1
|
Zhang X, Gao X, Xu J, Zhang Z, Lin T, Zhang X, Kang X. The role of lncRNA and miRNA on the effects of occurrence and development of osteosarcoma. Int Immunopharmacol 2025; 144:113726. [PMID: 39615111 DOI: 10.1016/j.intimp.2024.113726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
Osteosarcoma is a common primary malignant bone tumor with a high incidence in children and adolescents, with high invasiveness and lung metastases. Even after traditional surgical excision, chemoradiotherapy, and comprehensive treatment, the survival rate of patients is still low, and the prognosis is not ideal. As an important part of non-coding RNA family, lncRNA and miRNA have significant regulatory effects on the growth, proliferation, metastasis and apoptosis of osteosarcoma cells. Therefore, exploring the roles of lncRNAs and miRNAs in the occurrence and development of osteosarcoma is of great help for the subsequent diagnosis, treatment, and prognosis of osteosarcoma. This paper mainly reviews the current research progress on the effects and mechanisms of lncRNAs and miRNAs on osteosarcoma cells, in order to provide new ideas for future research on the development process, treatment methods, and prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, 710054 Xi'an, Shaanxi Province, China
| | - Xidan Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao Tong University, 710054 Xi'an, Shaanxi Province, China
| | - Jing Xu
- The Second Clinical Medical College of Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Zhuoya Zhang
- The First Clinical Medical College of Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Tingtong Lin
- The Second Clinical Medical College of Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Xueyan Zhang
- Institute of Biochemistry and Molecular Biology and School of Basic Medical Sciences, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Xin Kang
- Department of Sports Medicine, Honghui Hospital, Xi'an Jiao Tong University, 710054 Xi'an, Shaanxi Province, China.
| |
Collapse
|
2
|
Mao P, Feng Z, Liu Y, Zhang K, Zhao G, Lei Z, Di T, Zhang H. The Role of Ubiquitination in Osteosarcoma Development and Therapies. Biomolecules 2024; 14:791. [PMID: 39062505 PMCID: PMC11274928 DOI: 10.3390/biom14070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) maintains intracellular protein homeostasis and cellular function by regulating various biological processes. Ubiquitination, a common post-translational modification, plays a crucial role in the regulation of protein degradation, signal transduction, and other physiological and pathological processes, and is involved in the pathogenesis of various cancers, including osteosarcoma. Osteosarcoma, the most common primary malignant bone tumor, is characterized by high metastatic potential and poor prognosis. It is a refractory bone disease, and the main treatment modalities are surgery combined with chemotherapy. Increasing evidence suggests a close association between UPS abnormalities and the progression of osteosarcoma. Due to the complexity and pleiotropy of the ubiquitination system, each step in the ubiquitination process can be targeted by drugs. In recent years, research and development of inhibitors targeting the ubiquitin system have increased gradually, showing great potential for clinical application. This article reviews the role of the ubiquitination system in the development and treatment of osteosarcoma, as well as research progress, with the hope of improving the therapeutic effects and prognosis of osteosarcoma patients by targeting effective molecules in the ubiquitination system.
Collapse
Affiliation(s)
- Peng Mao
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Zuxi Feng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yong Liu
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Kai Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Guanghai Zhao
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Zeyuan Lei
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Tianning Di
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
| | - Haihong Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
3
|
Zhu K, He H, Guo H, Liu B, He X, Zhang N, Xian L, Zhang D. Identification of two MEF2s and their role in inhibiting the transcription of the mstn2a gene in the yellowfin seabream, Acanthopagrus latus (Hottuyn, 1782). Gene 2024; 909:148322. [PMID: 38423140 DOI: 10.1016/j.gene.2024.148322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Myocyte-specific enhancer binding factor 2 (MEF2), which belongs to the MADS superfamily, is a pivotal and conserved transcription factor that combines with the E-box motif to control the expression of muscle genes. Myostatin (mstn), a muscle growth inhibitor, is a vital member of the TGF-β superfamily. Currently, an understanding of the mechanisms of A. latus mstn (Almstn) transcriptional regulation mediated by MEF2 in fish muscle development is lacking. In the present study, two AlMEF2s (AlMEF2A and AlMEF2B) and Almstn2a were characterized from Acanthopagrus latus. AlMEF2A and AlMEF2B had 456 and 315 amino acid (aa) residues, respectively. Two typical regions, a MADS-box, MEF2, and transcriptionally activated (TAD) domains, are present in both AlMEF2s. The expression profiles of the two AlMEF2 genes were similar. The AlMEF2 genes were mainly expressed in the brain, white muscle, and liver, while Almstn2a expression was higher in the brain than in other tissues. Moreover, the expression trends of AlMEF2s and Almstn2a were significantly changed after starvation and refeeding in the five groups. Additionally, truncation experiments showed that -987 to +168 and -105 to +168 were core promoters of Almstn2a that responded to AlMEF2A and AlMEF2B, respectively. The point mutation experiment confirmed that Almstn2a transcription relies on the mutation binding sites 1 or 5 (M1/5) and mutation binding sites 4 or 5 (M4/5) for AlMEF2A and AlMEF2B regulation, respectively. The electrophoretic mobile shift assay (EMSA) further verified that M1 (-527 to -512) was a pivotal site where AlMEF2A acted on the Almstn2a gene. Furthermore, a siRNA interference gene expression experiment showed that reduced levels of AlMEF2A or AlMEF2B could prominently increase Almstn2a transcription. These results provide new information about the regulation of Almstn2a transcriptional activity by AlMEF2s and a theoretical basis for the regulatory mechanisms involved in muscle development in fish.
