1
|
Bastos Y, Rocha F, Estevinho BN. Microencapsulation of Extracts of Strawberry ( Fragaria vesca) By-Products by Spray-Drying Using Individual and Binary/Ternary Blends of Biopolymers. Molecules 2024; 29:4528. [PMID: 39407456 PMCID: PMC11477806 DOI: 10.3390/molecules29194528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Valorization of agricultural and food by-products (agri-food waste) and maximum utilization of this raw material constitute a highly relevant topic worldwide. Agri-food waste contains different types of phytochemical compounds such as polyphenols, that display a set of biological properties, including anti-inflammatory, chemo-preventive, and immune-stimulating effects. In this work, the microencapsulation of strawberry (Fragaria vesca) plant extract was made by spray-drying using individual biopolymers, as well as binary and ternary blends of pectin, alginate, and carrageenan. The microparticle morphologies depended on the formulation used, and they had an average size between 0.01 μm and 16.3 μm considering a volume size distribution. The encapsulation efficiency ranged between 81 and 100%. The kinetic models of Korsmeyer-Peppas (R2: 0.35-0.94) and Baker-Lonsdale (R2: 0.73-1.0) were fitted to the experimental release profiles. In general, the releases followed a "Fickian Diffusion" mechanism, with total release times varying between 100 and 350 (ternary blends) seconds. The microparticles containing only quercetin (one of the main polyphenols in the plant) showed higher antioxidant power compared to the extract and empty particles. Finally, the addition of the different types of microparticles to the gelatine (2.7 mPa.s) and to the aloe vera gel (640 mPa.s) provoked small changes in the viscosity of the final gelatine (2.3 and 3.3 mPa.s) and of the aloe vera gel (621-653 mPa.s). At a visual level, it is possible to conclude that in the gelatine matrix, there was a slight variation in color, while in the aloe vera gel, no changes were registered. In conclusion, these microparticles present promising characteristics for food, nutraceutical, and cosmetic applications.
Collapse
Affiliation(s)
- Yara Bastos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineer, Faculty of Engineer, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineer, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fernando Rocha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineer, Faculty of Engineer, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineer, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Berta Nogueiro Estevinho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineer, Faculty of Engineer, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineer, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
2
|
Li Y, Li S, Li D, Gao Y, Kong S, Liu J, Liu S, Ma Y, Zhou H, Ren D, Wang Q, He Y. In Vivo Tissue Distribution and Pharmacokinetics of FITC-Labelled Hizikia fusiforme Polyphenol-Polysaccharide Complex in Mice. Foods 2024; 13:3019. [PMID: 39335947 PMCID: PMC11431462 DOI: 10.3390/foods13183019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
In this study, a quantitative method based on fluorescein isothiocyanate (FITC)-labelled Hizikia fusiforme polyphenol-polysaccharide complex (HPC) and its purified fractions (PC1, PC4) was used, and its pharmacokinetics and tissue distribution were investigated in mice. The results showed that the FITC-labelled method had good linearity (R2 > 0.99), intra-day and inter-day precision (RSD, %) consistently lower than 15%, recovery (93.19-106.54%), and stability (RSD < 15%), which met the basic criteria for pharmacokinetic studies. The pharmacokinetic and tissue distribution results in mice after administration showed that all three sample groups could enter the blood circulation. and HPC-FITC had a longer half-life (T1/2: 26.92 ± 0.76 h) and mean retention time (MRT0-∞: 36.48 h) due to its larger molecular weight. The three groups of samples could be absorbed by the organism in a short time (0.5 h) mainly in the stomach and intestine; the samples could be detected in the urine after 2 h of administration indicating strong renal uptake, and faecal excretion reached its maximum at 12 h. The samples were also detected in the urine after 2 h of administration. This study provides some theoretical basis for the tissue distribution pattern of polyphenol-polysaccharide complex.
Collapse
Affiliation(s)
- Yutong Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shangkun Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Di Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yuan Gao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shuhua Kong
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Jingyi Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shu Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yichao Ma
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Hui Zhou
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (S.L.); (D.L.); (Y.G.); (S.K.); (J.L.); (S.L.); (Y.M.); (H.Z.); (D.R.); (Q.W.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
3
|
Tsirigotis-Maniecka M, Górska E, Mazurek-Hołys A, Pawlaczyk-Graja I. Unlocking the Potential of Food Waste: A Review of Multifunctional Pectins. Polymers (Basel) 2024; 16:2670. [PMID: 39339134 PMCID: PMC11436238 DOI: 10.3390/polym16182670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
This review comprehensively explores the multifunctional applications of pectins derived from food waste and by-products, emphasizing their role as versatile biomaterials in the medical-related sectors. Pectins, known for their polyelectrolytic nature and ability to form hydrogels, influence the chemical composition, sensory properties, and overall acceptability of food and pharmaceutical products. The study presents an in-depth analysis of molecular parameters and structural features of pectins, such as the degree of esterification (DE), monosaccharide composition, galacturonic acid (GalA) content, and relative amounts of homogalacturonan (HG) and rhamnogalacturonan I (RG-I), which are critical for their technofunctional properties and biological activity. Emphasis is placed on pectins obtained from various waste sources, including fruits, vegetables, herbs, and nuts. The review also highlights the importance of structure-function relationships, especially with respect to the interfacial properties and rheological behavior of pectin solutions and gels. Biological applications, including antioxidant, immunomodulatory, anticancer, and antimicrobial activities, are also discussed, positioning pectins as promising biomaterials for various functional and therapeutic applications. Recalled pectins can also support the growth of probiotic bacteria, thus increasing the health benefits of the final product. This detailed review highlights the potential of using pectins from food waste to develop advanced and sustainable biopolymer-based products.
Collapse
Affiliation(s)
- Marta Tsirigotis-Maniecka
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - Ewa Górska
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - Aleksandra Mazurek-Hołys
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - Izabela Pawlaczyk-Graja
- Laboratory of Bioproduct Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 29, 50-370 Wroclaw, Poland
| |
Collapse
|
4
|
Chen X, Wang Y, Ye Y, Yu H, Wu B. The Pre- and Post-Column Derivatization on Monosaccharide Composition Analysis, a Review. Chem Biodivers 2024; 21:e202400749. [PMID: 38856087 DOI: 10.1002/cbdv.202400749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
Polysaccharides, as common metabolic products in organisms, play a crucial role in the growth and development of living organisms. For humans, polysaccharides represent a class of compounds with diverse applications, particularly in the medical field. Therefore, the exploration of the monosaccharide composition and structural characteristics of polysaccharides holds significant importance in understanding their biological functions. This review provides a comprehensive overview of extraction methods and hydrolysis strategies for polysaccharides. It systematically analyzes strategies and technologies for determining polysaccharide composition and discusses common derivatization reagents employed in further polysaccharide studies. Derivatization is considered a fundamental strategy for determining monosaccharides, as it not only enhances the detectability of analytes but also increases detection sensitivity, especially in liquid chromatography (LC), capillary electrophoresis (CE), and gas chromatography (GC) techniques. The review meticulously examines pre-column and post-column derivatization techniques for monosaccharide analysis, categorizing them based on diverse detection methodologies. It delves into the principles and distinctive features of various derivatization reagents, offering a comparative analysis of their strengths and limitations. Ultimately, the aim is to provide guidance for selecting the most suitable derivatization approach, taking into account the structural nuances, biological functions, and reaction dynamics of polysaccharides.
