1
|
Đurđević Đelmaš A, Šeba T, Gligorijević N, Pavlović M, Gruden M, Nikolić M, Milcic K, Milčić M. Perfluoroalkyl acids interact with major human blood protein fibrinogen: Experimental and computation study. Int J Biol Macromol 2025; 306:141425. [PMID: 40010474 DOI: 10.1016/j.ijbiomac.2025.141425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
PFAS (per- and polyfluorinated alkyl substances) are synthetic compounds prized for their stability across various industries, but they pose an increasing threat to the environment and human health. Following the regulation of long-chain PFAS, short-chain and ultra-short-chain molecules have been introduced as substitutes, yet their bioaccumulation potential remains poorly understood. In this study, we combined experimental (intrinsic fluorescence, microscale thermophoresis, clotting assays) and computational approaches to investigate how trifluoroacetic acid, perfluorobutanoic acid, and perfluorooctanoic acid bind to fibrinogen, a key human blood protein. All tested perfluoroalkyl acids (PFAAs) exhibited moderate binding affinity (Kd in the 10-4-10-5 M range), yet circular dichroism and fibrin clot formation assays revealed no functional impairment of fibrinogen. Molecular docking indicated distinct, chain-length-specific binding sites, suggesting multiple routes for PFAAs to interact with fibrinogen without disrupting its primary biological role. These findings challenge the assumption that short-chain PFAS are less bioaccumulative and underscore the need for further research into their long-term health impacts, particularly given their widespread presence in the environment and potential accumulation in human blood.
Collapse
Affiliation(s)
| | - Tino Šeba
- Department of General and Inorganic Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Nikola Gligorijević
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Marko Pavlović
- School of Engineering and Applied Sciences, Harvard University, 11 Oxford Street, 02138 Cambridge, MA, USA; BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, Novi Sad 21000, Serbia
| | - Maja Gruden
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Milan Nikolić
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Karla Milcic
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia; School of Engineering and Applied Sciences, Harvard University, 11 Oxford Street, 02138 Cambridge, MA, USA; BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, Novi Sad 21000, Serbia.
| | - Miloš Milčić
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|
2
|
Chen X, Pan J, Li Y, Tang R. Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery. Aging Clin Exp Res 2023; 35:2643-2656. [PMID: 37733228 DOI: 10.1007/s40520-023-02550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE Anemia is one of the common adverse reactions after hip fracture surgery. The traditional method to solve anemia is allogeneic transfusion. However, the transfusion may lead to some complications such as septicemia and fever. So far, few studies have reported roles of machine learning in predicting whether blood transfusion is needed or not after hip fracture surgery. Therefore, the purpose of this study is to develop machine learning models to predict the likelihood of postoperative blood transfusion in patients undergoing hip fracture surgery. METHODS This study enrolled 1355 patients who underwent hip fracture surgery at the Affiliated Hospital of Qingdao University from January 2016 to December 2021. Among all patients, 210 cases received postoperative blood transfusion. All patients were randomly divided into a training group and a testing group at a ratio of 7:3. In the training group, univariate and multivariate logistic regression analyses were used to determine independent risk factors for the postoperative transfusion. Then, based on these independent risk factors, tenfold cross-validation method was utilized to develop five machine learning models, including logistic, multilayer perceptron (MLP), extreme gradient boosting (XGBoost), random forest (RF), and support vector machine (SVM). The receiver operating characteristic (ROC) curve, area under ROC curve (AUC), and Matthews correlation coefficient (MCC) were generated to evaluate the performance of the models. Calibration plot and decision curve analysis (DCA) were used to test the performance, stability, and clinical applicability of the models. The models were validated using the testing group; and the ROC curve, MCC, calibration plot, and DCA curves were also generated to validate the performance, stability, and clinical applicability of the models. To further verify the robustness of the model, we randomly grabbed 70% of the samples in the testing set, performed 1000 iterations, and calculated the AUC and confidence interval of the five models. Finally, we used SHapley Additive exPlanations (SHAP) to explain these models. RESULTS Multivariate logistic regression analysis showed that there were 8 independent risk factors, including age, blood transfusion history, albumin (ALB), globulin (GLO), total bilirubin (TBIL), indirect bilirubin (IBIL), hemoglobin (HB), and blood loss > 200 ml. We finally selected five independent risk factors including HB, GLO, age, IBIL, and blood loss > 200 ml. Based on these five independent risk factors, we generated six characteristic variables, namely HB, HB × HB, HB × blood loss, GLO × HB, age, age × IBIL, and established five