spinal Surgery, Xiangya Hospital of Central South University, Changsha, PR China.
| | - Yuanqing Wang
- School of Life Science and Technology, Central South University of Forestry and Technology, Changsha, PR China.
| | - Xiaoyang Pang
- Department of Spinal Surgery, Xiangya Hospital of Central South University, Changsha, PR China.
| | - Xiyang Wang
- Department of Spinal Surgery, Xiangya Hospital of Central South University, Changsha, PR China.
| | - Hao Zeng
- Department of Spine and Osteopathy Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China; Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, PR China.
| |
Collapse
|
8
|
Zhao Y, Jia N, Xie X, Chen Q, Hu T. Whole Transcriptome Analysis of Intervention Effect of Sophora subprostrate Polysaccharide on Inflammation in PCV2 Infected Murine Splenic Lymphocytes. Curr Issues Mol Biol 2023; 45:6067-6084. [PMID: 37504299 PMCID: PMC10377888 DOI: 10.3390/cimb45070383] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
(1) Background: Sophora subprostrate, is the dried root and rhizome of Sophora tonkinensis Gagnep. Sophora subprostrate polysaccharide (SSP1) was extracted from Sophora subprostrate, which has shown good anti-inflammatory and antioxidant effects. Previous studies showed SSP1 could modulate inflammatory damage induced by porcine circovirus type 2 (PCV2) in murine splenic lymphocytes, but the specific regulatory mechanism is unclear. (2) Methods: Whole transcriptome analysis was used to characterize the differentially expressed mRNA, lncRNA, and miRNA in PCV2-infected cells and SSP1-treated infected cells. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and other analyses were used to screen for key inflammation-related differentially expressed genes. The sequencing results were verified by RT-qPCR, and western blot was used to verify the key protein in main enriched signal pathways. (3) Results: SSP1 can regulate inflammation-related gene changes induced by PCV2, and its interventional mechanism is mainly involved in the key differential miRNA including miR-7032-y, miR-328-y, and miR-484-z. These inflammation-related genes were mainly enriched in the TNF signal pathway and NF-κB signal pathway, and SSP1 could significantly inhibit the protein expression levels of p-IκB, p-p65, TNF-α, IRF1, GBP2 and p-SAMHD1 to alleviate inflammatory damage. (4) Conclusions: The mechanism of SSP1 regulating PCV2-induced murine splenic lymphocyte inflammation was explored from a whole transcriptome perspective, which provides a theoretical basis for the practical application of SSP1.
Collapse
Affiliation(s)
- Yi Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Nina Jia
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Xiaodong Xie
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Qi Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Tingjun Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
9
|
Zeng H, Zhuang Y, Li X, Yin Z, Huang X, Peng H. Exploring the potential common denominator pathogenesis of system lupus erythematosus with COVID-19 based on comprehensive bioinformatics analysis. Front Immunol 2023; 14:1179664. [PMID: 37426642 PMCID: PMC10325730 DOI: 10.3389/fimmu.2023.1179664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Objective Evidences show that there may be a link between SLE and COVID-19. The purpose of this study is to screen out the diagnostic biomarkers of systemic lupus erythematosus (SLE) with COVID-19 and explore the possible related mechanisms by the bioinformatics approach. Methods SLE and COVID-19 datasets were extracted separately from the NCBI Gene Expression Omnibus (GEO) database. The limma package in R was used to obtain the differential genes (DEGs). The protein interaction network information (PPI) and core functional modules were constructed in the STRING database using Cytoscape software. The hub genes were identified by the Cytohubba plugin, and TF-gene together with TF-miRNA regulatory networks were constructed via utilizing the Networkanalyst platform. Subsequently, we generated subject operating characteristic curves (ROC) to verify the diagnostic capabilities of these hub genes to predict the risk of SLE with COVID-19 infection. Finally, a single-sample gene set enrichment (ssGSEA) algorithm was used to analyze immune cell infiltration. Results A total of 6 common hub genes (CDC6, PLCG1, KIF15, LCK, CDC25C, and RASGRP1) were identified with high diagnostic validity. These gene functional enrichments were mainly involved in cell cycle, and inflammation-related pathways. Compared to the healthy controls, abnormal infiltration of immune cells was found in SLE and COVID-19, and the proportion of immune cells linked to the 6 hub genes. Conclusion Our research logically identified 6 candidate hub genes that could predict SLE complicated with COVID-19. This work provides a foothold for further study of potential pathogenesis in SLE and COVID-19.
Collapse
Affiliation(s)
- Huiqiong Zeng
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Futian District, Shenzhen, Guangdong, China
| | - Yu Zhuang
- Department of Rheumatology and Immunology, Huizhou Central People’s Hospital, Huizhou, Guangdong, China
| | - Xiaojuan Li
- Department of Public Health, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Zhihua Yin
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Futian District, Shenzhen, Guangdong, China
| | - Xia Huang
- Department of Xi Yuan Community Health Service Center, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Haiyan Peng
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Futian District, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Zheng F, Tan L, Zhang F, Li S, Lai Z, Xu H, Xiong Z, Dai Y. The circRNA-miRNA-mRNA regulatory network in plasma and peripheral blood mononuclear cells and the potential associations with the pathogenesis of systemic lupus erythematosus. Clin Rheumatol 2023:10.1007/s10067-023-06560-5. [PMID: 36862342 DOI: 10.1007/s10067-023-06560-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
OBJECTIVES This study aimed to explore the possible role of plasma and peripheral blood mononuclear cells (PBMCs) circular RNA (circRNA) in systemic lupus erythematosus (SLE). METHOD Total RNA was extracted from blood plasma samples obtained from 10 patients with SLE and 10 healthy controls and subjected to microarray analysis to define the profile of circRNA expression. The quantitative reverse transcription-polymerase chain reaction (qRT-PCR) amplification was conducted. The overlapped circRNA between PBMCs and plasma was performed, the interactions with microRNAs were predicted, the miRNA target mRNA was predicted, and the GEO database was used. The Gene ontology and pathway analysis was performed. RESULTS One hundred thirty-one upregulated and 314 significantly downregulated circRNAs were identified in the plasma of patients with SLE by the Fold change criteria (≥ 2.0) and P < 0.05. The qRT-PCR results showed that the expression of has-circRNA-102531, has-circRNA-103984, and has-circRNA-104262 was increased in plasma of SLE, and the expression of has-circRNA-102972, has-circRNA-102006, has-circRNA-104313 was decreased in plasma of SLE. Twenty-eight upregulated circRNAs and 119 downregulated circRNAs were overlapped from PBMCs and plasma, and ubiquitination was enriched. Furthermore, the circRNA-miRNA-mRNA network was constructed in SLE after analyzing dataset GSE61635 from GEO. The circRNA-miRNA-mRNA network comprises 54 circRNAs, 41 miRNAs, and 580 mRNAs. In addition, the TNF signaling pathway and the MAPK pathway were enriched from the mRNA of the miRNA target. CONCLUSION We first revealed the differentially expressed circRNAs in plasma and PBMCs, and then the circRNA-miRNA-mRNA network was constructed. The network's circRNAs could be a potential diagnostic biomarker and potentially play an important role in the pathogenesis and development of SLE. Key Points • This study analyzed the circRNAs expression profiles combined with the plasma and PBMCs, which provided a comprehensive overview of circRNAs expression patterns in SLE. • The network of the circRNA-miRNA-mRNA in SLE was constructed, which contributes to a better understanding of the pathogenesis and development of SLE.