Collapse
Affiliation(s)
- Xuexia Chen
- Ocean College, Zhejiang University, Zhoushan, 321000, China
| | - Yinuo Wang
- Ocean College, Zhejiang University, Zhoushan, 321000, China
| | - Yongjun Ye
- Zhejiang Suichang Huikang Pharmaceutical Industry Co., Suichang, 323000, China
| | - Huali Yu
- Lishui Institute for Quality Inspection and Testing, Lishui, 323000, China
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan, 321000, China
| |
Collapse
|
5
|
Liu M, Wang C, Zhang H, Guo H, Kang L, Li H, Li K. A systematic review on polysaccharides from Morinda officinalis How: Advances in the preparation, structural characterization and pharmacological activities. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118090. [PMID: 38521432 DOI: 10.1016/j.jep.2024.118090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morinda officinalis How is called "Ba-Ji-Tian" in Traditional Chinese Medicine (TCM), which belongs to the genus Rubiaceae and is widely used for medicinal purposes in China and other eastern Asian countries. Morinda officinalis How polysaccharides (MOPs) are one of the key bioactive components, and have a variety of biological activities, such as antioxidation, antifatigue, enhanced immunity, antiosteoporosis, ect. AIM OF THE REVIEW This review is aimed at providing comprehensive information of the latest preparation technologies, structural characterization, and pharmacological effects of MOPs. A more in-depth research on the structure and clinical pharmacology of the MOPs was explored. It could lay a foundation for further investigate the pharmacological activities and guide the safe clinical practice of MOPs. MATERIALS AND METHODS The Web of Science, PubMed, Scifinder, Google Scholar, CNKI, Wanfang database, and other online database are used to search and collect the literature on extraction and separation methods, structural characterization, and pharmacological activities of MOPs publisher from 2004 to 2023. The key words are "Morinda officinalis polysaccharides", "extraction", "isolation", "purification" and "pharmacological effects". RESULTS Morinda officinalis has been widely used in tonifying the kidney yang since ancient times, and is famous for one of the "Four Southern Medicines" in China for the treatment of depression, osteoporosis, rheumatoid arthritis, infertility, fatigue and Alzheimer's disease. The active ingredients of Morinda officinalis that have been researched on the treatment of depression and osteoporosis are mostly polysaccharides and oligosaccharides. The content of polysaccharides varies with different methods of extraction, separation and purification. MOPs have a wide range of pharmacological effects, including antioxidant, antifatigue, immunomodulatory, antiosteoporosis, and regulation of spermatogenesis activities. These pharmacological properties lay a foundation for the treatment of oxidative stress, osteoporosis, spermatogenic dysfunction, immunodeficiency, inflammation and other diseases with MOPs. CONCLUSIONS At present, MOPs have been applied in the treatment of skeletal muscle atrophy, varicocele, osteoporosis, because of its effects of enhancing immunity, improving reproduction and antioxidant. However, the structure-activity relationship of these effects are still not clear. The more deeply study could be conducted on the MOPs in the future. The toxicology and clinical pharmacology, as well as mechanism of action of MOPs were also needed to deeply studied and clarified. This paper could lay the foundation for the application and safety of MOPs in multifunctional foods and drugs.
Collapse
Affiliation(s)
- Mengyun Liu
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengdong New District, Zhengzhou, 450046, PR China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, PR China
| | - Chen Wang
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengdong New District, Zhengzhou, 450046, PR China
| | - Hongwei Zhang
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengdong New District, Zhengzhou, 450046, PR China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, PR China
| | - Hui Guo
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengdong New District, Zhengzhou, 450046, PR China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, PR China
| | - Le Kang
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengdong New District, Zhengzhou, 450046, PR China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, PR China
| | - Hongwei Li
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengdong New District, Zhengzhou, 450046, PR China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, PR China.
| | - Kai Li
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengdong New District, Zhengzhou, 450046, PR China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou, 450046, PR China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Zhengzhou, 450046, PR China.
| |
Collapse
|
6
|
Couto AF, Estevinho BN. Valorization of Agricultural By-Products ( Fragaria vesca) through the Production of Value-Added Micro/Nanostructures Using Electrohydrodynamic Techniques. Foods 2024; 13:1162. [PMID: 38672833 PMCID: PMC11048920 DOI: 10.3390/foods13081162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
An innovative approach for the production of bio-micro/nanostructures with high-value compounds from agricultural by-products was studied. This research aimed to valorize bioactive compounds existing in the by-products of the plants of Fragaria vesca (wild strawberry). The particle characteristics, morphology, size, release properties, and antioxidant activity of micro/nanostructures containing the extract of by-products of the plants of Fragaria vesca or quercetin (one of the main polyphenols in the plant) were analyzed. The electrohydrodynamic (EHD) technique was utilized for encapsulation. The results showed that the morphology and size of the structures were influenced by the concentration of zein, with 10% w/v zein concentration leading to irregular and non-uniform nanostructures, while 20% w/v zein concentration resulted in a mixture of microparticles and thin fibers with an irregular surface. The type and concentration of the core material did not significantly affect the morphology of the micro/nanostructures. In vitro release studies demonstrated the controlled release of the core materials from the zein micro/nanostructures. The release profiles were analyzed using the Korsmeyer-Peppas and Weibull models, which provided insights into the release mechanisms and kinetics. The most relevant release mechanism is associated with "Fickian Diffusion". The antioxidant activity of the structures was evaluated using an ABTS radical-scavenging assay, indicating their potential as antioxidants. In conclusion, the EHD technique enabled the successful encapsulation of Fragaria vesca by-product extract and quercetin with zein, resulting in micro/nanostructures with different morphologies.
Collapse
Affiliation(s)
- Ana Francisca Couto
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Berta N. Estevinho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
7
|
Elayeb R, Bermúdez-Oria A, Lazreg Aref H, Majdoub H, Ritzoulis C, Mannu A, Le Cerf D, Carraro M, Achour S, Fernández-Bolaños J, Trigui M. Antioxidant polysaccharide-enriched fractions obtained from olive leaves by ultrasound-assisted extraction with α-amylase inhibition, and antiproliferative activities. 3 Biotech 2024; 14:92. [PMID: 38425411 PMCID: PMC10899153 DOI: 10.1007/s13205-024-03939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Polysaccharide-rich materials were extracted from the alcohol-insoluble solids of Olea europaea l. **leaves. Structural characteristics were determined by colorimetric techniques, FT-IR, GC-MS, SEC/MALS/VD/DRI, and NMR (1H,13C). The extract and its main macromolecular components were characterized to assess their ability toward antioxidant, α-amylase inhibition, and antiproliferative activities. Results revealed that the ultrasound olive leave extract comprises polysaccharides with uronic acid, galactose, arabinose, and glucose in molar percentages of 11.7%, 11.3%, 7.5%, and 4.9% respectively, constituting 41% of the total mass. In addition, polyphenols (21%) and proteins (9%) are associated with these polysaccharides. Further, the extract showed noticeable ORAC and free radical scavenging abilities, in addition to high in vitro antiproliferative activity against Caco-2 colon carcinoma cell lines. Similarly, the extract exhibited a strong, uncompetitive inhibition of α-amylase by 75% in the presence of the extract with 0.75 µg/mL of concentration. This research concludes that ultrasound extraction method can be used for the extraction of polysaccharide-polyphenol-protein complexes. These conjugates exhibit the potential for combined biological activities resulting from a synergistic effect of its compounds, making them promising ingredients for the development of functional food.