machine learning models using a tenfold cross-validation method. In the training group, the AUC values of logistic, RF, MLP, SVM, and XGB were 0.9320, 0.8911, 0.9327, 0.9225, and 0.8825, respectively, and the average AUC was 0.9122 ± 0.0212. The MCC values were 0.65, 0.77, 0.65, 0.66, and 0.68, respectively, and the calibration plot and DCA performed well. In the testing group the AUC values of logistic, RF, MLP, SVM, and XGB were 0.8483, 0.7978, 0.8576, 0.8598, and 0.8216, respectively. The average AUC was 0.8370 ± 0.0238, and the MCC values were 0.41, 0.35, 0.40, 0.41, and 0.41, respectively. The calibration plot and DCA in the testing group also showed good performance. The AUC values and confidence intervals of the 1000-iteration model were: logistic (AUC, min confidence interval [CI]-max confidence interval [CI] 0.848, 0.804-0.903), RF (AUC, minCI-maxCI 0.797, 0.734-0.857), MLP (AUC, minCI-maxCI 0.858, 0.812-0.902), SVM (AUC, minCI-maxCI 0.859, 0.819-0.910), and XGB (AUC, minCI-maxCI 0.821, 0.764-0.894). The model performed well. Finally, according to SHAP, among all five models, HB played the most important role in model prediction and interpretation. CONCLUSION The five models we developed all performed well in predicting the likelihood of blood transfusion after hip fracture surgery. Therefore, we believed that the prediction model based on machine learning had great application prospects in clinical practice, which could help clinicians better predict the risk of blood transfusion after hip fracture surgery.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Orthopaedics, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, Anhui, China
| | - Junpeng Pan
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yi Li
- Department of Orthopaedics, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, Anhui, China
| | - Ruixin Tang
- Department of Orthopaedics, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, Anhui, China.
| |
Collapse
|
3
|
Liu Y, Tong F, Xu Y, Hu Y, Liu W, Yang Z, Yu Z, Xiong G, Zhou Y, Xiao Y. Development of antioxidant and smart NH 3 -sensing packaging film by incorporating bilirubin into κ-carrageenan matrix. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7030-7039. [PMID: 37337853 DOI: 10.1002/jsfa.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Active and smart food packaging based on natural polymers and pH-sensitive dyes as indicators has attracted widespread attention. In the present study, an antioxidant and amine-response color indicator film was developed by incorporating bilirubin (BIL) into the κ-carrageenan (Carr) matrix. RESULTS It was found that the introduction of BIL had no effect on the crystal/chemical structure, water sensitivity and mechanical performance of the Carr-based films. However, the barrier properties to light and the thermal stability were significantly improved after the addition BIL. The Carr/BIL composite films exhibited excellent 1,1-diphenyl-2-picryl-hydrazyl (i.e. DPPH)/2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (i.e. ABTS) free radical scavenging abilities and color responsiveness to different concentrations of ammonia. The application assay reflected that the Carr/BIL0.0075 film was effective in delaying the oxidative deterioration of shrimp during storage and realizing the color response of its freshness through the change of b* value. CONCLUSION Active and smart packaging films were successfully prepared by incorporating different contents of BIL into the Carr matrix. The present study helps to further encourage the design and development of a multi-functional packaging material. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Fei Tong
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Yingran Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Yunyun Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Zan Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Guoyuan Xiong
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J 2023; 480:1217-1240. [PMID: 37584410 DOI: 10.1042/bcj20230241] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as 'self', and otherwise immunologically silent. The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies. A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
5
|
Insights into the Structures of Bilirubin and Biliverdin from Vibrational and Electronic Circular Dichroism: History and Perspectives. Molecules 2023; 28:molecules28062564. [PMID: 36985535 PMCID: PMC10054127 DOI: 10.3390/molecules28062564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
In this work we review research activities on a few of the most relevant structural aspects of bilirubin (BR) and biliverdin (BV). Special attention is paid to the exocyclic C=C bonds being in mostly Z rather than E configurations, and to the overall conformation being essentially different for BR and BV due to the presence or absence of the double C=C bond at C-10. In both cases, racemic mixtures of each compound of either M or P configuration are present in achiral solutions; however, imbalance between the two configurations may be easily achieved. In particular, results based on chiroptical spectroscopies, both electronic and vibrational circular dichroism (ECD and VCD) methods, are presented for chirally derivatized BR and BV molecules. Finally, we review deracemization experiments monitored with ECD data from our lab for BR in the presence of serum albumin and anesthetic compounds.