Collapse
Affiliation(s)
- Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Hongxi He
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China
| | - Huayang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Baosuo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Xin He
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China
| | - Dianchang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, PR China.
| |
Collapse
|
4
|
Zhu YR, Zhu KP, Hu JP, Tan S, Zhang CL. Combination of hsa_circ_0004674 and lncRNA OIP5‑AS1 as a novel clinical biomarker used to predict prognosis in patients with osteosarcoma. Exp Ther Med 2023; 25:208. [PMID: 37090082 PMCID: PMC10119984 DOI: 10.3892/etm.2023.11907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/18/2023] [Indexed: 04/25/2023] Open
Abstract
Osteosarcoma is a malignant tumor that predominantly occurs in children or adolescents under the age of 20 years old. Metastasis and chemotherapy resistance are two problems in the treatment of osteosarcoma, and the lack of definite biomarkers impairs the course of treatment. In recent years, non-coding RNA, as a biomarker of osteosarcoma, has become an area of research focus. The role of long non-coding RNAs (lncRNAs), such as lncRNA OIP5-AS1, and circular RNAs, such as hsa_circ_0004674, in osteosarcoma have previously been revealed, and the present study investigated their clinical significance. A total of 20 samples were collected from patients with osteosarcoma. The expression levels of lncRNA OIP5-AS1 and hsa_circ_0004674 were analyzed in tumor tissues and patient serum, and their associations with chemotherapy sensitivity, lung metastasis and prognosis were assessed. The results revealed that these two non-coding RNAs were significantly upregulated in the osteosarcoma tissues of patients compared with those in the adjacent tumor tissues. In addition, the expression levels of the two non-coding RNAs were increased in the serum of patients with osteosarcoma compared with those in patients with bone fractures (P<0.01). In patients with lung metastasis or chemotherapy resistance (tumor necrosis rate <90%), the expression levels of the two non-coding RNAs were similarly increased. By plotting the receiver operating characteristic curve, it was revealed that the combination of hsa_circ_0004674 and lncRNA OIP5-AS1 was better than ALP or either non-coding RNA alone in predicting chemotherapy sensitivity and metastasis. Kaplan-Meier survival analysis showed that, in patients with osteosarcoma, higher expression of both non-coding RNAs was associated with worse survival time (log-rank test P=0.006). In conclusion, the combination of hsa_circ_0004674 and lncRNA OIP5-AS1 may be used as a better biomarker than traditional biomarkers, such as ALP, in a clinical setting.
Collapse
Affiliation(s)
- Yu-Run Zhu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
- Institute of Bone Tumors Affiliated to Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Kun-Peng Zhu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
- Institute of Bone Tumors Affiliated to Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Jian-Ping Hu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
- Institute of Bone Tumors Affiliated to Tongji University, School of Medicine, Shanghai 200072, P.R. China
| | - Shuo Tan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
- Institute of Bone Tumors Affiliated to Tongji University, School of Medicine, Shanghai 200072, P.R. China
- Correspondence to: Dr Chun-Lin Zhang or Dr Shuo Tan, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yan-chang Middle Road, Shanghai 200072, P.R. China
| | - Chun-Lin Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P.R. China
- Institute of Bone Tumors Affiliated to Tongji University, School of Medicine, Shanghai 200072, P.R. China
- Correspondence to: Dr Chun-Lin Zhang or Dr Shuo Tan, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yan-chang Middle Road, Shanghai 200072, P.R. China
| |
Collapse
|
5
|
Xiaotong S, Xiao L, Shiyu L, Zhiguo B, Chunyang F, Jianguo L. LncRNAs could play a vital role in osteosarcoma treatment: Inhibiting osteosarcoma progression and improving chemotherapy resistance. Front Genet 2023; 13:1022155. [PMID: 36726721 PMCID: PMC9885180 DOI: 10.3389/fgene.2022.1022155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Osteosarcoma (OS) is one of the most common primary solid malignant tumors in orthopedics, and its main clinical treatments are surgery and chemotherapy. However, a wide surgical resection range, functional reconstruction of postoperative limbs, and chemotherapy resistance remain as challenges for patients and orthopedists. To address these problems, the discovery of new effective conservative treatments is important. Long non-coding RNAs (lncRNAs) are RNAs longer than 200 nucleotides in length that do not encode proteins. Researchers have recently found that long non-coding RNAs are closely associated with the development of OS, indicating their potentially vital role in new treatment methods for OS. This review presents new findings regarding the association of lncRNAs with OS and summarizes potential clinical applications of OS with lncRNAs, including the downregulation of oncogenic lncRNAs, upregulation of tumor suppressive lncRNAs, and lncRNAs-based treatment to improve chemotherapy resistance. We hope these potential methods will be translated into clinical applications and greatly reduce patient suffering.