Collapse
Affiliation(s)
- Rania Elayeb
- Bioresources, Integrative Biology and Valorization Research Laboratory “BIOLIVAL” (UR03ES09), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
- Department of Food Phytochemistry, Fat Institute (Spanish National Research Council, CSIC), Seville, Spain
| | - Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Fat Institute (Spanish National Research Council, CSIC), Seville, Spain
| | - Houda Lazreg Aref
- Laboratory of Genetics, Biodiversity and Bioresources Valuation LR11S41, Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, 5000 Monastir, Tunisia
| | - Christos Ritzoulis
- Department of Food Technology, ATEI of Thessaloniki, 57400 Thessaloniki, Greece
| | - Alberto Mannu
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Didier Le Cerf
- UNIROUEN, INSA Rouen, CNRS, PBS, Normandie University, 76000 Rouen, France
| | - Massimo Carraro
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Sami Achour
- Bioresources, Integrative Biology and Valorization Research Laboratory “BIOLIVAL” (UR03ES09), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Fat Institute (Spanish National Research Council, CSIC), Seville, Spain
| | - Maher Trigui
- Bioresources, Integrative Biology and Valorization Research Laboratory “BIOLIVAL” (UR03ES09), Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| |
Collapse
|
8
|
Liang J, Yang S, Liu Y, Li H, Han M, Gao Z. Characterization and stability assessment of polyphenols bound to Lycium barbarum polysaccharide: Insights from gastrointestinal digestion and colon fermentation. Food Res Int 2024; 179:114036. [PMID: 38342549 DOI: 10.1016/j.foodres.2024.114036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/13/2024]
Abstract
Polysaccharides and polyphenols are biologically active components that coexist in Lycium barbarum fruit, and there may be interactions between them that affect the release of each other. In this study, polyphenols bound to L. barbarum polysaccharide (LBP) were characterized, and the stability of bound phenolics (BP) was assessed by gastrointestinal digestion and colon fermentation. The results showed that a total of 65 phytochemicals such as flavonoids, phenolic acids, and coumarins were identified by UPLC-MS/MS. Quantitative analysis revealed that the major phenolic constituents were rutin, p-coumaric acid, catechin, ferulic acid, protocatechuic acid, and gallic acid, and their contents were 58.72, 24.03, 14.24, 13.28, 10.39, and 6.7 mg GAE/100 g DW, respectively. The release of BP by gastric digestion and gastrointestinal digestion was 9.67 % and 19.39 %, respectively. Most polyphenols were greatly affected by gastric digestion, while rutin was released in small intestine. The BP were fully released (49.77 %) and metabolized by gut microorganisms, and a considerable number of intermediates and end-products were detected, such as phloroglucinol, phenylacetic acid, and phenyllactic acid. Microbiomics data emphasized the positive impact of LBP on gut bacteria of Bacteroides, Parabacteroides, and Clostridioides. These findings could deepen our understanding of the bioavailability and biological fate of BP and also provide reference data for nutrient release and utilization of L. barbarum as a whole.
Collapse
Affiliation(s)
- Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuang Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanye Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Zhou Y, Liu W, Cao W, Cheng Y, Liu Z, Chen X. Effect of hydrophobic property on antibacterial activities of green tea polysaccharide conjugates against Escherichia coli. Int J Biol Macromol 2023; 253:126583. [PMID: 37652321 DOI: 10.1016/j.ijbiomac.2023.126583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
We previously found that green tea polysaccharide conjugates (gTPCs) have antibacterial activity against Escherichia coli. In this study, the effect of hydrophobic property on the antibacterial activities of gTPCs was evaluated to elucidate their property-activity relationship. Three gTPCs (gTPCs-5 h, gTPCs-12 h and gTPCs-24 h) were extracted from green tea with the ethanol precipitation time of 5 h, 12 h and 24 h, respectively. These three gTPCs did not differ significantly in terms of molecular weight distribution, amino acids composition and zeta potentials. Fourier transform infrared spectroscopy results revealed that gTPCs-5 h and gTPCs-12 h processed more hydrogen bonds than gTPCs-24 h. The surface hydrophobicity and contact angle of gTPCs-5 h were larger than that of gTPCs-12 h and gTPCs-24 h. The antibacterial activity of gTPCs against E. coli decreased in the order of gTPCs-5 h > gTPCs-12 h > gTPCs-24 h. There wasn't significant difference among the zeta potentials of E. coli treated by gTPCs-5 h, gTPCs-12 h and gTPCs-24 h, but the bacterial contact angles of E. coli treated by gTPCs-5 h were higher compared with those of the other two gTPCs. Furthermore, gTPCs-5 h exhibited higher activity to decrease bacterial membrane proteins, and increase bacterial membrane permeability than the other two gTPCs. In conclusion, gTPCs with higher hydrophobicity property exhibited stronger antibacterial activity against E. coli.
Collapse
Affiliation(s)
- Yin Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Weiya Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Wendan Cao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Yong Cheng
- Zhejiang Skyherb Biotechnology Inc., Huzhou 313300, China
| | - Zhong Liu
- Hubei August Flower Food Co. LTD, Xianning 437000, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
10
|
Zhu H, Yi X, Jia SS, Liu CY, Han ZW, Han BX, Jiang GC, Ding ZF, Wang RL, Lv GP. Optimization of Three Extraction Methods and Their Effect on the Structure and Antioxidant Activity of Polysaccharides in Dendrobium huoshanense. Molecules 2023; 28:8019. [PMID: 38138509 PMCID: PMC10745764 DOI: 10.3390/molecules28248019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Dendrobium huoshanense is a famous edible and medicinal herb, and polysaccharides are the main bioactive component in it. In this study, response surface methodology (RSM) combined with a Box-Behnken design (BBD) was used to optimize the enzyme-assisted extraction (EAE), ultrasound-microwave-assisted extraction (UMAE), and hot water extraction (HWE) conditions and obtain the polysaccharides named DHP-E, DHP-UM, and DHP-H. The effects of different extraction methods on the physicochemical properties, structure characteristics, and bioactivity of polysaccharides were compared. The differential thermogravimetric curves indicated that DHP-E showed a broader temperature range during thermal degradation compared with DHP-UM and DHP-H. The SEM results showed that DHP-E displayed an irregular granular structure, but DHP-UM and DHP-H were sponge-like. The results of absolute molecular weight indicated that polysaccharides with higher molecular weight detected in DHP-H and DHP-UM did not appear in DHP-E due to enzymatic degradation. The monosaccharide composition showed that DHPs were all composed of Man, Glc, and Gal but with different proportions. Finally, the glycosidic bond types, which have a significant effect on bioactivity, were decoded with methylation analysis. The results showed that DHPs contained four glycosidic bond types, including Glcp-(1→, →4)-Manp-(1→, →4)-Glcp-(1→, and →4,6)-Manp-(1→ with different ratios. Furthermore, DHP-E exhibited better DPPH and ABTS radical scavenging activities. These findings could provide scientific foundations for selecting appropriate extraction methods to obtain desired bioactivities for applications in the pharmaceutical and functional food industries.