Collapse
|
6
|
Li X, Duan H, Song Z, Xu R. Comparative study on the interaction between fibrinogen and flavonoids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Gligorijević N, Stanić-Vučinić D, Radomirović M, Stojadinović M, Khulal U, Nedić O, Ćirković Veličković T. Role of Resveratrol in Prevention and Control of Cardiovascular Disorders and Cardiovascular Complications Related to COVID-19 Disease: Mode of Action and Approaches Explored to Increase Its Bioavailability. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26102834. [PMID: 34064568 PMCID: PMC8151233 DOI: 10.3390/molecules26102834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Resveratrol is a phytoalexin produced by many plants as a defense mechanism against stress-inducing conditions. The richest dietary sources of resveratrol are berries and grapes, their juices and wines. Good bioavailability of resveratrol is not reflected in its high biological activity in vivo because of resveratrol isomerization and its poor solubility in aqueous solutions. Proteins, cyclodextrins and nanomaterials have been explored as innovative delivery vehicles for resveratrol to overcome this limitation. Numerous in vitro and in vivo studies demonstrated beneficial effects of resveratrol in cardiovascular diseases (CVD). Main beneficial effects of resveratrol intake are cardioprotective, anti-hypertensive, vasodilatory, anti-diabetic, and improvement of lipid status. As resveratrol can alleviate the numerous factors associated with CVD, it has potential as a functional supplement to reduce COVID-19 illness severity in patients displaying poor prognosis due to cardio-vascular complications. Resveratrol was shown to mitigate the major pathways involved in the pathogenesis of SARS-CoV-2 including regulation of the renin-angiotensin system and expression of angiotensin-converting enzyme 2, stimulation of immune system and downregulation of pro-inflammatory cytokine release. Therefore, several studies already have anticipated potential implementation of resveratrol in COVID-19 treatment. Regular intake of a resveratrol rich diet, or resveratrol-based complementary medicaments, may contribute to a healthier cardio-vascular system, prevention and control of CVD, including COVID-19 disease related complications of CVD.
Collapse
Affiliation(s)
- Nikola Gligorijević
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (N.G.); (O.N.)
| | - Dragana Stanić-Vučinić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
| | - Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
| | - Marija Stojadinović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
| | - Urmila Khulal
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Global Campus, Ghent University, Yeonsu-gu, Incheon 406-840, Korea
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (N.G.); (O.N.)
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia; (D.S.-V.); (M.R.); (M.S.)
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Global Campus, Ghent University, Yeonsu-gu, Incheon 406-840, Korea
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-333-6608
| |
Collapse
|
8
|
Conran N, De Paula EV. Thromboinflammatory mechanisms in sickle cell disease - challenging the hemostatic balance. Haematologica 2020; 105:2380-2390. [PMID: 33054078 PMCID: PMC7556678 DOI: 10.3324/haematol.2019.239343] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/19/2020] [Indexed: 11/11/2022] Open
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy that is caused by the presence of abnormal hemoglobin S (HbS) in red blood cells, leading to alterations in red cell properties and shape, as the result of HbS dexoygenation and subsequent polymerization. SCD pathophysiology is characterized by chronic inflammatory processes, triggered by hemolytic and vaso-occlusive events, which lead to the varied complications, organ damage and elevated mortality seen in individuals with the disease. In association with activation of the endothelium and leukocytes, hemostatic alterations and thrombotic events are well-documented in SCD. Here we discuss the role for inflammatory pathways in modulating coagulation and inducing platelet activation in SCD, due to tissue factor activation, adhesion molecule expression, inflammatory mediator production and the induction of innate immune responses, amongst other mechanisms. Thromboinflammatory pathways may play a significant role in some of the major complications of SCD, such as stroke, venous thromboembolism and possibly acute chest syndrome, besides exacerbating the chronic inflammation and cellular interactions that trigger vaso-occlusion, ischemia-reperfusion processes, and eventually organ damage.
Collapse
Affiliation(s)
- Nicola Conran
- Hematology Center, University of Campinas, UNICAMP, Cidade Universitária, Campinas-SP, Brazil
| | - Erich V. De Paula
- Hematology Center, University of Campinas, UNICAMP, Cidade Universitária, Campinas-SP, Brazil
| |
Collapse
|
9
|
Gligorijević N, Radomirović M, Rajković A, Nedić O, Ćirković Veličković T. Fibrinogen Increases Resveratrol Solubility and Prevents it from Oxidation. Foods 2020; 9:E780. [PMID: 32545422 PMCID: PMC7353596 DOI: 10.3390/foods9060780] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
The French paradox describes a lower incidence of cardiovascular problems despite a high intake of saturated fats. This phenomenon was associated with higher consumption of red wine, as it was later discovered that the presence of antioxidants, including resveratrol, have beneficial effects. We hypothesized that resveratrol may have a more direct role in protection from harmful oxidation, presumably through binding to important proteins of the blood coagulation process. Spectrofluorimetry demonstrated that resveratrol is capable of binding to fibrinogen, the main protein in the coagulation process, which is also important as a food additive. Various spectroscopic methods determined that binding does not cause fibrinogen unfolding or destabilization since protein melting temperature remains unchanged. A mutually protective effect against the free radical-induced oxidation of polyphenol and fibrinogen was found. The presence of fibrinogen caused only a negligible masking effect of the antioxidative abilities of resveratrol, measured by a reduction of hexacyanoferrate (III), while greatly increasing its solubility in an aqueous environment, thus increasing its potential bioavailability. Due to its interaction with fibrinogen, resveratrol may serve as an antioxidant at the site of injury. The antioxidative effect of resveratrol may also protect and thus keep the desired characteristics of fibrinogen during the application of this protein as a food additive.