Collapse
Affiliation(s)
- Fengping Zheng
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Lishan Tan
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Fan Zhang
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Sanmu Li
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Zhiwei Lai
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Huixuan Xu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Zuying Xiong
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China.
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China.
| |
Collapse
|
11
|
Yun Y, Wang X, Xu J, Jin C, Chen J, Wang X, Wang J, Qin L, Yang P. Pristane induced lupus mice as a model for neuropsychiatric lupus (NPSLE). BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:3. [PMID: 36765366 PMCID: PMC9921421 DOI: 10.1186/s12993-023-00205-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/13/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND The pristane-induced lupus (PIL) model is a useful tool for studying environmental-related systemic lupus erythematosus (SLE). However, neuropsychiatric manifestations in this model have not been investigated in detail. Because neuropsychiatric lupus (NPSLE) is an important complication of SLE, we investigated the neuropsychiatric symptoms in the PIL mouse model to evaluate its suitability for NPSLE studies. RESULTS PIL mice showed olfactory dysfunction accompanied by an anxiety- and depression-like phenotype at month 2 or 4 after pristane injection. The levels of cytokines (IL-1β, IFN-α, IFN-β, IL-10, IFN-γ, IL-6, TNF-α and IL-17A) and chemokines (CCL2 and CXCL10) in the brain and blood-brain barrier (BBB) permeability increased significantly from week 2 or month 1, and persisted throughout the observed course of the disease. Notably, IgG deposition in the choroid plexus and lateral ventricle wall were observed at month 1 and both astrocytes and microglia were activated. Persistent activation of astrocytes was detected throughout the observed course of the disease, while microglial activation diminished dramatically at month 4. Lipofuscin deposition, a sign of neuronal damage, was detected in cortical and hippocampal neurons from month 4 to 8. CONCLUSION PIL mice exhibit a series of characteristic behavioral deficits and pathological changes in the brain, and therefore might be suitable for investigating disease pathogenesis and for evaluating potential therapeutic targets for environmental-related NPSLE.
Collapse
Affiliation(s)
- Yang Yun
- grid.412467.20000 0004 1806 3501Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuejiao Wang
- grid.412449.e0000 0000 9678 1884Department of Physiology, China Medical University, Shenyang, China
| | - Jingyi Xu
- grid.412636.40000 0004 1757 9485Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Chenye Jin
- grid.412636.40000 0004 1757 9485Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jingyu Chen
- grid.412449.e0000 0000 9678 1884Department of Physiology, China Medical University, Shenyang, China
| | - Xueru Wang
- grid.412449.e0000 0000 9678 1884Department of Physiology, China Medical University, Shenyang, China
| | - Jianing Wang
- grid.412636.40000 0004 1757 9485Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Ling Qin
- Department of Physiology, China Medical University, Shenyang, China.
| | - Pingting Yang
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
12
|
Noh SG, Jung HJ, Kim S, Arulkumar R, Chung KW, Park D, Choi YJ, Chung HY. Sex-Mediated Differences in TNF Signaling- and ECM-Related Gene Expression in Aged Rat Kidney. Biol Pharm Bull 2023; 46:552-562. [PMID: 37005299 DOI: 10.1248/bpb.b22-00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Aging leads to the functional decline of an organism, which is associated with age and sex. To understand the functional change of kidneys depending on age and sex, we carried out a transcriptome analysis using RNA sequencing (RNA-Seq) data from rat kidneys. Four differentially expressed gene (DEG) sets were generated according to age and sex, and Gene Ontology analysis and overlapping analysis of Kyoto Encyclopedia of Genes and Genomes pathways were performed for the DEG sets. Through the analysis, we revealed that inflammation- and extracellular matrix (ECM)-related genes and pathways were upregulated in both males and females during aging, which was more prominent in old males than in old females. Furthermore, quantitative real-time PCR analysis confirmed that the expression of tumor necrosis factor (TNF) signaling-related genes, Birc3, Socs3, and Tnfrsf1b, and ECM-related genes, Cd44, Col3a1, and Col5a2, which showed that the genes were markedly upregulated in males and not females during aging. Also, hematoxylin-eosin (H&E) staining for histological analysis showed that renal damage was highly shown in old males rather than old females. In conclusion, in the rat kidney, the genes involved in TNF signaling and ECM accumulation are upregulated in males more than in females during aging. These results suggest that the upregulation of the genes may have a higher contribution to age-related kidney inflammation and fibrosis in males than in females.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University
- Department of Pharmacy, College of Pharmacy, Pusan National University
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University
| | - Seungwoo Kim
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University
- Department of Pharmacy, College of Pharmacy, Pusan National University
| | - Radha Arulkumar
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University
- Department of Pharmacy, College of Pharmacy, Pusan National University
| | - Ki Wung Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology
| | - Yeon Ja Choi
- Department of Biopharmaceutical Engineering, College of Science and Technology, Dongguk University
| | - Hae Young Chung
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University
- Department of Pharmacy, College of Pharmacy, Pusan National University
| |
Collapse
|
13
|
Li W, Kan H, Zhang W, Zhong Y, Liao W, Huang G, Wu P. Mendelian randomization study on the causal effects of systemic lupus erythematosus on major depressive disorder. J Hum Genet 2023; 68:11-16. [PMID: 36316471 DOI: 10.1038/s10038-022-01080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/06/2022]
Abstract
The vast majority of epidemiological studies suggested a link between systemic lupus erythematosus (SLE) and major depressive disorder (MDD). However, the causality for SLE on the risk of MDD remained unknown due to confounding factors or reverse causality. Herein, we investigated the causality between SLE and MDD in those of European ancestry by a Mendelian randomization (MR) approach. Summary genetic data of cases with SLE/MDD were derived from independent largest public genome-wide association study. Forty-six single nucleotide polymorphisms associated with SLE were used as instrumental variables. The main causal inference was carried out using the MRE-IVW method. Additional, reverse-direction MR and multivariable MR analyses were further performed. Result indicated that SLE was causally associated with a lower risk of MDD (using the MRE-IVW method, odds ratio [OR] = 0.983, 95% confidence interval [CI] = 0.974-0.991, p = 1.18 × 10-4). Complementary analysis found no heterogeneity or horizontal pleiotropy. Multivariate MR analysis yielded consistent results (OR = 0.981; 95% CI = 0.969-0.993; p = 2.75 × 10-3). Reverse-direction MR analysis suggested non-causal relationship of MDD on the risk of SLE (using the IVW method, OR = 0.846, 95% CI = 0.345-2.072; p = 0.714). Thus, this is the first study providing evidence of potential causal links between SLE and MDD and further related research is needed.