Collapse
Affiliation(s)
- Shi Xiaotong
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Li Xiao
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Liao Shiyu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Bi Zhiguo
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Feng Chunyang
- Department of Obstetrics and Gynecology, Renji Hospital of Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Feng Chunyang, ; Liu Jianguo,
| | - Liu Jianguo
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China,*Correspondence: Feng Chunyang, ; Liu Jianguo,
| |
Collapse
|
6
|
Liu F, Xiong QW, Wang JH, Peng WX. Roles of lncRNAs in childhood cancer: Current landscape and future perspectives. Front Oncol 2023; 13:1060107. [PMID: 36923440 PMCID: PMC10008945 DOI: 10.3389/fonc.2023.1060107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
According to World Health Organization (WHO), cancer is the leading cause of death for children and adolescents. Leukemias, brain cancers, lymphomas and solid tumors, such as neuroblastoma, ostesarcoma and Wilms tumors are the most common types of childhood cancers. Approximately 400,000 children and adolescents between the ages of 0 and 19 are diagnosed with cancer each year worldwide. The cancer incidence rates have been rising for the past few decades. Generally, the prognosis of childhood cancers is favorable, but the survival rate for many unresectable or recurring cancers is substantially worse. Although random genetic mutations, persistent infections, and environmental factors may serve as contributing factors for many pediatric malignancies, the underlying mechanisms are yet unknown. Long non-coding RNAs (lncRNAs) are a group of transcripts with longer than 200 nucleotides that lack the coding capacity. However, increasing evidence indicates that lncRNAs play vital regulatory roles in cancer initiation and development in both adults and children. In particular, many lncRNAs are stable in cancer patients' body fluids such as blood and urine, suggesting that they could be used as novel biomarkers. In support of this notion, lncRNAs have been identified in liquid biopsy samples from pediatric cancer patients. In this review, we look at the regulatory functions and underlying processes of lncRNAs in the initiation and progression of children cancer and discuss the potential of lncRNAs as biomarkers for early detection. We hope that this article will help researchers explore lncRNA functions and clinical applications in pediatric cancers.
Collapse
Affiliation(s)
- Fei Liu
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian-Wen Xiong
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.,Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin-Hu Wang
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Wan-Xin Peng
- Department of Nephrology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.,Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Song J, Yuan X, Piao L, Wang J, Wang P, Zhuang M, Liu J, Liu Z. Cellular functions and molecular mechanisms of ubiquitination in osteosarcoma. Front Oncol 2022; 12:1072701. [DOI: 10.3389/fonc.2022.1072701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Although some advances have been made in the treatment of osteosarcoma in recent years, surgical resection remains the mainstream treatment. Initial and early diagnosis of osteosarcoma could be very difficult to achieve due to the insufficient sensitivity for the means of examination. The distal metastasis of osteosarcoma also predicts the poor prognosis of osteosarcoma. In order to solve this series of problems, people begin to discover a new method of diagnosing and treating osteosarcoma. Ubiquitination, as an emerging posttranslational modification, has been shown to be closely related to osteosarcoma in studies over the past decades. In general, this review describes the cellular functions and molecular mechanisms of ubiquitination during the development of osteosarcoma.
Collapse
|
8
|
Wei N, Chao-yang G, Wen-ming Z, Ze-yuan L, Yong-qiang S, Shun-bai Z, Kai Z, Yan-chao M, Hai-hong Z. A ubiquitin-related gene signature for predicting prognosis and constructing molecular subtypes in osteosarcoma. Front Pharmacol 2022; 13:904448. [PMID: 36060009 PMCID: PMC9428517 DOI: 10.3389/fphar.2022.904448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Ubiquitination is medicated by three classes of enzymes and has been proven to involve in multiple cancer biological processes. Moreover, dysregulation of ubiquitination has received a growing body of attention in osteosarcoma (OS) tumorigenesis and treatment. Therefore, our study aimed to identify a ubiquitin-related gene signature for predicting prognosis and immune landscape and constructing OS molecular subtypes. Methods: Therapeutically Applicable Research to Generate Effective Treatments (TARGET) was regarded as the training set through univariate Cox regression, Lasso Cox regression, and multivariate Cox regression. The GSE21257 and GSE39055 served as the validation set to verify the predictive value of the signature. CIBERSORT was performed to show immune infiltration and the immune microenvironment. The NMF algorithm was used to construct OS molecular subtypes. Results: In this study, we developed a ubiquitin-related gene signature including seven genes (UBE2L3, CORO6, DCAF8, DNAI1, FBXL5, UHRF2, and WDR53), and the gene signature had a good performance in predicting prognosis for OS patients (AUC values at 1/3/5 years were 0.957, 0.890, and 0.919). Multivariate Cox regression indicated that the risk score model and prognosis stage were also independent prognostic prediction factors. Moreover, analyses of immune cells and immune-related functions showed a significant difference in different risk score groups and the three clusters. The drug sensitivity suggested that IC50 of proteasome inhibitor (MG-132) showed a notable significance between the risk score groups (p < 0.05). Through the NMF algorithm, we obtained the three clusters, and cluster 3 showed better survival outcomes. The expression of ubiquitin-related genes (CORO6, UBE2L3, FBXL5, DNAI1, and DCAF8) showed an obvious significance in normal and osteosarcoma tissues. Conclusion: We developed a novel ubiquitin-related gene signature which showed better predictive prognostic ability for OS and provided additional information on chemotherapy and immunotherapy. The OS molecular subtypes would also give a useful guide for individualized therapy.