Collapse
Affiliation(s)
- Nikola Gligorijević
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (N.G.); (O.N.)
| | - Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia;
| | - Andreja Rajković
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Department of Food Safety and Quality Management, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Zemun-Belgrade, Serbia
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (N.G.); (O.N.)
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences & Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia;
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Global Campus, Ghent University, Yeonsu-gu, Incheon 406-840, Korea
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
Atypical antipsychotic clozapine binds fibrinogen and affects fibrin formation. Int J Biol Macromol 2020; 154:142-149. [PMID: 32184141 DOI: 10.1016/j.ijbiomac.2020.03.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022]
Abstract
Clozapine is an atypical antipsychotic used for the treatment of schizophrenia. The prescribed target daily doses may reach 900 mg. Literature studies report a connection between clozapine usage and thrombosis development. Our in vitro study aimed to provide insight into molecular bases of this observation, investigating clozapine binding to fibrinogen, the main plasma protein involved in hemostasis. Fibrinogen/clozapine interaction was confirmed by protein fluorescence quenching, with an affinity constant of 1.7 × 105 M-1. Direct interactions did not affect the structure of fibrinogen, nor fibrinogen melting temperature. Clozapine binding affected fibrin formation by reducing coagulation speed and thickness of fibrin fibers suggesting that in the presence of clozapine, fibrinogen may acquire thrombogenic characteristics. Although no difference in fibrin gel porosity was detected, other factors present in the blood may act synergistically with altered fibrin formation to modify fibrin clot, thus increasing the risk for development of thrombosis in patients on clozapine treatment. ORAC and HORAC assays showed that clozapine reduced free radical-induced oxidation of fibrinogen. All observed effects of clozapine on fibrinogen are dose-dependent, with the effect on fibrin formation being more pronounced.
Collapse
|
11
|
Gligorijević N, Šukalović V, Penezić A, Nedić O. Characterisation of the binding of dihydro-alpha-lipoic acid to fibrinogen and the effects on fibrinogen oxidation and fibrin formation. Int J Biol Macromol 2020; 147:319-325. [DOI: 10.1016/j.ijbiomac.2020.01.098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
|
12
|
Yan P, Zhang Z, Miao Y, Xu Y, Zhu J, Wan Q. Physiological serum total bilirubin concentrations were inversely associated with diabetic peripheral neuropathy in Chinese patients with type 2 diabetes: a cross-sectional study. Diabetol Metab Syndr 2019; 11:100. [PMID: 31827625 PMCID: PMC6889527 DOI: 10.1186/s13098-019-0498-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although bilirubin has been generally regarded as a waste with potential neurotoxicity at high levels, a few clinical studies suggest a potential protective role of physiological serum total bilirubin (TBIL) concentrations in diabetic peripheral neuropathy (DPN). However, the pathological mechanisms underlying the relationship remain poorly understood. The objective of this study was to explore the relationship between serum TBIL and DPN, and clinical and laboratory parameters. METHODS Serum TBIL was measured in 1342 patients with type 2 diabetes mellitus (T2DM). The relationship between TBIL and DPN and other parameters was analyzed. RESULTS Serum TBIL levels were significantly lower in T2DM patients with DPN, and were independently and negatively associated with vibration perception thresholds (VPT) (P < 0.01 or P < 0.05). Moreover, serum TBIL was negatively associated with neutrophil and white blood cell counts, fibrinogen, and the prevalence of hypertension, diabetic foot ulceration, peripheral arterial disease, diabetic nephropathy and diabetic retinopathy (P < 0.01 or P < 0.05). Additionally, serum TBIL was an independent decisive factor for the presence of DPN after multivariate adjustment. Compared to the highest quartile of TBIL, the lower quartiles were associated with a significantly increased risk of DPN (P < 0.01). Last but most importantly, the analysis of receiver operating characteristic curves revealed that the best cutoff value for serum TBIL to predict DPN was 10.75 μmol/L (sensitivity 54.6% and specificity 62.9%). CONCLUSIONS These findings suggest that lower physiological serum TBIL may be associated with the presence of DPN due to its decreased anti-inflammatory and vascular protective effects.
Collapse
Affiliation(s)
- Pijun Yan
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Zhihong Zhang
- Department of General Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Ying Miao
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Yong Xu
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jianhua Zhu
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Qin Wan
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| |
Collapse
|