Collapse
Affiliation(s)
- Wenchang Li
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Hoktim Kan
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weizhe Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Yanlin Zhong
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Weiming Liao
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Guiwu Huang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.
| | - Peihui Wu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Zhou W, Zhang C, Zhuang Z, Zhang J, Zhong C. Identification of two robust subclasses of sepsis with both prognostic and therapeutic values based on machine learning analysis. Front Immunol 2022; 13:1040286. [PMID: 36505503 PMCID: PMC9732458 DOI: 10.3389/fimmu.2022.1040286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Background Sepsis is a heterogeneous syndrome with high morbidity and mortality. Optimal and effective classifications are in urgent need and to be developed. Methods and results A total of 1,936 patients (sepsis samples, n=1,692; normal samples, n=244) in 7 discovery datasets were included to conduct weighted gene co-expression network analysis (WGCNA) to filter out candidate genes related to sepsis. Then, two subtypes of sepsis were classified in the training sepsis set (n=1,692), the Adaptive and Inflammatory, using K-means clustering analysis on 90 sepsis-related features. We validated these subtypes using 617 samples in 5 independent datasets and the merged 5 sets. Cibersort method revealed the Adaptive subtype was related to high infiltration levels of T cells and natural killer (NK) cells and a better clinical outcome. Immune features were validated by single-cell RNA sequencing (scRNA-seq) analysis. The Inflammatory subtype was associated with high infiltration of macrophages and a disadvantageous prognosis. Based on functional analysis, upregulation of the Toll-like receptor signaling pathway was obtained in Inflammatory subtype and NK cell-mediated cytotoxicity and T cell receptor signaling pathway were upregulated in Adaptive group. To quantify the cluster findings, a scoring system, called, risk score, was established using four datasets (n=980) in the discovery cohorts based on least absolute shrinkage and selection operator (LASSO) and logistic regression and validated in external sets (n=760). Multivariate logistic regression analysis revealed the risk score was an independent predictor of outcomes of sepsis patients (OR [odds ratio], 2.752, 95% confidence interval [CI], 2.234-3.389, P<0.001), when adjusted by age and gender. In addition, the validation sets confirmed the performance (OR, 1.638, 95% CI, 1.309-2.048, P<0.001). Finally, nomograms demonstrated great discriminatory potential than that of risk score, age and gender (training set: AUC=0.682, 95% CI, 0.643-0.719; validation set: AUC=0.624, 95% CI, 0.576-0.664). Decision curve analysis (DCA) demonstrated that the nomograms were clinically useful and had better discriminative performance to recognize patients at high risk than the age, gender and risk score, respectively. Conclusions In-depth analysis of a comprehensive landscape of the transcriptome characteristics of sepsis might contribute to personalized treatments and prediction of clinical outcomes.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Anesthesiology, Huzhou Central Hospital, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| | - Chunyu Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Neurosurgery, Shanghai East Hospital, Nanjing Medical University, Nanjing, China
| | - Zhongwei Zhuang
- Department of Neurosurgery, Shanghai East Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China,Institute for Advanced Study, Tongji University, Shanghai, China,*Correspondence: Jing Zhang, ; Chunlong Zhong,
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China,Department of Neurosurgery, Shanghai East Hospital, Nanjing Medical University, Nanjing, China,*Correspondence: Jing Zhang, ; Chunlong Zhong,
| |
Collapse
|
15
|
Green TRF, Murphy SM, Moreno-Montano MP, Audinat E, Rowe RK. Reactive morphology of dividing microglia following kainic acid administration. Front Neurosci 2022; 16:972138. [PMID: 36248637 PMCID: PMC9556904 DOI: 10.3389/fnins.2022.972138] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The microglial response to a pathological microenvironment is hallmarked by a change in cellular morphology. Following a pathological stimulus, microglia become reactive and simultaneously divide to create daughter cells. Although a wide array of microglial morphologies has been observed, the exact functions of these distinct morphologies are unknown, as are the morphology and reactivity status of dividing microglia. In this study, we used kainic acid to trigger microglial activation and cell division. Following a cortical kainic acid injection, microglial morphology and proliferation were examined at 3 days post-injection using immunohistochemistry for ionized calcium binding adapter molecule 1 (Iba1) to stain for microglia, and KI67 as a marker of cell division. Individual microglial cells were isolated from photomicrographs and skeletal and fractal analyses were used to examine cell size and spatial complexity. We examined the morphology of microglia in both wildtype and microglia-specific tumor necrosis factor (TNF)-α knockout mice. Data were analyzed using generalized linear mixed models or a two-way ANOVA. We found that dividing microglia had a more reactive morphology (larger cell body area, longer cell perimeter, and less ramification) compared to microglia that were not dividing, regardless of microglial release of TNF-α. However, we also observed dividing microglia with a complex, more ramified morphology. Changes in microglial morphology and division were greatest near the kainic acid injection site. This study uses robust and quantitative techniques to better understand microglial cell division, morphology, and population dynamics, which are essential for the development of novel therapeutics that target microglia.
Collapse
Affiliation(s)
- Tabitha R. F. Green
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
| | - Sean M. Murphy
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
| | - Maria P. Moreno-Montano
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Etienne Audinat
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Rachel K. Rowe
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
- *Correspondence: Rachel K. Rowe,
| |
Collapse
|
16
|
Haas-Neill S, Iwashita E, Dvorkin-Gheva A, Forsythe P. Effects of Two Distinct Psychoactive Microbes, Lacticaseibacillus rhamnosus JB-1 and Limosilactobacillus reuteri 6475, on Circulating and Hippocampal mRNA in Male Mice. Int J Mol Sci 2022; 23:ijms23179653. [PMID: 36077051 PMCID: PMC9456087 DOI: 10.3390/ijms23179653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Discovery of the microbiota-gut–brain axis has led to proposed microbe-based therapeutic strategies in mental health, including the use of mood-altering bacterial species, termed psychobiotics. However, we still have limited understanding of the key signaling pathways engaged by specific organisms in modulating brain function, and evidence suggests that bacteria with broadly similar neuroactive and immunomodulatory actions can drive different behavioral outcomes. We sought to identify pathways distinguishing two psychoactive bacterial strains that seemingly engage similar gut–brain signaling pathways but have distinct effects on behaviour. We used RNAseq to identify mRNAs differentially expressed in the blood and hippocampus of mice following Lacticaseibacillus rhamnosus JB-1, and Limosilactobacillus reuteri 6475 treatment and performed Gene Set Enrichment Analysis (GSEA) to identify enrichment in pathway activity. L. rhamnosus, but not L. reuteri treatment altered several pathways in the blood and hippocampus, and the rhamnosus could be clearly distinguished based on mRNA profile. In particular, L. rhamnosus treatment modulated the activity of interferon signaling, JAK/STAT, and TNF-alpha via NF-KB pathways. Our results highlight that psychobiotics can induce complex changes in host gene expression, andin understanding these changes, we may help fine-tune selection of psychobiotics for treating mood disorders.