Collapse
Affiliation(s)
- Hua Zhu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (X.Y.); (S.-S.J.); (C.-Y.L.); (Z.-W.H.)
| | - Xin Yi
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (X.Y.); (S.-S.J.); (C.-Y.L.); (Z.-W.H.)
| | - Si-Si Jia
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (X.Y.); (S.-S.J.); (C.-Y.L.); (Z.-W.H.)
| | - Chun-Yao Liu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (X.Y.); (S.-S.J.); (C.-Y.L.); (Z.-W.H.)
| | - Zi-Wei Han
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (X.Y.); (S.-S.J.); (C.-Y.L.); (Z.-W.H.)
| | - Bang-Xing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
| | - Gong-Cheng Jiang
- Key Laboratory of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 211200, China; (G.-C.J.); (Z.-F.D.)
| | - Zheng-Feng Ding
- Key Laboratory of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 211200, China; (G.-C.J.); (Z.-F.D.)
| | - Ren-Lei Wang
- Key Laboratory of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 211200, China; (G.-C.J.); (Z.-F.D.)
| | - Guang-Ping Lv
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (X.Y.); (S.-S.J.); (C.-Y.L.); (Z.-W.H.)
| |
Collapse
|
11
|
Li S, He Y, Zhong S, Li Y, Di Y, Wang Q, Ren D, Liu S, Li D, Cao F. Antioxidant and Anti-Aging Properties of Polyphenol-Polysaccharide Complex Extract from Hizikia fusiforme. Foods 2023; 12:3725. [PMID: 37893618 PMCID: PMC10606324 DOI: 10.3390/foods12203725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Hizikia fusiforme has a long history of consumption and medicinal use in China. It has been found that natural plants containing polyphenol-polysaccharide complexes have better activity compared with polyphenols and polysaccharides. Therefore, in this study on enzymatic hydrolysis and fractional alcohol precipitation, two kinds of polyphenol-polysaccharide complexes (PPC), PPC1 and PPC2, were initially obtained from Hizikia fusiforme, while the dephenolization of PPC1 and PPC2 produced PPC3 and PPC4. Through in vitro assays, PPC2 and PPC4 were found to have higher antioxidant activity, and thus were selected for testing the PPCs' anti-aging activity in a subsequent in vivo experiment with D-gal-induced aging in mice. The results indicated that PPCs could regulate the expressions of antioxidant enzymes and products of oxidation, elevate the expressions of genes and proteins related to the Nrf2 pathway in the mouse brain, enrich the gut microbiota species and increase the Bacteroidota-Firmicute (B/F) ratio. Above all, the Hizikia fusiforme polyphenol-polysaccharide complex has potential in the development of natural anti-aging drugs.
Collapse
Affiliation(s)
- Shangkun Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yutong Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yuan Di
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shu Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Di Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Fangjie Cao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
12
|
Bermúdez-Oria A, Fernández-Prior A, Luisa Castejón M, Rodríguez-Gutiérrez G, Fernández-Bolaños J. Extraction of polyphenols associated with pectin from olive waste (alperujo) with choline chloride. Food Chem 2023; 419:136073. [PMID: 37030208 DOI: 10.1016/j.foodchem.2023.136073] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/15/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
The main by-product from olive oil extraction (alperujo) was extracted with hot water, citric acid, natural deep eutectic solvent (choline chloride: citric acid), and only choline chloride. The purified extracts were composed of macromolecular complexes constituting polyphenols associated with pectin. The extracts were structurally characterized by FT-IR and solid-NMR spectroscopy and an in vitro test revealed distinct antioxidant and antiproliferative activity, depending on the extracting agents. The choline chloride-extracted complex contained the highest amount of polyphenols among the examined agents, which exhibited a strong antioxidant activity and significant antiproliferative capacity. However, the complex extracted by hot water showed the highest antiproliferative capacity in vitro against the colon carcinoma Caco-2 cell line. In this finding, choline chloride could be used as a novel, green and promising alternative to the conventional extracting agent for the production of complexes that combine the antioxidant activity of phenolic compounds and the physiological effects of pectic polysaccharides.
Collapse
Affiliation(s)
- Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Africa Fernández-Prior
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - María Luisa Castejón
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Guillermo Rodríguez-Gutiérrez
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain.
| |
Collapse
|
13
|
Tang Y, Zhang X, Lin Y, Sun J, Chen S, Wang W, Li J. Insights into the Oxidative Stress Alleviation Potential of Enzymatically Prepared Dendrobium officinale Polysaccharides. Molecules 2023; 28:molecules28073071. [PMID: 37049834 PMCID: PMC10095697 DOI: 10.3390/molecules28073071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
(1) Background: The extraction parameters can dramatically alter the extraction rate and biological activity of polysaccharides. (2) Methods: Here, an enzyme-assisted extraction (EAE) was employed to extract D. officinale polysaccharides (DOPs), and its optimal extraction conditions were established by single-factor and Box-Behnken design (BBD) experiments. Further, on the basis of in vitro antioxidant capacity, the paraquat (PQ)-induced oxidative stress of Caenorhabditis elegans (C. elegans) was chosen as a research model to explore the antioxidant activity of DOPs. (3) Results: The results showed that the extraction yield of DOPs reached 48.66% ± 1.04% under the optimal condition. In vitro experiments had shown that DOPs have considerable ABTS+ radical scavenging capacity (EC50 = 7.27 mg/mL), hydroxyl radical scavenging capacity (EC50 = 1.61 mg/mL), and metal chelating power (EC50 = 8.31 mg/mL). Furthermore, in vivo experiments indicated that DOPs (0.25 mg/mL) significantly prolonged the lifespan, increased antioxidant enzyme activity, and upregulated the expression of daf-16 (>5.6-fold), skn-1 (>5.2-fold), and sir-2.1 (>2.3-fold) of C. elegans. (4) Conclusions: DOPs can be efficiently extracted by EAE and are effective in the reduction of oxidative stress levels in C. elegans.
Collapse
Affiliation(s)
- Yingqi Tang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiong Zhang
- Hangzhou Zaoxianyibu Food Technology Co., Ltd., Hangzhou 310018, China
| | - Yudan Lin
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jiehan Sun
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Shihao Chen
- Hangzhou Jiuxian Biotechnology Co., Ltd., Hangzhou 311618, China
| | - Weimin Wang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jia Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
14
|
Guo Q, Xiao X, Lu L, Ai L, Xu M, Liu Y, Goff HD. Polyphenol-Polysaccharide Complex: Preparation, Characterization and Potential Utilization in Food and Health. Annu Rev Food Sci Technol 2022; 13:59-87. [PMID: 35041793 DOI: 10.1146/annurev-food-052720-010354] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polysaccharides and polyphenols coexist in many plant-based food products. Polyphenol-polysaccharide interactions may affect the physicochemical, functional, and physiological properties, such as digestibility, bioavailability, and stability, of plant-based foods. In this review, the interactions (physically or covalently linked) between the selected polysaccharides and polyphenols are summarized. The preparation and structural characterization of the polyphenol-polysaccharide conjugates, their structural-interaction relationships, and the effects of the interactions on functional and physiological properties of the polyphenol and polysaccharide molecules are reviewed. Moreover, potential applications of polyphenol-polysaccharide conjugates are discussed. This review aids in a comprehensive understanding of the synthetic strategy, beneficial bioactivity, and potential application of polyphenol-polysaccharide complexes. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Xingyue Xiao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Laifeng Lu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China;
| | - Meigui Xu
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - H Douglas Goff
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
15
|
The Antidiabetic Effect of Grape Pomace Polysaccharide-Polyphenol Complexes. Nutrients 2021; 13:nu13124495. [PMID: 34960047 PMCID: PMC8709276 DOI: 10.3390/nu13124495] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic metabolic diseases of the 21st century. Nevertheless, its prevalence might be attenuated by taking advantage of bioactive compounds commonly found in fruits and vegetables. This work is focused on the recovery of polyphenols and polysaccharide–polyphenol conjugates from grape pomace for T2DM management and prevention. Bioactives were extracted by solid–liquid extraction and by pressurized hot water extraction (PHWE). Polyphenolic fraction recovered by PHWE showed the highest value for total phenolic content (427 μg GAE.mg−1), mainly anthocyanins and proanthocyanidins, and higher antioxidant activity compared to the fraction recovered by solid–liquid extraction. Polysaccharide–polyphenol conjugates comprehended pectic polysaccharides to which approximately 108 μg GAE of phenolic compounds (per mg fraction) were estimated to be bound. Polyphenols and polysaccharide–polyphenol conjugates exhibited distinct antidiabetic effects, depending on the extraction methodologies employed. Extracts were particularly relevant in the inhibition of a-glucosidase activity, with free polyphenols showing an IC50 of 0.47 μg.mL−1 while conjugates showed an IC50 of 2.7, 4.0 and 5.2 μg.mL−1 (solid–liquid extraction, PHWE at 95 and 120 °C, respectively). Antiglycation effect was more pronounced for free polyphenols recovered by PHWE, while the attenuation of glucose uptake by Caco-2 monolayers was more efficient for conjugates obtained by PHWE. The antidiabetic effect of grape pomace bioactives opens new opportunities for the exploitation of these agri-food wastes in food nutrition, the next step towards reaching a circular economy in grape products.