Collapse
Affiliation(s)
- Nan Wei
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
| | - Gong Chao-yang
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
| | - Zhou Wen-ming
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
| | - Lei Ze-yuan
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
| | - Shi Yong-qiang
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
| | - Zhang Shun-bai
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
| | - Zhang Kai
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
| | - Ma Yan-chao
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Ma Yan-chao, ; Zhang Hai-hong,
| | - Zhang Hai-hong
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Ma Yan-chao, ; Zhang Hai-hong,
| |
Collapse
|
9
|
Fatema K, Larson Z, Barrott J. Navigating the genomic instability mine field of osteosarcoma to better understand implications of non-coding RNAs. BIOCELL 2022; 46:2177-2193. [PMID: 35755302 PMCID: PMC9224338 DOI: 10.32604/biocell.2022.020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteosarcoma is one of the most genomically complex cancers and as result, it has been difficult to assign genomic aberrations that contribute to disease progression and patient outcome consistently across samples. One potential source for correlating osteosarcoma and genomic biomarkers is within the non-coding regions of RNA that are differentially expressed. However, it is unsurprising that a cancer classification that is fraught with genomic instability is likely to have numerous studies correlating non-coding RNA expression and function have been published on the subject. This review undertakes the formidable task of evaluating the published literature of noncoding RNAs in osteosarcoma. This is not the first review on this topic and will certainly not be the last. The review is organized with an introduction into osteosarcoma and the epigenetic control of gene expression before reviewing the molecular function and expression of long non-coding RNAs, circular RNAs, and short non-coding RNAs such as microRNAs, piwi RNAs, and short-interfering RNAs. The review concludes with a review of the literature and how the biology of non-coding RNAs can be used therapeutically to treat cancers, especially osteosarcoma. We conclude that non-coding RNA expression and function in osteosarcoma is equally complex to understanding the expression differences and function of coding RNA and proteins; however, with the added lens of both coding and non-coding genomic sequence, researchers can begin to identify the patterns that consistently associate with aggressive osteosarcoma.
Collapse
Affiliation(s)
- Kaniz Fatema
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| | - Zachary Larson
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| | - Jared Barrott
- Biomedical and Pharmaceutical Science, Idaho State University, Pocatello, 83209, USA
| |
Collapse
|
10
|
Zhang Y, Xu W, Wang Y, Li J, He G, Guan M, Zeng X, Bian W, Song Y, Liu J. Oncogenic lncRNA ZNFX1 antisense RNA 1 promotes osteosarcoma cells proliferation and metastasis by stabilizing serine and arginine‑rich splicing factor 3. Bioengineered 2022; 13:5962-5974. [PMID: 35184675 PMCID: PMC8974064 DOI: 10.1080/21655979.2022.2036900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent studies have demonstrated that lncRNAs play an important role in cancers, particularly osteosarcoma. ZFAS1 is a newly identified and characterized lncRNA linked to a variety of cancers. The role of ZFAS1 in osteosarcoma is mainly unknown. This study discovered that ZFAS1 was upregulated in osteosarcoma patient tissues, which correlates with elevated SRSF3 protein levels. Higher levels of ZFAS1 or SRSF3 were linked to a poor prognosis of osteosarcoma. ZFAS1 knockdown decreased SRSF3 protein levels but had a negligible effect on SRSF3 mRNA expression. Further research indicated that ZFAS1 could bind to the SRSF3 protein directly and prevent degrading. Functional studies revealed that ZFAS1 knockdown inhibited osteosarcoma cell proliferation as measured by the CCK-8 assay, colony formation assay, and Ki-67 immunofluorescence staining. Furthermore, ZFAS1 knockdown reduced the expression of PCNA, CDK1, CDK4, and CDK6, increasing p53 and p16. IT has also been observed that ZFAS1 knockdown inhibited osteosarcoma cell migration and invasion as measured by the wound healing assay and the trans-well assay with or without Matrigel. Furthermore, exogenous SRSF3 expression in ZFAS1-depleted osteosarcoma cells restored SRSF3 expression while simultaneously inhibiting cell proliferation and metastasis. Our findings show that ZFAS1 plays an essential role in osteosarcoma progression by stabilizing the SRSF3 protein. Our study provides novel insight into the role of ZFAS1 in osteosarcoma. ZFAS1 has the potential to be used as a prognostic biomarker as well as a therapeutic target in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Wenbo Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Yanlong Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Jianming Li