Collapse
Affiliation(s)
- Sandor Haas-Neill
- The Brain Body Institute, St. Joseph’s Hospital, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Eiko Iwashita
- The Brain Body Institute, St. Joseph’s Hospital, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Paul Forsythe
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 569 Heritage Medical Research Center, Edmonton, AB T6G 2S2, Canada
- Alberta Respiratory Centre, University of Alberta, Edmonton, AB T6G 1H9, Canada
- Correspondence:
| |
Collapse
|
17
|
Lu L, Liu X, Fu J, Liang J, Hou Y, Dou H. sTREM-1 promotes the phagocytic function of microglia to induce hippocampus damage via the PI3K-AKT signaling pathway. Sci Rep 2022; 12:7047. [PMID: 35487953 PMCID: PMC9054830 DOI: 10.1038/s41598-022-10973-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/15/2022] [Indexed: 12/18/2022] Open
Abstract
Soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) is a soluble form of TREM-1 released during inflammation. Elevated sTREM-1 levels have been found in neuropsychiatric systemic lupus erythematosus (NPSLE) patients; yet, the exact mechanisms remain unclear. This study investigated the role of sTREM-1 in brain damage and its underlying mechanism. The sTREM-1 recombinant protein (2.5 μg/3 μL) was injected into the lateral ventricle of C57BL/6 female mice. After intracerebroventricular (ICV) injection, the damage in hippocampal neurons increased, and the loss of neuronal synapses and activation of microglia increased compared to the control mice (treated with saline). In vitro. after sTREM-1 stimulation, the apoptosis of BV2 cells decreased, the polarization of BV2 cells shifted to the M1 phenotype, the phagocytic function of BV2 cells significantly improved, while the PI3K-AKT signal pathway was activated in vivo and in vitro. PI3K-AKT pathway inhibitor LY294002 reversed the excessive activation and phagocytosis of microglia caused by sTREM-1 in vivo and in vitro, which in turn improved the hippocampus damage. These results indicated that sTREM-1 activated the microglial by the PI3K-AKT signal pathway, and promoted its excessive phagocytosis of the neuronal synapse, thus inducing hippocampal damage. sTREM-1 might be a potential target for inducing brain lesions.
Collapse
Affiliation(s)
- Li Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Xuan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Juanhua Fu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
18
|
Koga T, Ichinose K, Tsokos GC. Tissue resident cell processes determine organ damage in systemic lupus erythematosus. Clin Immunol 2022; 234:108919. [PMID: 34974170 DOI: 10.1016/j.clim.2021.108919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects almost any organ. Multiple immunological abnormalities involving every domain of the immune system contribute to the expression of the disease. It is now recognized that elements of the immune system instigate processes in tissue resident cells which execute organ damage. Although correction of ongoing immune aberrations is important in the control of disease activity, targeting tissue specific injurious processes may prove desirable in limiting organ damage.
Collapse
Affiliation(s)
- Tomohiro Koga
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Kunihiro Ichinose
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - George C Tsokos
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Luo S, Wu R, Li Q, Zhang G. MiR-301a-3p Advances IRAK1-Mediated Differentiation of Th17 Cells to Promote the Progression of Systemic Lupus Erythematosus via Targeting PELI1. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2982924. [PMID: 34931135 PMCID: PMC8684520 DOI: 10.1155/2021/2982924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/11/2023]
Abstract
Systemic lupus erythematosus (SLE) is a common autoimmune disease with high incidence in females. The pathogenesis of SLE is complex, and healing SLE has become a serious challenge for clinical treatment. Aberrant expression of miR-301a-3p involves the progressions of multiple diseases, and some studies have indicated that increased miR-301a-3p could induce the inflammatory injury of some organs. However, the role and molecular mechanism of miR-301a-3p in SLE remain unclear. In this study, the miR-301a-3p levels in peripheral blood mononuclear cells (PBMCs) of the patients with SLE and health subjects were measured with qRT-PCR. The ELISA assay was used to investigate the effect of miR-301a-3p on the levels of inflammatory factors in PBMCs, and flow cytometry assays were used to observe the effect of miR-301a-3p on the levels of CD4+ T cells and Th17 cells in PBMCs. Moreover, TargetScan, dual-luciferase reporter assay, and western blot were used to reveal the downstream targets and regulation mechanism of miR-301a-3p in SLE. The results showed that miR-301a-3p was significantly upregulated in PBMCs of the SLE patients, and increased miR-301a-3p could boost the expression of IL-6, IL-17, and INF-γ in PBMCs and promote the differentiation of Th17 cells. It was found that PELI1 was a target of miR-301a-3p, and PELI1 upregulation could effectively reverse the effect of miR-301a-3p on PBMCs. Besides, this study also found that miR-301a-3p could promote the expression of IRAK1 to involve the progression of SLE via targeting PELI1. In conclusion, this study suggests that increased miR-301a-3p serves as a pathogenic factor in SLE to promote IRAK1-mediated differentiation of Th17 cells via targeting PELI1.
Collapse
Affiliation(s)
- Shuaihantian Luo
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Ruifang Wu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Qianwen Li
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Guiying Zhang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
20
|
Jiang L, Wei ZC, Xu LL, Yu SY, Li C. Inhibition of miR-145-5p Reduces Spinal Cord Injury-Induced Inflammatory and Oxidative Stress Responses via Affecting Nurr1-TNF-α Signaling Axis. Cell Biochem Biophys 2021; 79:791-799. [PMID: 34133012 DOI: 10.1007/s12013-021-00992-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2021] [Indexed: 01/10/2023]
Abstract
Inflammation and oxidative stress feature prominently in the secondary spinal cord injury (SCI). The present work is targeted at deciphering miR-145-5p's role and underlying mechanism in SCI. We randomly divided Sprague-Dawley rats into SCI group and control group. Microglial BV2 cells were separated into control group and lipopolysaccharide (LPS) treatment group. Enzyme-linked immunosorbent assay was carried out for determining the concentrations of interleukin-6, interleukin-1β, and tumor necrosis factor-α (TNF-α). The expressions of malondialdehyde, glutathione peroxidase, superoxide dismutase, and reactive oxygen species were also detected. TNF-α, miR-145-5p, and Nurr1 expressions were examined by western blot and quantitative real-time polymerase chain reaction. Western blotting and dual-luciferase reporter gene assay were conducted to examine the regulating impact that miR-145-5p had on Nurr1 and TNF-α. MiR-145-5p was remarkably upregulated in the SCI rat model's spinal cord tissues and BV2 cells treated with LPS, and Nurr1 expression was dramatically lowered. Furthermore, miR-145-5p inhibition markedly repressed inflammatory and oxidative stress responses. Moreover, it was proved that Nurr1 was a direct miR-145-5p target. The inhibition of miR-145-5p helped promote Nurr1 expression to block TNF-α signaling. MiR-145-5p inhibition mitigates inflammation and oxidative stress via targeting Nurr1 to regulate TNF-α signaling, which ameliorates SCI.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Neurosurgery, Rizhao Central Hospital, Rizhao, 276800, Shandong, China.