Collapse
|
16
|
Zhang Q, Li Y, Zhong X, Fu W, Luo X, Feng J, Yuan M, Xiao L, Xu H. Polyphenolic-protein-polysaccharide conjugates from Spica of Prunella vulgaris: Chemical profile and anti-herpes simplex virus activities. Int J Biol Macromol 2021:S0141-8130(21)02605-2. [PMID: 34871656 DOI: 10.1016/j.ijbiomac.2021.11.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/14/2021] [Accepted: 11/27/2021] [Indexed: 10/19/2022]
Abstract
Previous studies showed that the water extract (PVW) from Spica of Prunella vulgaris Linn. (Labiatae) exerts anti-herpes simplex virus (HSV) activity. Evaluation the antiviral activity of the graded ethanol precipitations indicated that 30% ethanol precipitate (PVE30) was the active principle of water extract (PVW). Further activity-oriented separation of PVE30 through salting-out method revealed that the anti-HSV activity of P. vulgaris glycoconjugates (PVG) was more potent than PVE30 and PVW, 2-fold and 4-fold, respectively. UPLC-QTOF-MS/MS, FT-IR and NMR techniques identified PVG as a type of polyphenolic-protein-polysaccharides (PPPs) with an average molecular weight of 41.69 kDa. PVG was composed of dibenzylbutyrolactone lignan units, and rich in galacturonic acid, xylose, rhamnose, rhamnose, arabinose, glucose monosaccharide units, glutamic acid and aspartic acid. Further in vitro antiviral testing confirmed that PVG substantially and stably inhibited acyclovir (ACV) resistant HSV strains; its inhibitory action was even better than the positive control ACV. Overall, our findings support PVG as a potential drug resource for anti-HSV therapy.
Collapse
Affiliation(s)
- Qunshuo Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Xuanlei Zhong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Wenwei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Xiaomei Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Jiling Feng
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Lianbo Xiao
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Guanghua Integrative Medicine Hospital, Shanghai 200052, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| |
Collapse
|
17
|
Das S, Nadar SS, Rathod VK. Integrated strategies for enzyme assisted extraction of bioactive molecules: A review. Int J Biol Macromol 2021; 191:899-917. [PMID: 34534588 DOI: 10.1016/j.ijbiomac.2021.09.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Conventional methods of extracting bioactive molecules are gradually losing pace due to their numerous disadvantages, such as product degradation, lower efficiency, and toxicity. Thus, in light of the rising demand for these bioactive, enzymes have garnered much attention for their efficiency in extraction. However, enzyme-assisted extraction is also plagued with a high capital cost that cannot justify the extraction yields obtained. In order to mitigate these problems, enzyme-assisted extraction can be consorted with non-conventional methods. This review includes current progress concerning the combined approaches while converging the recent advancements in the field that outperformed conventional extraction processes. It also highlights the design of biocatalyst and key parameters involved in the effective extraction of bioactive molecules. An integrated approach for efficiently extracting polyphenols, essential oils, pigments, and vitamins has been comprehensively reviewed. Furthermore, the different immobilization strategies have been discussed for large-scale implementation of enzymes for extraction. The integration of advanced non-conventional methods with enzyme-assisted extraction will open new avenues to enhance the overall extraction efficiency.
Collapse
Affiliation(s)
- Srija Das
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E) Mumbai 400019, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E) Mumbai 400019, India
| | - Virendra K Rathod
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E) Mumbai 400019, India.
| |
Collapse
|
18
|
Nazarbek G, Kutzhanova A, Nurtay L, Mu C, Kazybay B, Li X, Ma C, Amin A, Xie Y. Nano-evolution and protein-based enzymatic evolution predicts novel types of natural product nanozymes of traditional Chinese medicine: cases of herbzymes of Taishan-Huangjing ( Rhizoma polygonati) and Goji ( Lycium chinense). NANOSCALE ADVANCES 2021; 3:6728-6738. [PMID: 36132653 PMCID: PMC9418865 DOI: 10.1039/d1na00475a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/09/2021] [Indexed: 06/01/2023]
Abstract
Nanozymes and natural product-derived herbzymes have been identified in different types of enzymes simulating the natural protein-based enzyme function. How to explore and predict enzyme types of novel nanozymes when synthesized remains elusive. An informed analysis might be useful for the prediction. Here, we applied a protein-evolution analysis method to predict novel types of enzymes with experimental validation. First, reported nanozymes were analyzed by chemical classification and nano-evolution. We found that nanozymes are predominantly classified as protein-based EC1 oxidoreductase. In comparison, we analyzed the evolution of protein-based natural enzymes by a phylogenetic tree and the most conserved enzymes were found to be peroxidase and lyase. Therefore, the natural products of Rhizoma polygonati and Goji herbs were analyzed to explore and test the potent new types of natural nanozymes/herbzymes using the simplicity simulation of natural protein enzyme evolution as they contain these conserved enzyme types. The experimental validation showed that the natural products from the total extract of nanoscale traditional Chinese medicine Huangjing (RP, Rhizoma polygonati) from Mount-Tai (Taishan) exhibit fructose-bisphosphate aldolase of lyase while nanoscale Goji (Lycium chinense) extract exhibits peroxidase activities. Thus, the bioinformatics analysis would provide an additional tool for the virtual discovery of natural product nanozymes.