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Guanyi He
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Mingyan Guan
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Xiangyu Zeng
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Wei Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Yan Song
- Department of Operating Room, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| | - Jianyu Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
11
|
Acidic Tumor Microenvironment Promotes Pancreatic Cancer through miR-451a/MEF2D Axis. JOURNAL OF ONCOLOGY 2022; 2022:3966386. [PMID: 35069734 PMCID: PMC8769849 DOI: 10.1155/2022/3966386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer (PC), as a highly malignant and aggressive solid tumor, is common in the digestive system. The acidic microenvironment is one of the critical markers of cancer. Nonetheless, there are few studies on how the acidic microenvironment affects the development of PC. This study focused on investigating the specific molecular mechanisms of the acidic microenvironment in PC. In our study, qRT-PCR was conducted for examining microRNA (miR)-451a and myocyte enhancer factor 2D (MEF2D) expressions in PANC-1 cells. Then, detailed functional effects of an acidic environment on miR-451a and MEF2D in PANC-1 cells were detected by CCK-8, colony formation, flow cytometry, wound healing, transwell, mitochondrial functionality measurement, JC-1 staining, DCFH-DA staining, and sphere formation assays. The relationship between miR-451a and MEF2D was confirmed by luciferase reporter analysis. Under acidic conditions, the increase of proliferation, migration, and invasion of PANC-1 cells was observed. Moreover, the mitochondrial oxidative respiration-related gene miR-451a was reduced in acidic conditions. In addition, we found that, in PANC-1 cells under an acidic environment, miR-451a overexpression enhanced oxygen consumption, mitochondrial membrane potential (MMP) loss, and ROS generation and inhibited proliferation, migration, invasion, and stemness via sponging MEF2D. In a word, our results revealed that the acidic microenvironment regulated PC progression by affecting the miR-451a/MEF2D axis, indicating a novel avenue for the future treatment of PC.
Collapse
|
12
|
Abstract
Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Fu C, Nie L, Yin T, Xu X, Lu W. LncRNA EPIC1 promotes proliferation and inhibits apoptosis of gallbladder cancer cells by interacting with LET. Ann Hepatol 2021; 26:100563. [PMID: 34653690 DOI: 10.1016/j.aohep.2021.100563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Long non-coding RNA (lncRNA) EPIC1 (epigenetically-induced lncRNA1) is likely involved in human cancer by promoting cell cycle progression. Our study was carried out to investigate the involvement of EPIC1 in gallbladder cancer (GBC). METHODS Expression levels of EPIC1 in two types of tissues (GBC and paracancerous) and plasma were measured by performing qPCR. GBC-SD and SGC-996 cells were transfected with low expression in tumor (LET) and EPIC1 expression vectors. RESULTS The present study found that EPIC1 was upregulated in tumor tissues than in paracancerous tissues of GBC patients, and plasma levels of EPIC1 were significantly correlated with levels of EPIC1 in tumor tissues. LncRNA LET was downregulated in tumor tissues than in paracancerous tissues and was inversely correlated with EPIC1 in both tumor tissues and paracancerous tissues. Overexpression of EPIC1 led to downregulated LET, and LET overexpression also mediated the downregulation of EPIC1. EPIC1 led to accelerated GBC cell proliferation and inhibited apoptosis. Overexpression of LET played opposites roles. In addition, LET overexpression attenuated the effects of EPIC1 overexpression on cancer cell proliferation and apoptosis. CONCLUSIONS LncRNA EPIC1 promoted proliferation and inhibited apoptosis of GBC cells by interacting with LET.
Collapse
Affiliation(s)
- Changbo Fu
- Hepatobiliary and pancreatic department, Hubei Provincial Cancer Hospital, Wuhan, Hubei, 430079, China
| | - Lei Nie
- Hepatobiliary and pancreatic department, Hubei Provincial Cancer Hospital, Wuhan, Hubei, 430079, China
| | - Tao Yin
- Hepatobiliary and pancreatic department, Hubei Provincial Cancer Hospital, Wuhan, Hubei, 430079, China
| | - Xuan Xu
- Hepatobiliary and pancreatic department, Hubei Provincial Cancer Hospital, Wuhan, Hubei, 430079, China
| | - Weijun Lu
- Hepatobiliary and pancreatic department, Hubei Provincial Cancer Hospital, Wuhan, Hubei, 430079, China.