| | - Zeng-Chun Wei
- Department of Orthopedics, Rizhao Central Hospital, Rizhao, 276800, Shandong, China
| | - Li-Li Xu
- Department of ICU, Rizhao Central Hospital, Rizhao, 276800, Shandong, China
| | - Shan-Ying Yu
- Department of Rehabilitation Medicine, Rizhao Central Hospital, Rizhao, 276800, Shandong, China
| | - Chao Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
21
|
Camargo A, Dalmagro AP, Wolin IAV, Kaster MP, Rodrigues ALS. The resilient phenotype elicited by ketamine against inflammatory stressors-induced depressive-like behavior is associated with NLRP3-driven signaling pathway. J Psychiatr Res 2021; 144:118-128. [PMID: 34619490 DOI: 10.1016/j.jpsychires.2021.09.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 01/29/2023]
Abstract
Ketamine has emerged as a prophylactic agent against depressive-like behavior induced by stress. However, the possible pro-resilience effects of ketamine against inflammatory stressors-induced depressive-like behavior and the signaling pathways associated with this response remain to be determined. Therefore, this study investigated the ability of prophylactic ketamine administration to produce a pro-resilience effect against the depressive-like behavior induced by lipopolysaccharide (LPS - 0.83 mg/kg, i.p.) and tumor necrosis factor-alpha (TNF-α - 0.1 fg/site, i.c.v.) administration in mice. The possible contribution of the NLRP3 inflammasome-driven signaling pathway to this effect was evaluated in the ventral hippocampus. A single administration of ketamine (5 mg/kg, i.p.) given 1 week before the LPS or TNF-α administration prevented the depressive-like behavior induced by these inflammatory stressors in the tail suspension test (TST) and splash test (SPT). On the other hand, a lower dose of ketamine (1 mg/kg, i.p.) failed to produce a similar effect. The administration of LPS, but not TNF-α, increased the immunocontent of the microglial marker Iba-1 in the ventral hippocampus. LPS increased the immunocontent of all proteins related to NLRP3 signaling, namely ASC, NLRP3, TXNIP, cleaved caspase-1, and IL-1β in this brain region, while TNF-α only increased ASC and NLRP3 immunocontent. Ketamine administered at the dose of 5 mg/kg, but not at 1 mg/kg, prevented the increase on the immunocontent of NLRP3 inflammasome complex components and regulators induced by LPS or TNF-α administration. Collectively, these findings suggest that ketamine elicits a pro-resilient phenotype against inflammatory stressors-induced depressive-like behavior, an effect associated with the suppression of the NLRP3 inflammasome-driven signaling pathway.
Collapse
Affiliation(s)
- Anderson Camargo
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| | - Ana Paula Dalmagro
- Department of Natural Sciences, Center of Exact and Natural Sciences, Universidade Regional de Blumenau, 89030-903, Blumenau, SC, Brazil.
| | - Ingrid A V Wolin
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| | - Manuella P Kaster
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
22
|
Al-Griw MA, Salter MG, Wood IC. Inhibition of ionotropic GluR signaling preserves oligodendrocyte lineage and myelination in an ex vivo rat model of white matter ischemic injury. Acta Neurobiol Exp (Wars) 2021; 81:233-248. [PMID: 34672294 DOI: 10.21307/ane-2021-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Preterm infants have a high risk of neonatal white matter injury (WMI). WMI leads to reduced myelination, inflammation, and clinical neurodevelopmental deficits for which there are no effective treatments. Ionotropic glutamate receptor (iGluR) induced excitotoxicity contributes to oligodendrocyte (OL) lineage cell loss and demyelination in brain models of neonatal and adult WMI. Here, we hypothesized that simulated ischemia (oxygen‑glucose deprivation) damages white matter via activation of iGluR signaling, and that iGluR inhibition shortly after WMI could mitigate OL loss, enhance myelination, and suppress inflammation in an ex vivo cerebellar slice model of developing WMI. Inhibition of iGluR signaling by a combined block of AMPA and NMDA receptors, shortly after simulated ischemia, restored myelination, reduced apoptotic OLs, and enhanced OL precursor cell proliferation and maturation as well as upregulated expression of transcription factors regulating OL development and remyelination. Our findings demonstrate that iGluR inhibition post‑injury alleviates OL lineage cell loss and inflammation and promotes myelination upon developing WMI. The findings may help to develop therapeutic interventions for the WMI treatment.
Collapse
Affiliation(s)
- Mohamed A Al-Griw
- Department of Histology and Genetics, Faculty of Medicine, University of Tripoli, Tripoli, Libya;
| | | | - Ian C Wood
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
23
|
Lu L, Wang H, Liu X, Tan L, Qiao X, Ni J, Sun Y, Liang J, Hou Y, Dou H. Pyruvate kinase isoform M2 impairs cognition in systemic lupus erythematosus by promoting microglial synaptic pruning via the β-catenin signaling pathway. J Neuroinflammation 2021; 18:229. [PMID: 34645459 PMCID: PMC8513209 DOI: 10.1186/s12974-021-02279-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Neuropsychiatric systemic lupus erythematosus (NPSLE) is a severe complication, which involves pathological damage to the brain and cognitive function. However, its exact mechanism of action still remains unclear. In this study, we explored the role of microglia in the cognitive dysfunction of NPSLE mice. We also analyzed and compared the metabolites in the hippocampal tissues of the lupus model and control mice. METHODS MRL/MpJ-Faslpr (MRL/lpr) female mice were used as the NPSLE mouse model. Metabolomics was used to assess hippocampal glycolysis levels. Glucose, lactic acid, IL-6, and IL-1β of the hippocampus were detected by ELISA. Based on the glycolysis pathway, we found that pyruvate kinase isoform M2 (PKM2) in the hippocampus was significantly increased. Thus, the expression of PKM2 was detected by qRT-PCR and Western blotting, and the localization of PKM2 in microglia (IBA-1+) or neurons (NeuN+) was assessed by immunofluorescence staining. Flow cytometry was used to detect the number and phenotype of microglia; the changes in microglial phagocytosis and the β-catenin signaling pathway were detected in BV2 cells overexpressing PKM2. For in vivo experiments, MRL/lpr mice were treated with AAV9-shPKM2. After 2 months, Morris water maze and conditional fear tests were applied to investigate the cognitive ability of mice; H&E and immunofluorescence staining were used to evaluate brain damage; flow cytometry was used to detect the phenotype and function of microglia; neuronal synapse damage was monitored by qRT-PCR, Western blotting, and immunofluorescence staining. RESULTS Glycolysis was elevated in the hippocampus of MRL/lpr lupus mice, accompanied by increased glucose consumption and lactate production. Furthermore, the activation of PKM2 in hippocampal microglia was observed in lupus mice. Cell experiments showed that PKM2 facilitated microglial activation and over-activated microglial phagocytosis via the β-catenin signaling pathway. In vivo, AAV9-shPKM2-treated mice showed decreased microglial activation and reduced neuronal synapses loss by blocking the β-catenin signaling pathway. Furthermore, the cognitive impairment and brain damage of MRL/lpr mice were significantly relieved after microglial PKM2 inhibition. CONCLUSION These data indicate that microglial PKM2 have potential to become a novel therapeutic target for treating lupus encephalopathy.