Collapse
Affiliation(s)
- Guldan Nazarbek
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| | - Aidana Kutzhanova
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| | - Lazzat Nurtay
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| | - Chenglin Mu
- Sino-German Joint Research Center on Agricultural Biology, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Tai'an 271018 China
| | - Bexultan Kazybay
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| | - Xugang Li
- Sino-German Joint Research Center on Agricultural Biology, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Tai'an 271018 China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Amr Amin
- Biology Department, UAE University Al Ain 15551 UAE
- The College, The University of Chicago Chicago IL 60637 USA
| | - Yingqiu Xie
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| |
Collapse
|
19
|
Mirzadeh M, Keshavarz Lelekami A, Khedmat L. Plant/algal polysaccharides extracted by microwave: A review on hypoglycemic, hypolipidemic, prebiotic, and immune-stimulatory effect. Carbohydr Polym 2021; 266:118134. [PMID: 34044950 DOI: 10.1016/j.carbpol.2021.118134] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/04/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Microwave-assisted extraction (MAE) is an emerging technology to obtain polysaccharides with an extensive spectrum of biological characteristics. In this study, the hypoglycemic, hypolipidemic, prebiotic, and immunomodulatory (e.g., antiinflammatory, anticoagulant, and phagocytic) effects of algal- and plant-derived polysaccharides rich in glucose, galactose, and mannose using MAE were comprehensively discussed. The in vitro and in vivo results showed that these bioactive macromolecules with the low digestibility rate could effectively alleviate the fatty acid-induced lipotoxicity, acute hemolysis, and dyslipidemia status. The optimally extracted glucomannan- and glucogalactan-containing polysaccharides revealed significant antidiabetic effects through inhibiting α-amylase and α-glucosidase, improving dynamic insulin sensitivity and secretion, and promoting pancreatic β-cell proliferation. These bioactive macromolecules as prebiotics not only improve the digestibility in gastrointestinal tract but also reduce the survival rate of pathogens and tumor cells by activating macrophages and producing pro-inflammatory biomarkers and cytokines. They can effectively prevent gastrointestinal disorders and microbial infections without any toxicity.
Collapse
Affiliation(s)
- Monirsadat Mirzadeh
- Metabolic Disease Research Center, Research Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Keshavarz Lelekami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Leila Khedmat
- Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Nai J, Zhang C, Shao H, Li B, Li H, Gao L, Dai M, Zhu L, Sheng H. Extraction, structure, pharmacological activities and drug carrier applications of Angelica sinensis polysaccharide. Int J Biol Macromol 2021; 183:2337-2353. [PMID: 34090852 DOI: 10.1016/j.ijbiomac.2021.05.213] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/04/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
Angelica sinensis polysaccharide (ASP) is one of the main active components of Angelica sinensis (AS) that is widely used in traditional Chinese medicine. ASP is water-soluble polysaccharides, and it is mainly composed of glucose (Glc), galactose (Gal), arabinose (Ara), rhamnose (Rha), fucose (Fuc), xylose (Xyl) and galacturonic acid (GalUA). The extraction methods of ASP include hot water extraction and ultrasonic wave extraction, and different extraction methods can affect the yield of ASP. ASP has a variety of pharmacological activities, including hematopoietic activity, promoting immunity, antitumor, anti-inflammatory, antioxidant, anti-aging, anti-virus, liver protection, and so on. As a kind of natural polysaccharide, ASP has potential application as drug carriers. This review provides a comprehensive summary of the latest extraction and purification methods of ASP, the strategies used for monosaccharide compositional analysis plus polysaccharide structural characterization, pharmacological activities and drug carrier applications, and it can provide a basis for further study on ASP.
Collapse
Affiliation(s)
- Jijuan Nai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chao Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengmeng Dai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
21
|
Saeidy S, Petera B, Pierre G, Fenoradosoa TA, Djomdi D, Michaud P, Delattre C. Plants arabinogalactans: From structures to physico-chemical and biological properties. Biotechnol Adv 2021; 53:107771. [PMID: 33992708 DOI: 10.1016/j.biotechadv.2021.107771] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/10/2021] [Accepted: 05/08/2021] [Indexed: 01/02/2023]
Abstract
Arabinogalactans (AGs) are plant heteropolysaccharides with complex structures occasionally attached to proteins (AGPs). AGs in cell matrix of different parts of plant are freely available or chemically bound to pectin rhamnogalactan. Type I with predominantly β-d-(1 → 4)-galactan and type II with β-d-(1 → 3) and/or (1 → 6)-galactan structural backbones construct the two main groups of AGs. In the current review, the chemical structure of AGs is firstly discussed focusing on non-traditional plant sources and not including well known industrial gums. After that, processes for their extraction and purification are considered and finally their techno-functional and biological properties are highlighted. The role of AG structure and function on health advantages such as anti-tumor, antioxidant, anti-ulcer- anti-diabetic and other activites and also the immunomodulatory effects on in-vivo model systems are overviewed.
Collapse
Affiliation(s)
- S Saeidy
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - B Petera
- Faculté des Sciences de l'Université d'Antsiranana, BP O 201 Antsiranana, Madagascar; Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - G Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - T A Fenoradosoa
- Faculté des Sciences de l'Université d'Antsiranana, BP O 201 Antsiranana, Madagascar
| | - Djomdi Djomdi
- Department of Renewable Energy, National Advanced School of Engineering of Maroua, University of Maroua, Cameroon
| | - P Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France.
| | - C Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
22
|
Arruda HS, Silva EK, Peixoto Araujo NM, Pereira GA, Pastore GM, Marostica Junior MR. Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems. Molecules 2021; 26:2632. [PMID: 33946376 PMCID: PMC8125576 DOI: 10.3390/molecules26092632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Anthocyanins are naturally occurring phytochemicals that have attracted growing interest from consumers and the food industry due to their multiple biological properties and technological applications. Nevertheless, conventional extraction techniques based on thermal technologies can compromise both the recovery and stability of anthocyanins, reducing their global yield and/or limiting their application in food systems. The current review provides an overview of the main innovative processes (e.g., pulsed electric field, microwave, and ultrasound) used to recover anthocyanins from agri-food waste/by-products and the mechanisms involved in anthocyanin extraction and their impacts on the stability of these compounds. Moreover, trends and perspectives of anthocyanins' applications in food systems, such as antioxidants, natural colorants, preservatives, and active and smart packaging components, are addressed. Challenges behind anthocyanin implementation in food systems are displayed and potential solutions to overcome these drawbacks are proposed.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Eric Keven Silva
- Department of Food Engineering, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| | - Nayara Macêdo Peixoto Araujo
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Gustavo Araujo Pereira
- School of Food Engineering, Institute of Technology, Federal University of Pará, Augusto Corrêa Street S/N, Belém 66075-110, Brazil;
| | - Glaucia Maria Pastore
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Mario Roberto Marostica Junior
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| |
Collapse
|
23
|
Dujnič V, Matulová M, Chyba A, Pätoprstý V. Polysaccharides in Siraitia grosvenori flowers and herbal tea. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Idrovo Encalada AM, De’Nobili MD, Ponce ANM, Stortz CA, Fissore EN, Rojas AM. Antioxidant edible film based on a carrot pectin‐enriched fraction as an active packaging of a vegan cashew ripened cheese. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alondra Mariela Idrovo Encalada