| |
Collapse
|
14
|
|
15
|
Hou Y, Jia H, Cao Y, Zhang S, Zhang X, Wei P, Xie J, Dong W, Wang B. LncRNA EPIC1 promotes tumor angiogenesis via activating the Ang2/Tie2 axis in non-small cell lung cancer. Life Sci 2020; 267:118933. [PMID: 33359744 DOI: 10.1016/j.lfs.2020.118933] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
AIMS Non-small cell lung cancer (NSCLC) is considered a highly fatal tumor. Importantly, angiogenesis is critical for tumor progression. Long non-coding RNAs (lncRNAs), which are untranslatable, control cell functions through different pathways. lncRNA EPIC1 has been reported to promote cell viability, cell cycle progression, and invasion. However, the relationship between EPIC1 and tumor angiogenesis remains an enigma. We explored the role of EPIC1 in tumor angiogenesis in NSCLC. MATERIALS AND METHODS First, EPIC1 expression was analyzed using the GEPIA database and was further verified using qPCR in tumor tissues from patients with NSCLC and NSCLC cell lines. Next, EPIC1 function was detected using loss-of-function and gain-of-function assays. Moreover, EdU staining, flow cytometry, and channel formation assays were performed to assess HUVEC proliferation and channel the formation in the NSCLC-HUVEC transwell co-culture system. KEY FINDINGS EPIC1 expression was significantly upregulated in NSCLC tissues and cell lines. Furthermore, the overexpression of EPIC1 in NSCLC cells stimulated HUVEC channel formation and proliferation by activating Ang2/Tie2 signaling, and the opposite results were obtained when EPIC1 was silenced in NSCLC cells. The density of new blood vessels was simultaneously increased by EPIC1 overexpression in vivo, using CAM angiogenesis model and a nude mouse tumor model. Finally, all these experimental findings could be established in the samples from patients with NSCLC. We postulate that EPIC1 promotes tumor angiogenesis by activating the Ang2/Tie2 axis in NSCLC. SIGNIFICANCE Elucidating the molecular and cellular mechanisms of EPIC1 in tumor angiogenesis provides a novel perspective on NSCLC clinical therapy.
Collapse
MESH Headings
- Angiopoietin-2/genetics
- Angiopoietin-2/metabolism
- Animals
- Carcinoma, Non-Small-Cell Lung/blood supply
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Proliferation/physiology
- Cell Survival/physiology
- Chick Embryo
- Databases, Genetic
- Disease Models, Animal
- Heterografts
- Human Umbilical Vein Endothelial Cells
- Humans
- Lung Neoplasms/blood supply
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Receptor, TIE-2/genetics
- Receptor, TIE-2/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Yanjiao Hou
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Clinical Laboratory, Dezhou People's Hospital, 1166 Dongfanghong Road, Decheng District, Dezhou, Shandong 253000, China
| | - Hengmin Jia
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yanhong Cao
- Department of Clinical Laboratory, the Affliated Anhui Provincial Hospital of Anhui Medical University, Hefei, Anhui 230000, China
| | - Shuang Zhang
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiaolei Zhang
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Pingping Wei
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jun Xie
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Wenqian Dong
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Baolong Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
16
|
Guan X, Xu Y, Zheng J. Long non‑coding RNA PCAT6 promotes the development of osteosarcoma by increasing MDM2 expression. Oncol Rep 2020; 44:2465-2474. [PMID: 33125146 PMCID: PMC7610325 DOI: 10.3892/or.2020.7813] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is a severe malignant tumor. Several studies indicated that lncRNA prostate cancer-associated transcript 6 (PCAT6) promoted the development of multiple types of cancers. Studies have also revealed that MDM2 could aggravate tumor symptoms inhibiting P53 expression. However, whether lncRNA PCAT6 could affect the proliferation and metastasis of osteosarcoma cells by regulating P53 expression is unclear. The present study established lncRNA PCAT6-overexpressing osteosarcoma cells. Cell Counting Kit-8, wound healing and Transwell assays were performed to detect the change in proliferation, migration and invasion of these cells, respectively. Subsequently, E3 ubiquitin-protein ligase Mdm2 (MDM2), P53 and P21 expression were determined using western blotting. Finally, MDM2 expression was inhibited and the proliferation, migration and invasion of these cells was determined again. The present study found that the proliferation, migration and invasion of osteosarcoma cells increased following overexpression of lncRNA PCAT6. MDM2 expression was upregulated while the levels of P53 and P21 decreased following overexpression of lncRNA PCAT6. However, the proliferation, migration and invasion of osteosarcoma cells were inhibited following MDM2 knockdown. Additionally, P53 and P21 was rescued following MDM2 knockdown. To conclude, lncRNA PCAT6 promoted the proliferation, migration and invasion of osteosarcoma cells by promoting the expression of MDM2 and suppressing the expression of P53 and P21.