Collapse
Affiliation(s)
- Li Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Hailin Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Xuan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Xiaoyue Qiao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Jiali Ni
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China
| | - Yang Sun
- The State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China. .,Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, People's Republic of China. .,Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
24
|
An L, Chu T, Wang L, An S, Li Y, Hao H, Zhang Z, Yue H. Frequent injections of high-dose human umbilical cord mesenchymal stem cells slightly aggravate arthritis and skeletal muscle cachexia in collagen-induced arthritic mice. Exp Ther Med 2021; 22:1272. [PMID: 34594409 DOI: 10.3892/etm.2021.10707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
A single injection of low-dose human umbilical cord-derived mesenchymal stem cells (UC-MSCs) has been previously demonstrated to relieve synovitis and bone erosion in animal models of arthritis, but whether frequent injections of high-dose UC-MSCs relieve arthritis and inhibit loss of muscle mass has remained elusive. In the present study, DBA/1 mice were randomly divided into three groups: Normal (wild-type mice; n=11), collagen-induced arthritis (CIA; n=12) and CIA treated with UC-MSCs (n=11; 5x106 UC-MSCs per week for 3 weeks). Arthritis and skeletal muscle cachexia were evaluated until the end of the experiment on day 84. It was indicated that both the CIA and UC-MSC groups had lower body weights compared with the normal mice. Clinical arthritis scores, hind ankle diameters, synovitis and bone erosion progressively increased and were similar between the CIA and UC-MSC groups. Although there was no difference in food intake among the three groups, the normalized food intake of normal group was significantly higher than CIA group and UC-MSC group from day 42 onwards; there was no significance on day 77 but this could be neglected. Furthermore, gastrocnemius muscle weight in the UC-MSC group was significantly reduced compared with that in the CIA and normal groups. The UC-MSC group had higher levels of proinflammatory cytokines, such as TNF-α, IL-6 and IL-1β than those in the CIA group. However, the other cytokines assessed and the fibrosis indices in the CIA and UC-MSC groups were not different from those in the control group and there was no inflammatory cell infiltration. Thus, frequent injections of high-dose UC-MSCs slightly aggravated synovitis and muscle cachexia in the murine CIA model and should therefore be avoided in the treatment of arthritis.
Collapse
Affiliation(s)
- Lemei An
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Tianshu Chu
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Liujun Wang
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Songtao An
- Department of Cardiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Yalong Li
- Henan Key Laboratory of Stem Cell Differentiation and Modification, Stem Cell Research Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Hongbo Hao
- Neuroscience Initiative, Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY 10031, USA
| | - Zhuoli Zhang
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Han Yue
- Henan Key Laboratory of Stem Cell Differentiation and Modification, Stem Cell Research Center, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
25
|
Qiao X, Wang H, Lu L, Chen J, Cheng Q, Guo M, Hou Y, Dou H. Hippocampal microglia CD40 mediates NPSLE cognitive dysfunction in mice. J Neuroimmunol 2021; 357:577620. [PMID: 34062352 DOI: 10.1016/j.jneuroim.2021.577620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) is the most serious and complicated clinical manifestation of lupus erythematosus. Cognitive dysfunction is the most common symptom of NPSLE. A variety of potential mechanisms or mediators related to the pathogenesis of NPSLE cognitive dysfunction have been proposed. However, the involvement of microglia CD40 has not been reported yet. This study aimed to investigate whether hippocampal microglia CD40 of MRL/MpJ-Faslpr (MRL/lpr) mice was involved in NPSLE cognitive dysfunction. This study found, using quantitative polymerase chain reaction, western blotting and immunohistochemistry, that hippocampal CD40 was aberrantly overexpressed in the MRL/lpr lupus mice. It also determined using flow cytometry and immunofluorescence that the aberrantly overexpressed CD40 was mainly derived from hippocampal microglia. The adeno-associated virus was used to inhibit microglia CD40 expression, and the brain damage and cognitive dysfunction of MRL/lpr mice improved. Also, imiquimod (IMQ)-induced lupus mice had the same NPSLE cognitive dysfunction, brain damage, and overexpressed hippocampal microglia CD40 as MRL/lpr mice. Therefore, IMQ-induced lupus mouse was proposed as one of the mouse models for studying NPSLE cognitive dysfunction for the first time in this study. The findings indicated that hippocampal microglia CD40 was involved in the development of NPSLE cognitive dysfunction, thus providing a novel research direction for the study of the pathogenesis of NPSLE.
Collapse
Affiliation(s)
- Xiaoyue Qiao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Hailin Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Li Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Jinglei Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Qinpei Cheng
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Meng Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
26
|
Fecal microbiota transplantation ameliorates stress-induced depression-like behaviors associated with the inhibition of glial and NLRP3 inflammasome in rat brain. J Psychiatr Res 2021; 137:147-157. [PMID: 33677218 DOI: 10.1016/j.jpsychires.2021.02.057] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/15/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Evidence from previous studies has demonstrated that the gut-microbiota-brain axis is vital in regulating of behavior and neuroinflammation in the central nervous system. Considering the putative connection among gut microbiota, neural function, and behavior, the present study investigated the potential signaling of gut microbiota to modulate depression-like behaviors and neuroinflammation. METHODS Rats showing depression-like behaviors induced by chronic unpredictable mild stress received fecal microbiota treatment or vehicle for 14 days, and alterations in behavior and neuroinflammation were assessed. ELISA, immunofluorescence staining and Western blot were used to analysis the activation of glial cells and NLRP3 inflammasome. RESULTS Treatment with fecal microbiota transplantation ameliorated depression-like behaviors. 5-Hydroxytryptamine decreased in the chronic unpredictable mild stress rat model but significantly increased after fecal microbiota transplantation. The treatment with fecal microbiota transplantation decreased the production of IL-1β and TNF-α. Moreover, fecal microbiota transplantation administration suppressed the activation of Iba1 positive microglia cells and GFAP positive astrocytes cells and reduced the expression of NLRP3, ASC, Caspase-1, and IL-1β pathway in the prefrontal cortex and hippocampus. CONCLUSIONS Fecal microbiota transplantation can improve depression-like behaviors induced by chronic unpredictable mild stress. The anti-depression effects of fecal microbiota transplantation were associated with the suppressed activation of glial cells and NLRP3 inflammasome in the brain.
Collapse
|
27
|
Morales JY, Young-Stubbs CM, Shimoura CG, Kem WR, Uteshev VV, Mathis KW. Systemic Administration of α7-Nicotinic Acetylcholine Receptor Ligands Does Not Improve Renal Injury or Behavior in Mice With Advanced Systemic Lupus Erythematosus. Front Med (Lausanne) 2021; 8:642960. [PMID: 33928103 PMCID: PMC8076522 DOI: 10.3389/fmed.2021.642960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/18/2021] [Indexed: 01/04/2023] Open
Abstract
There is a critical need for safe treatment options to control inflammation in patients with systemic lupus erythematosus (SLE) since the inflammation contributes to morbidity and mortality in advanced disease. Endogenous neuroimmune mechanisms like the cholinergic anti-inflammatory pathway can be targeted to modulate inflammation, but the ability to manipulate such pathways and reduce inflammation and end organ damage has not been fully explored in SLE. Positive allosteric modulators (PAM) are pharmacological agents that inhibit desensitization of the nicotinic acetylcholine receptor (α7-nAChR), the main anti-inflammatory feature within the cholinergic anti-inflammatory pathway, and may augment α7-dependent cholinergic tone to generate therapeutic benefits in SLE. In the current study, we hypothesize that activating the cholinergic anti-inflammatory pathway at the level of the α7-nAChR with systemic administration of a partial agonist, GTS-21, and a PAM, PNU-120596, would reduce inflammation, eliminating the associated end organ damage in a mouse model of SLE with advanced disease. Further, we hypothesize that systemic α7 ligands will have central effects and improve behavioral deficits in SLE mice. Female control (NZW) and SLE mice (NZBWF1) were administered GTS-21 or PNU-120596 subcutaneously via minipumps for 2 weeks. We found that the increased plasma dsDNA autoantibodies, splenic and renal inflammation, renal injury and hypertension usually observed in SLE mice with advanced disease at 35 weeks of age were not altered by GTS-21 or PNU-120596. The anxiety-like behavior presented in SLE mice was also not improved by GTS-21 or PNU-120596. Although no significant beneficial effects of α7 ligands were observed in SLE mice at this advanced stage, we predict that targeting this receptor earlier in the pathogenesis of the disease may prove to be efficacious and should be addressed in future studies.