- Departamento de Industrias‐ITAPROQ Facultad de Ciencias Exactas y Naturales University of Buenos AiresCiudad Universitaria Ciudad de Buenos AiresC1428BGAArgentina
| | - Maria Dolores De’Nobili
- Departamento de Industrias‐ITAPROQ Facultad de Ciencias Exactas y Naturales University of Buenos AiresCiudad Universitaria Ciudad de Buenos AiresC1428BGAArgentina
| | - Andrea Nora M. Ponce
- Departamento de Química Orgánica‐CIHIDECAR Facultad de Ciencias Exactas y Naturales University of Buenos AiresCiudad Universitaria Ciudad de Buenos AiresC1428BGAArgentina
| | - Carlos Arturo Stortz
- Departamento de Química Orgánica‐CIHIDECAR Facultad de Ciencias Exactas y Naturales University of Buenos AiresCiudad Universitaria Ciudad de Buenos AiresC1428BGAArgentina
| | - Eliana Noemi Fissore
- Departamento de Industrias‐ITAPROQ Facultad de Ciencias Exactas y Naturales University of Buenos AiresCiudad Universitaria Ciudad de Buenos AiresC1428BGAArgentina
| | - Ana Maria Rojas
- Departamento de Industrias‐ITAPROQ Facultad de Ciencias Exactas y Naturales University of Buenos AiresCiudad Universitaria Ciudad de Buenos AiresC1428BGAArgentina
| |
Collapse
|
25
|
Amirabbasi S, Elhamirad AH, Saeediasl MR, Armin M, Ziaolhagh SHR. Optimization of polyphenolic compounds extraction methods from Okra stem. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00641-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Tsirigotis-Maniecka M. Alginate-, Carboxymethyl Cellulose-, and κ-Carrageenan-Based Microparticles as Storage Vehicles for Cranberry Extract. Molecules 2020; 25:E3998. [PMID: 32887305 PMCID: PMC7504800 DOI: 10.3390/molecules25173998] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
This study discusses the relationship between the structural properties of the selected polysaccharides (low (ALGLV) and medium viscosity (ALGMV) sodium alginate, 90 kDa (CMC90) and 250 kDa (CMC250) carboxymethyl cellulose, and κ-carrageenan (CARκ)) and their abilities to serve as protective materials of encapsulated large cranberry (Vaccinium macrocarpon Aiton) fruit extract (CE) from losing its health beneficial activities during long-term storage. The microparticles were characterized in terms of their encapsulation efficiency (UV-Vis and FTIR), morphology (SEM) and the physical stability in various environments (gravimetry). The microparticles' size and encapsulation efficiency were 46-50 µm and 28-58%, respectively, and the microparticles were physically stable. CMC90 and ALGMV most efficiently protected the plant extract from losing its biological activity after 18 months, while the plant extract stored outside the particles had lost its activity. CE was intended for oral administration, thus CE release from the microparticles was monitored in vitro under gastrointestinal conditions. In vitro gastrointestinal release studies revealed that the ALGMV-, CMC90-, and CMC250-based particles exhibited the desired intestinal release pattern. This result supports the suitability of sodium alginate and carboxymethyl cellulose for the safe delivery of CE to the intestines while maintaining its biological properties and improving long-term storage stability.
Collapse
Affiliation(s)
- Marta Tsirigotis-Maniecka
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 29, 50-370 Wrocław, Poland
| |
Collapse
|
27
|
Pawlaczyk-Graja I, Balicki S, Ziewiecki R, Capek P, Matulová M, Wilk KA. New isolation process for bioactive food fiber from wild strawberry leaf. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Ayouaz S, Oliveira-Alves SC, Lefsih K, Serra AT, Bento da Silva A, Samah M, Karczewski J, Madani K, Bronze MR. Phenolic compounds from Nerium oleander leaves: microwave assisted extraction, characterization, antiproliferative and cytotoxic activities. Food Funct 2020; 11:6319-6331. [PMID: 32608462 DOI: 10.1039/d0fo01180k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A microwave-assisted extraction (MAE) method was used for the extraction of phenolic compounds from Nerium oleander leaves. The influence of variables such as ethanol concentration, microwave power, irradiation time and liquid/solid ratio on polyphenol extraction was modelled using a second-order regression equation based on response surface methodology (RSM). The optimal conditions for MAE were: extraction solvent 35% ethanol concentration, 500 W microwave power, 60 s irradiation time and a solvent/material ratio of 20 mL g-1. Under optimal MAE conditions, the recovery of TPC was 25.752 mg GAE per g dw. 19 compounds have been identified by HPLC-ESI-MS/MS analysis; the main compounds identified were chlorogenic acid, rutin and quinic acid esters, such as caffeoylquinic acids and dicaffeoylquinic acids. Additionally, the optimized extract demonstrated potential to inhibit HT29 colorectal cancer cell growth (EC50 = 2.432 μg mL-1) without presenting cytotoxicity in confluent Caco-2 cells, a model of human intestinal epithelium. These results supply new information about the phenolic composition of Nerium oleander leaves and their antiproliferative effect.
Collapse
Affiliation(s)
- Siham Ayouaz
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Extraction, purification, and determination of the gastroprotective activity of glucomannan from Bletilla striata. Carbohydr Polym 2020; 246:116620. [PMID: 32747259 DOI: 10.1016/j.carbpol.2020.116620] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 12/24/2022]
Abstract
In this study, a water-soluble polysaccharide (BSP) was extracted and purified from pseudobulb of Bletilla striata. The preliminary structure and gastroprotective activity of BSP were analyzed. Results indicate that BSP is a glucomannan with a molar ratio of 7.45:2.55 (Man:Glc), and its molecular weight is approximately 1.7 × 105 Da. BSP displayed outstanding protective action against ethanol-induced GES-1 cell injury in vitro, as well as, excellent gastroprotective activity in vivo. Especially, a high-dose of BSP (100 mg/kg) could reduce the ulcer index of the gastric mucosa and increase the percentage of ulcer inhibition, which possibly caused by enhancing the antioxidant capacity and inhibiting the apoptotic pathway in gastric tissue. Interestingly, BSP exhibited a comparative gastroprotective activity to that of positive control (omeprazole). In summary, our results indicated that BSP could be considered as a potential supplement for the prevention of gastric injury.
Collapse
|
30
|
Polyphenolic-Protein-Polysaccharide Complexes from Hovenia dulcis: Insights into Extraction Methods on Their Physicochemical Properties and In Vitro Bioactivities. Foods 2020; 9:foods9040456. [PMID: 32276355 PMCID: PMC7230293 DOI: 10.3390/foods9040456] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Seven extraction methods, including hot water extraction (HWE), pressurized water extraction (PWE), ultrasound-assisted extraction, microwave-assisted extraction, ultrasound-assisted enzymatic extraction, high-speed shearing homogenization extraction, and ultrasound-microwave-assisted extraction, were utilized to extract polyphenolic-protein-polysaccharide complexes (PPPs) from Hovenia dulcis. Next, their physicochemical properties and in vitro antioxidant activities, antiglycation effects, and inhibition activities on α-glucosidase and α-amylase were studied and compared. The findings from this study indicate that various extraction processes exhibit notable influences on the physicochemical properties and in vitro bioactivities of PPPs. Extraction yields, contents of polyphenolics and flavonoids, apparent viscosities, molecular weights, molar ratios of monosaccharide compositions, and ratios of amino acid compositions in PPPs varied in different extraction methods. Furthermore, 13 phenolic compounds in PPPs, including rutin, myricitrin, myricetin, quercetin, kaempferol, protocatechuic acid, gallocatechin, p-hydroxybenzoic acid, ampelopsin, quercetin-7,4'-diglucoside, dihydroquercetin, 5-methylmyricetin, and naringenin, were identified. The relatively strong in vitro antioxidant activities, antiglycation effects, and inhibition activities on α-glucosidase and α-amylase were determined in both PPP-W and PPP-P obtained by HWE and PWE, respectively. The high content of total polyphenolics may be one of the main contributors to their in vitro bioactivities. The findings have shown that the PWE method can be an appropriate method to prepare PPPs with strong bioactivities for application in the functional food industry.