Collapse
Affiliation(s)
- Xiliang Guan
- Department of Orthopaedic Surgery, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Yufen Xu
- Department of Oncology, The First Hospital of Jiaxing and The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Jufen Zheng
- The Department of Bone, Zhejiang Hospital, Hangzhou, Zhejiang 310030, P.R. China
| |
Collapse
|
17
|
Zhang M, Wang N, Song P, Fu Y, Ren Y, Li Z, Wang J. LncRNA GATA3-AS1 facilitates tumour progression and immune escape in triple-negative breast cancer through destabilization of GATA3 but stabilization of PD-L1. Cell Prolif 2020; 53:e12855. [PMID: 32687248 PMCID: PMC7507373 DOI: 10.1111/cpr.12855] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/27/2020] [Accepted: 05/16/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Long non-coding RNAs (lncRNAs) have been demonstrated as crucial regulators in cancer, but whether they are involved in the immune response of cancer cells remains largely undiscovered. GATA3-AS1 is a novel lncRNA that was upregulated in breast cancer (BC) according to online databases. However, its role in triple-negative breast cancer (TNBC) was elusive. METHODS GATA3-AS1 expression in BC tissues and adjacent normal tissues was obtained from online databases. Loss-of-function assays were designed and conducted to verify the functional role of GATA3-AS1 in TNBC cells. Bioinformatic analysis and mechanism experiments were applied to explore the downstream molecular mechanism of GATA3-AS1. Similarly, the upstream mechanism which led to the upregulation of GATA3-AS1 in TNBC cells was also investigated. RESULTS GATA3-AS1 was markedly overexpressed in TNBC tissues and cells. Knockdown of GATA3-AS1 suppressed TNBC cell growth and enhanced the resistance of TNBC cells to immune response. GATA3-AS1 induced the deubiquitination of PD-L1 through miR-676-3p/COPS5 axis. GATA3-AS1 destabilized GATA3 protein by promoting GATA3 ubiquitination. CONCLUSION GATA3-AS1 contributed to TNBC progression and immune evasion through stabilizing PD-L1 protein and degrading GATA3 protein, offering a new target for the treatment of TNBC.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Breast SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Ning Wang
- Department of Internal NeurologyThe First Hospital of Suihua CitySuihuaChina
| | - Peng Song
- Department of OrthopedicsPeople's Hospital of ZhangqiuJinanChina
| | - Yingqiang Fu
- Department of Breast SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Yanlv Ren
- Department of Breast SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Zhigao Li
- Department of Breast SurgeryHarbin Medical University Cancer HospitalHarbinChina
| | - Jinsong Wang
- Department of Breast SurgeryHarbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
18
|
Zhang Y, Pu Y, Wang J, Li Z, Wang H. Research progress regarding the role of long non-coding RNAs in osteosarcoma. Oncol Lett 2020; 20:2606-2612. [PMID: 32782578 PMCID: PMC7400499 DOI: 10.3892/ol.2020.11807] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma is a malignant tumor that occurs in children and adolescents. Although treatments for osteosarcoma have improved, the likelihood of survival remains low for most patients with metastasis and recurrence. Elucidating the mechanism underlying the development of osteosarcoma and chemotherapy resistance will be important to improve diagnosis and treatment. Long non-coding RNAs (lncRNAs), which are longer than 200 nucleotides in length and do not encode for proteins, have been shown to play a regulatory role in the occurrence and development of osteosarcoma, and are expected to serve as biomarkers and molecular targets. This review discusses the progress in the study of the role of lncRNAs in osteosarcoma, and highlights the recent developments in this field.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Yanchuan Pu
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Jin Wang
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Zicai Li
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| | - Hulin Wang
- Department of Orthopedics, Wuwei People's Hospital, Wuwei, Gansu 733000, P.R. China
| |
Collapse
|
19
|
Wang N, Yang W, Li L, Tian M. MEF2D upregulation protects neurons from oxygen-glucose deprivation/re-oxygenation-induced injury by enhancing Nrf2 activation. Brain Res 2020; 1741:146878. [PMID: 32407713 DOI: 10.1016/j.brainres.2020.146878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/16/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
Accumulating evidence suggests that myocyte enhancer factor 2D (MEF2D) is a pro-survival factor for neurons. However, whether MEF2D is involved in protecting neurons from cerebral ischemia/reperfusion injury remains unknown. The current study was designed to investigate the exact role and mechanism of MEF2D in regulating oxygen-glucose deprivation/re-oxygenation (OGD/R)-induced neuronal injury, an in vitro model used to study cerebral ischemia/reperfusion injury. MEF2D expression was significantly induced in neurons in response to OGD/R injury. Functional analysis demonstrated that MEF2D upregulation significantly rescued the decreased viability of OGD/R-injured neurons and suppressed OGD/R-induced apoptosis and reactive oxygen species (ROS) production. By contrast, MEF2D knockdown increased the sensitivity of neurons to OGD/R-induced injury. Moreover, MEF2D overexpression increased the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and enhanced the activation of Nrf2 antioxidant signaling. However, Nrf2 knockdown partially blocked the MEF2D-mediated neuroprotective effect in OGD/R-exposed neurons. Overall, these results reveal that MEF2D overexpression attenuates OGD/R-induced injury by enhancing Nrf2-mediated antioxidant signaling. These findings suggest that MEF2D may serve as a neuroprotective target with a potential application for treatment of cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Nan Wang