Collapse
Affiliation(s)
- Jessica Y Morales
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - Cassandra M Young-Stubbs
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - Caroline G Shimoura
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas (UNT) Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
28
|
Yin N, Yan E, Duan W, Mao C, Fei Q, Yang C, Hu Y, Xu X. The role of microglia in chronic pain and depression: innocent bystander or culprit? Psychopharmacology (Berl) 2021; 238:949-958. [PMID: 33544194 DOI: 10.1007/s00213-021-05780-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Clinical evidence shows that chronic pain and depression often accompany each other, but the underlying pathogenesis of comorbid chronic pain and depression remains mostly undetermined. Biotechnology is gradually revealing the phenotype and function of microglia, with great progress regarding microglia's role in neurodegeneration, depression, chronic pain, and other conditions. This article summarizes the role of microglia in chronic pain, depression, and comorbidities, which is conducive to finding new targets to treat chronic pain and depression.
Collapse
Affiliation(s)
- Nan Yin
- Department of Anesthesiology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Enshi Yan
- Department of Anesthesiology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Wenbin Duan
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Changyuan Mao
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Qin Fei
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yimin Hu
- Department of Anesthesiology, The Second Affiliated Changzhou People's Hospital of Nanjing Medical University, Changzhou, 213000, China.
| | - Xiaolin Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
29
|
Xia W, Hu S, Wang M, Xu F, Han L, Peng D. Exploration of the potential mechanism of the Tao Hong Si Wu Decoction for the treatment of postpartum blood stasis based on network pharmacology and in vivo experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113641. [PMID: 33271240 DOI: 10.1016/j.jep.2020.113641] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tao Hong Si Wu Decoction (THSWD) is a traditional prescription for blood management in traditional Chinese medicine, THSWD consists of Paeoniae Radix Alba (Paeonia lactiflora Pall.), Rehmanniae Radix Praeparata (Rehmannia glutinosa (Gaertn.) DC.), Angelicae Sinensis Radix (Angelica sinensis (Oliv.) Diels), Chuanxiong Rhizoma (Conioselinum anthriscoides 'Chuanxiong'), Persicae Seman (Prunus persica (L.) Batsch) and Carthami Flos (Carthamus tinctorius L.) at a weight ratio of 3: 4: 3: 2: 3: 2. THSWD is a commonly used prescription in the treatment of postpartum blood stasis disease. AIM OF THE STUDY To explore the potential mechanism of THSWD for the treatment of postpartum blood stasis using network pharmacology and experimental research. MATERIALS AND METHODS We extracted the active ingredients and targets in THSWD from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and constructed a herbs-ingredients-targets-disease-network, devised a protein-protein interaction (PPI) network, performed GO enrichment analysis, and performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to discover potential treatment mechanisms. A postpartum blood stasis model was established in rats, and the results of network pharmacology were verified by in vivo experiments. RESULTS The results showed that 69 potential active ingredients and 207 THSWD target genes for the treatment of postpartum blood stasis disease were obtained after ADME filtering analysis. The targets were enriched in multiple gene functions and different signaling pathways. By exploring various different signaling pathways, it was found that mitochondrial regulation of oxidative stress plays a potentially important role in the treatment of postpartum blood stasis with THSWD. Compared to model group, THSWD alleviated mitochondrial damage, decreased levels of oxidative stress in the rat model of postpartum blood stasis and reduced apoptosis in uterine cells. CONCLUSION The therapeutic effect of THSWD on postpartum blood stasis is likely related to mitochondrial regulation of oxidative stress, which paves the way for further research investigating its mechanisms.
Collapse
Affiliation(s)
- Wenwen Xia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shoushan Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Mengmeng Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Xin'an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Xin'an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China; Xin'an Medicine, Key Laboratory of Chinese Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China.
| |
Collapse
|
30
|
Raffaele S, Lombardi M, Verderio C, Fumagalli M. TNF Production and Release from Microglia via Extracellular Vesicles: Impact on Brain Functions. Cells 2020; 9:cells9102145. [PMID: 32977412 PMCID: PMC7598215 DOI: 10.3390/cells9102145] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine powerfully influencing diverse processes of the central nervous system (CNS) under both physiological and pathological conditions. Here, we analyze current literature describing the molecular processes involved in TNF synthesis and release from microglia, the resident immune cells of the CNS and the main source of this cytokine both in brain development and neurodegenerative diseases. A special attention has been given to the unconventional vesicular pathway of TNF, based on the emerging role of microglia-derived extracellular vesicles (EVs) in the propagation of inflammatory signals and in mediating cell-to-cell communication. Moreover, we describe the contribution of microglial TNF in regulating important CNS functions, including the neuroinflammatory response following brain injury, the neuronal circuit formation and synaptic plasticity, and the processes of myelin damage and repair. Specifically, the available data on the functions mediated by microglial EVs carrying TNF have been scrutinized to gain insights on possible novel therapeutic strategies targeting TNF to foster CNS repair.
Collapse
Affiliation(s)
- Stefano Raffaele
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Marta Lombardi
- CNR Institute of Neuroscience, 20129 Milan, Italy; (M.L.); (C.V.)
| | - Claudia Verderio
- CNR Institute of Neuroscience, 20129 Milan, Italy; (M.L.); (C.V.)
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- Correspondence: ; Tel.: +39-0250318307
| |
Collapse
|
31
|
Advances in the diagnosis, pathogenesis and treatment of neuropsychiatric systemic lupus erythematosus. Curr Opin Rheumatol 2020; 32:152-158. [PMID: 31895125 DOI: 10.1097/bor.0000000000000682] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Diagnosing and treating neuropsychiatric systemic lupus erythematosus (NPSLE) remains challenging as the pathogenesis is still being debated. In this review, we discuss studies evaluating recent advances in diagnostic methods, pathogenic mediators and potential treatments. RECENT FINDINGS Screening tools used for neurodegenerative diseases were found to be both sensitive and moderately specific for cognitive dysfunction in NPSLE. Neuroimaging can be used to distinguish systemic lupus erythematosus (SLE) patients from healthy controls, but further refinement is needed to differentiate between lupus patients with and without neuropsychiatric manifestations. Elevated levels of specific molecules in the cerebrospinal fluid and/or serum, as well as the presence of certain autoantibodies, have been identified as potential biomarkers in attempts to facilitate a more accurate and objective diagnosis. Among such autoantibodies, anti-NR2 and anti-ribosomal P autoantibodies also have a pathogenic role, although newer studies demonstrate that blood-brain barrier damage may not always be required as previously believed. These and other observations, together with new evidence for disease attenuation after microglial modulation, suggest direct involvement of the central nervous system in NPSLE pathogenesis. SUMMARY Neuropsychiatric involvement of SLE includes a variety of symptoms that impact quality of life and patient prognosis. There have been recent advances in improving the diagnosis of NPSLE as well as in dissecting the underlying pathogenesis. The attenuation of neuropsychiatric disease in mouse models demonstrates the potential for targeted therapies, which are based on a clearer understanding of the pathogenesis of NPSLE. Further assessment of these treatments is required in NPSLE patients, as well as the potential use of neuroimaging to distinguish between SLE patients with or without neuropsychiatric manifestations.