Collapse
|
31
|
Natural polysaccharides experience physiochemical and functional changes during preparation: A review. Carbohydr Polym 2020; 234:115896. [DOI: 10.1016/j.carbpol.2020.115896] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/19/2020] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
|
32
|
Coelho MN, Soares PAG, Frattani FS, Camargo LMM, Tovar AMF, de Aguiar PF, Zingali RB, Mourão PAS, Costa SS. Polysaccharide composition of an anticoagulant fraction from the aqueous extract of Marsypianthes chamaedrys (Lamiaceae). Int J Biol Macromol 2020; 145:668-681. [PMID: 31883887 DOI: 10.1016/j.ijbiomac.2019.12.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 10/25/2022]
Abstract
Marsypianthes chamaedrys (Lamiaceae) is a medicinal plant popularly used against envenomation by snakebite. Pharmacological studies have shown that extracts of M. chamaedrys have antiophidic, anti-inflammatory and anticoagulant properties, supporting the ethnopharmacological use. In this study, an aqueous extract of aerial parts of M. chamaedrys showed anticoagulant activity in the activated partial thromboplastin time assay (0.54 IU/mg). The bioassay-guided fractionation using ethanol precipitation and gel filtration chromatography on Sephadex G-50 and Sephadex G-25 resulted in a water-soluble fraction with increased anticoagulant activity (Fraction F2-A; 2.94 IU/mg). A positive correlation was found between the amount of uronic acids and the anticoagulant potential of the active samples. Chemical and spectroscopic analyses indicated that F2-A contained homogalacturonan, type I rhamnogalacturonan, type II arabinogalactan and α-glucan. UV and FT-IR spectra indicated the possible presence of ferulic acid. Pectic polysaccharides and type II arabinogalactans may be contributing to the anticoagulant activity of the aqueous extract of M. chamaedrys in the APTT assay.
Collapse
Affiliation(s)
- Mariana N Coelho
- Laboratório de Química de Produtos Naturais Bioativos (LPN-Bio), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Paulo A G Soares
- Laboratório de Tecido Conjuntivo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rua Rodolpho Paulo Rocco, 255, Cidade Universitária, Rio de Janeiro, RJ 21941-913, Brazil.
| | - Flávia S Frattani
- Laboratório de Hemostasia e Trombose (LHT), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Luiza M M Camargo
- Laboratório de Química de Produtos Naturais Bioativos (LPN-Bio), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Ana M F Tovar
- Laboratório de Tecido Conjuntivo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rua Rodolpho Paulo Rocco, 255, Cidade Universitária, Rio de Janeiro, RJ 21941-913, Brazil.
| | - Paula F de Aguiar
- Laboratório de Quimiometria (LABQUIM), Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Centro de Tecnologia, Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil.
| | - Russolina B Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Paulo A S Mourão
- Laboratório de Tecido Conjuntivo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rua Rodolpho Paulo Rocco, 255, Cidade Universitária, Rio de Janeiro, RJ 21941-913, Brazil.
| | - Sônia S Costa
- Laboratório de Química de Produtos Naturais Bioativos (LPN-Bio), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
33
|
Extraction Optimization, Structural Characterization, and Anticoagulant Activity of Acidic Polysaccharides from Auricularia auricula- judae. Molecules 2020; 25:molecules25030710. [PMID: 32041370 PMCID: PMC7036816 DOI: 10.3390/molecules25030710] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
To explore Auricularia auricula-judae polysaccharides (AAP) as natural anticoagulants for application in the functional food industry, ultrasound assisted extraction (UAE) was optimized for the extraction of AAP by using a response surface methodology (RSM). The maximum extraction yield of crude AAP (14.74 mg/g) was obtained at the optimized extraction parameters as follows: Extraction temperature (74 °C), extraction time (27 min), the ratio of liquid to raw material (103 mL/g), and ultrasound power (198 W). Furthermore, the acidic AAP (aAAP) was precipitated with cetyltrimethylammonium bromide (CTAB) from crude AAP (cAAP). aAAP was further purified using ion exchange chromatography with a DEAE Purose 6 Fast Flow column to obtain aAAP-1. Additionally, according to the HPLC analysis, the aAAP-1 was mainly composed of mannose, glucuronic acid, glucose, galactose, and xylose, with a molar ratio of 80.63:9.88:2.25:1:31.13. Moreover, the results of the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) indicated aAAP-1 had anticoagulant activity, which was a synergic anticoagulant activity by the endogenous and exogenous pathway.
Collapse
|
34
|
Khedmat L, Izadi A, Mofid V, Mojtahedi SY. Recent advances in extracting pectin by single and combined ultrasound techniques: A review of techno-functional and bioactive health-promoting aspects. Carbohydr Polym 2020; 229:115474. [DOI: 10.1016/j.carbpol.2019.115474] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/05/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022]
|
35
|
Fragaria Genus: Chemical Composition and Biological Activities. Molecules 2020; 25:molecules25030498. [PMID: 31979351 PMCID: PMC7037259 DOI: 10.3390/molecules25030498] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
The strawberries represent in our days one of the main fresh fruits consumed globally, inevitably leading to large amounts of by-products and wastes. Usually appreciated because of their specific flavor, the strawberries also possess biological properties, including antioxidant, antimicrobial, or anti-inflammatory effects. In spite of the wide spread of the Fragaria genus, few species represent the subject of the last decade scientific research. The main components identified in the Fragaria species are presented, as well as several biological properties, as emerging from the scientific papers published in the last decade.
Collapse
|
36
|
Bagade SB, Patil M. Recent Advances in Microwave Assisted Extraction of Bioactive Compounds from Complex Herbal Samples: A Review. Crit Rev Anal Chem 2019; 51:138-149. [PMID: 31729248 DOI: 10.1080/10408347.2019.1686966] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microwaves are utilized for extraction of Phytoconstituents from complex herbal sample as a result of incredible research. Conventional extraction strategies are tedious and need more solvents and are no more relevant for thermal sensitive plant components. This review emphasize on the working and significance of microwave extraction technology in herbal research and medical field. The extraction step must be more yielding; quick, particular, not more solvent consuming, ensuring stability of thermolabile components and these features are available with microwave extraction method. In this nonconventional technology heat is created utilizing microwave energy. The important parameters that influence extraction efficiency are solvent properties, volume, duration of exposure, microwave control, system attributes, temperature and application were discussed in this article. The microwave assisted extraction, as green technology is contrasted with other extraction technique. This review is intended to discuss this green extraction technique along with its critical parameters for extracting bioactive compounds from complex plant matrices.
Collapse
Affiliation(s)
| | - Mayur Patil
- School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur, India
| |
Collapse
|
37
|
Song Q, Jiang L, Yang X, Huang L, Yu Y, Yu Q, Chen Y, Xie J. Physicochemical and functional properties of a water-soluble polysaccharide extracted from Mung bean (Vigna radiate L.) and its antioxidant activity. Int J Biol Macromol 2019; 138:874-880. [DOI: 10.1016/j.ijbiomac.2019.07.167] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/11/2019] [Accepted: 07/25/2019] [Indexed: 11/29/2022]
|
38
|
Mena-García A, Ruiz-Matute A, Soria A, Sanz M. Green techniques for extraction of bioactive carbohydrates. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|