- Department of Anesthesiology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| | - Weiwei Yang
- Department of Anesthesiology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| | - Lan Li
- Department of Anesthesiology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| | - Ming Tian
- Department of Anesthesiology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
20
|
Long Non-coding RNA EPIC1 Promotes Cell Proliferation and Motility and Drug Resistance in Glioma. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:130-137. [PMID: 32322669 PMCID: PMC7163045 DOI: 10.1016/j.omto.2020.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Evidence has revealed that long non-coding RNAs (lncRNAs) are involved in carcinogenesis and tumor progression. lncRNAs play an important role in regulation of numerous cellular processes including cell proliferation, apoptosis, cell cycle, differentiation, and motility. Several studies have demonstrated that lncRNA EPIC1 governs cell growth, cell cycle, migration, invasion, and drug resistance in human malignancies. However, the role of EPIC1 and its underlying molecular mechanisms in glioma have not been investigated. In this study, we determined the function of EPIC1 in glioma cells via upregulation or downregulation of EPIC1. We further dissected the mechanism of EPIC1-mediated tumor progression in glioma. Our results showed that inhibition of EPIC1 suppressed cell viability, induced apoptosis, inhibited cell invasion, and increased cell sensitivity to temozolomide in glioma cells. Consistently, overexpression of EPIC1 exhibited the opposite effects in glioma cells. Moreover, our data suggest that EPIC1 exerts its biological functions via targeting Cdc20 in glioma cells. In line with this, overexpression of Cdc20 reversed the EPIC1-mediated tumor progression in glioma cells. Therefore, targeting EPIC1 might be a useful approach for glioma treatment.
Collapse
|
21
|
Xia P, Liu P, Fu Q, Liu C, Luo Q, Zhang X, Cheng L, Qin T, Zhang H. Long noncoding RNA EPIC1 interacts with YAP1 to regulate the cell cycle and promote the growth of pancreatic cancer cells. Biochem Biophys Res Commun 2020; 522:978-985. [DOI: 10.1016/j.bbrc.2019.11.167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
|
22
|
LncRNA EPIC1 downregulation mediates hydrogen peroxide-induced neuronal cell injury. Aging (Albany NY) 2019; 11:11463-11473. [PMID: 31812951 PMCID: PMC6932932 DOI: 10.18632/aging.102545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
Excessive oxidative stress causes neuronal cell injury. Long non-coding RNA (LncRNA) EPIC1 (Lnc-EPIC1) is a MYC-interacting LncRNA. Its expression and potential functions in hydrogen peroxide (H2O2)-stimulated neuronal cells are studied. In SH-SY5Y neuronal cells and primary human neuron cultures, H2O2 downregulated Lnc-EPIC1 and key MYC targets (Cyclin A1, CDC20 and CDC45). Ectopic overexpression of Lnc-EPIC1 increased expression of MYC targets and significantly attenuated H2O2-induced neuronal cell death and apoptosis. Contrarily, Lnc-EPIC1 siRNA potentiated neuronal cell death by H2O2. MYC knockout by CRISPR/Cas9 method also facilitated H2O2-induced SH-SY5Y cell death. Significantly, MYC knockout abolished Lnc-EPIC1-induced actions in H2O2-stimulated neuronal cells. Together, these results suggest that Lnc-EPIC1 downregulation mediates H2O2-induced neuronal cell death.
Collapse
|
23
|
Li X, Luo Y, Liu L, Cui S, Chen W, Zeng A, Shi Y, Luo L. The long noncoding RNA ZFAS1 promotes the progression of glioma by regulating the miR-150-5p/PLP2 axis. J Cell Physiol 2019; 235:2937-2946. [PMID: 31535380 DOI: 10.1002/jcp.29199] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Numerous studies have reported that long noncoding RNA (lncRNA) dysregulation is involved in the progression of many malignant tumors, including glioma. The lncRNA ZNFX1 antisense RNA 1 (ZFAS1) plays an oncogenic role in various malignant tumors, such as gastric cancer and hepatocellular carcinoma. However, the underlying molecular mechanism of ZFAS1 in glioma has not been fully clarified. In this study, we found that the expression of ZFAS1 was upregulated in both glioma tissues and cell lines. Functional experiments revealed that ZFAS1 promoted glioma proliferation, migration and invasion, and increased resistance to temozolomide in vitro. By using online databases, RNA pull-down assays and luciferase reporter assays, ZFAS1 was demonstrated to act as a sponge of miR-150-5p. Furthermore, proteolipid protein 2 (PLP2) was shown to be the functional target of miR-150-5p. Rescue experiments revealed that ZFAS1 regulated the expression of PLP2 by sponging miR-150-5p. Finally, a xenograft tumor assay demonstrated that ZFAS1 promoted glioma growth in vivo. Our results showed that ZFAS1 promoted glioma malignant progression by regulating the miR-150-5p/PLP2 axis, which may provide a potential therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Xiaojian Li
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yidan Luo
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Liang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sitong Cui
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Chen
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ailiang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yan Shi
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liangsheng Luo
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|