Collapse
|
32
|
Xu X, Zeng XY, Cui YX, Li YB, Cheng JH, Zhao XD, Xu GH, Ma J, Piao HN, Jin X, Piao LX. Antidepressive Effect of Arctiin by Attenuating Neuroinflammation via HMGB1/TLR4- and TNF-α/TNFR1-Mediated NF-κB Activation. ACS Chem Neurosci 2020; 11:2214-2230. [PMID: 32609480 DOI: 10.1021/acschemneuro.0c00120] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a potential factor in the pathophysiology of depression. A traditional Chinese herbal medicine, arctiin, and its aglycone, arctigenin, are the major bioactive components in Fructus arctii and exhibit neuroprotective and anti-inflammatory activities. Arctigenin has been reported to have antidepressant-like effects. However, the antidepressant-like effects of arctiin, its precursor, remain unknown. In this study, we investigated the antidepressant-like effects of arctiin and its underlying mechanisms by in vivo and in vitro experiments in mice. Our results showed that arctiin significantly attenuated sucrose consumption and increased the immobility time in tail suspension and forced swimming tests. Arctiin decreased neuronal damage in the prefrontal cortex (PFC) of the brain. Arctiin also attenuated the levels of three inflammatory mediators, indoleamine 2,3-dioxygenase, 5-hydroxytryptamine, and dopamine, that were elevated in the PFC or serum of chronic unpredictable mild stress (CUMS)-exposed mice. Arctiin reduced excessive activation of microglia and neuroinflammation by reducing high mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4)- and tumor necrosis factor-α (TNF-α)/TNF receptor 1 (TNFR1)-mediated nuclear factor-kappa B (NF-κB) activation in the PFC of CUMS-exposed mice and HMGB1- or TNF-α-stimulated primary cultured microglia. These findings demonstrate that arctiin ameliorates depression by inhibiting the activation of microglia and inflammation via the HMGB1/TLR4 and TNF-α/TNFR1 signaling pathways.
Collapse
Affiliation(s)
- Xiang Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xiao-Yu Zeng
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Yue-Xian Cui
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji 133000, Jilin, China
| | - Ying-Biao Li
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji 133000, Jilin, China
| | - Jia-Hui Cheng
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Xu-Dong Zhao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Guang-Hua Xu
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Juan Ma
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Hu-Nan Piao
- Department of Neurology, Affliated Hospital of Yanbian University, Yanji 133000, Jilin, China
| | - Xuejun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| | - Lian-Xun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin, China
| |
Collapse
|
33
|
Abstract
PROPOSE OF REVIEW Neuropsychiatric systemic lupus erythematosus (NPSLE) is an emerging frontier in lupus care encompassing a wide spectrum of clinical manifestations. Its pathogenesis remains poorly understood because of the complexity of pathophysiologic mechanisms involved and limited access to tissue. We highlight recent advances in the pathophysiology of neuropsychiatric lupus. RECENT FINDINGS Disruption of blood-brain barrier (BBB) facilitating entrance of neurotoxic antibodies into the central nervous system (CNS), neuroinflammation and cerebral ischemia are the key mechanisms. Disruption of the BBB may occur not only at the traditional BBB, but also at the blood-cerebrospinal fluid barrier. Certain autoantibodies, such as anti-N-methyl-D-aspartate receptors, antiribosomal P and antiphospholipid antibodies may cause injury in subsets of patients with diffuse neuropsychiatric disease. Activation of microglia via autoantibodies, interferon-a or other immune reactants, may amplify the inflammatory response and promote neuronal damage. New inflammatory pathways, such as TWEAK/Fn14, Bruton's tyrosine kinase, Nogo-a and ACE may represent additional potential targets of therapy. Novel neuroimaging techniques suggest alterations in brain perfusion and metabolism, increased concentration of neurometabolites, indicative of glial activation, vasculopathy and neuronal impairment. SUMMARY NPSLE encompasses a diverse phenotype with distinct pathogenic mechanisms, which could be targeted by novel therapies or repositioning of existing drugs.
Collapse
|
34
|
Cao HY, Li D, Wang YP, Lu HX, Sun J, Li HB. The protection of NF-κB inhibition on kidney injury of systemic lupus erythematosus mice may be correlated with lncRNA TUG1. Kaohsiung J Med Sci 2020; 36:354-362. [PMID: 31930775 DOI: 10.1002/kjm2.12183] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/27/2019] [Indexed: 12/29/2022] Open
Abstract
We aimed to know the effect of nuclear factor-kappa B (NF-κB) inhibition on the kidney injury of systemic lupus erythematosus (SLE) mice. Pristane-induced SLE mice were treated with pyrrolidine dithiocarbamate (PDTC, 50 or 100 mg/kg), a NF-κB inhibitor. Histopathological changes were observed by hematoxylin & eosin, Masson and periodic schiff-methenamine stainings. Long noncoding RNA Taurine upregulated gene 1 (LncRNA TUG1) was measured by real-time reverse transcription PCR, NF-κB p65 expression by western blotting, levels of inflammatory cytokines, antinuclear antibodies (ANA), and antidouble stranded DNA (anti-dsDNA) by enzyme-linked immunosorbent assay, and the deposition of IgG and C3 by immunofluorescence. The kidney of SLE mice exhibited interstitial inflammatory cell infiltration, interstitial fibrous proliferation, glomerular mesangial proliferation, and crescent formation, which was mitigated after PDTC administration. The levels of BUN, Cr, ANA, and anti-dsDNA and the pro-inflammatory factors in SLE mice were increased with obvious deposition of IgG and C3, but they were also reversed by PDTC. Furthermore, the NF-κB p65 expression in the nucleus in the SLE mice was decreased with the up-regulation of TUG1 expression and NF-κB p65 expression in the cytoplasm after PDTC treatment. Correlation analysis revealed the negative correlation between the TUG1 expression and NF-κB p65 in the nucleus in the kidney tissues. NF-κB inhibition with PDTC protected against the kidney injury of pristine-induced SLE mice possibly via up-regulating lncRNA TUG1, and further clinical studies are needed to clarify whether NF-κB inhibition may be a therapeutic modality for the kidney injury of SLE.
Collapse
Affiliation(s)
- Hai-Yu Cao
- Department of Dermatology, The First Hospital of Shijiazhuang City, Shijiazhuang, Hebei Province, China
| | - Dong Li
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Peng Wang
- Department of General Medicine, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Hui-Xiu Lu
- Department of Dermatology, The First Hospital of Shijiazhuang City, Shijiazhuang, Hebei Province, China
| | - Jing Sun
- Department of Dermatology, The First Hospital of Shijiazhuang City, Shijiazhuang, Hebei Province, China
| | - Hai-Bin Li
- Department of General Medicine, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|