1
|
Dacrory S, Ali LMA, Ouahrani-Bettache S, Daurat M, El-Sakhawy M, Hesemann P, Bettache N, Kamel S. Potential application of oxidized cellulose/alginate loaded hydroxyapatite/graphene oxide beads in bone tissue engineering. BMC Chem 2025; 19:52. [PMID: 40011968 DOI: 10.1186/s13065-025-01408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
Bone regeneration is one of the most effective methods for treating bone defects. In this work, tricarboxylic cellulose/sodium alginate loaded with hydroxyapatite (HA) and/or graphene oxide (GO) was coagulated by calcium ions to create beads as scaffolds. In the first, cellulose was oxidized to water-soluble tricarboxylic cellulose (TCC) by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), periodate, and chlorite oxidation. HA was extracted from eggshells via microwave treatment, and GO was synthesized using the Hummer method. The structural behavior of the formed beads was meticulously investigated through various characterization techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The SEM images confirmed the formation of particles of micrometric size without any specific morphology. Incorporating GO or HA does not affect the morphologies of the materials on the micrometric scale. The cytocompatibility of different bead preparations was studied on murine mesenchymal stem cells. Moreover, the swellability in water and biodegradability by cellulase enzyme of prepared beads were studied. The results show that the prepared beads may be promising for bone tissue engineering.
Collapse
Affiliation(s)
- Sawsan Dacrory
- Cellulose & Paper Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Lamiaa M A Ali
- IBMM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | - Mohamed El-Sakhawy
- Cellulose & Paper Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Peter Hesemann
- ChimEco CNRS UM 5021 CNRS-UM FR and Institut Charles Gerhardt de Montpellier, CNRS UMR 5253 CNRS-UM-ENSCM FR, Montpellier, France
| | - Nadir Bettache
- IBMM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Samir Kamel
- Cellulose & Paper Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
2
|
Naseem S, Rizwan M. Seaweed-derived etherified carboxymethyl cellulose for sustainable tissue engineering. Carbohydr Res 2024; 545:109291. [PMID: 39437464 DOI: 10.1016/j.carres.2024.109291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Biodegradability, biocompatibility, abundant supply from renewable sources, and affordability are the outstanding properties of cellulose that have prompted substantial studies into its potential in biomedical applications. Beyond terrestrial sources of cellulose, seaweeds have attracted much attention as a potential source of cellulose because they are widely available. Cellulose and its byproducts may be extracted from various macroalgae species, including red, green, and brown algae. The extracted cellulose's qualities vary depending on the algae species, age, and extraction process utilized. Cellulose's characteristics are enhanced through chemical modifications, specifically etherification and esterification, which substitute functional groups for hydroxyl groups, yielding a range of products, including cellulose acetate (CA), cellulose nitrate, cellulose sulfate, methylcellulose, and carboxymethyl cellulose (CMC). The ability to modify CMC characteristics for particular applications is explored through techniques including grafting processes mixing, and cross-linking with other polymers. Moreover, tissue engineering is given significant consideration in the growing use of CMC and its altered forms in biological applications. These alterations allow for the production of scaffolds that promote tissue regeneration and cell proliferation, enabling CMC-based scaffolds for various tissue engineering uses. This review provides a comprehensive overview of CMC's properties, modifications, and potential in tissue engineering.
Collapse
Affiliation(s)
- Sobia Naseem
- Department of Polymer & Process Engineering, University of Engineering and Technology, Lahore, Pakistan; Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan.
| |
Collapse
|
3
|
Xiong H, Cao M, Yu Y, Duan X, Sun L, Tang L, Fan X. Study on the Effects of Low-Intensity Pulsed Ultrasound and Iron Ions for Proliferation and Differentiation of Osteoblasts. ULTRASOUND IN MEDICINE & BIOLOGY 2024:S0301-5629(24)00265-5. [PMID: 39209558 DOI: 10.1016/j.ultrasmedbio.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE This study involved the proliferation and differentiation of osteoblasts treated with low-intensity pulsed ultrasound (LIPUS) and iron (Fe3+) ions, respectively. The biological effects of LIPUS and Fe3+ ions on the proliferation and differentiation of osteoblasts were also evaluated. METHODS MC3T3-E1 cells were seeded in six-well plates with the medium, which contained different concentrations of Fe3+ (0, 100, 200, 300, 400, 500, 600 and 700 μg L-1, respectively). LIPUS treatment was directed at the bottom of the plate for 20 min at an intensity of 80 mW cm-2 every day. RESULTS Viability results showed that a dose of 400 μg L-1 Fe3+ ions had the best effect at promoting osteogenic proliferation in cell culture. The results of alkaline phosphatase staining and mineralization indicated that the differentiation of osteoblasts was promoted by LIPUS and Fe3+ ions. Fluorescence staining results showed that the number of cell nuclei in the LIPUS, Fe3+ and LIPUS-Fe groups increased by 37.20%, 55.81% and 89.76%, respectively. Migration data indicated that migration and proliferation rates were increased by LIPUS and Fe3+, and the results of protein expression indicated that LIPUS and Fe3+ may increase the expression of Wnt, β-catenin, and Runx2, hence promoting normal bone regeneration and development. CONCLUSION The combination of LIPUS (1.5 MHz, 80 mW cm-2) and Fe3+ accelerates the proliferation and differentiation of osteoblasts significantly compared with single-factor treatment (stimulated by LIPUS and Fe3+ ions, respectively). This study could establish a foundation for LIPUS-responsive biomaterials in the repair and regeneration of bone tissues.
Collapse
Affiliation(s)
- Huanbin Xiong
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Mengshu Cao
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Yanan Yu
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Xueyou Duan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
4
|
Bai Y, Wang Z, He X, Zhu Y, Xu X, Yang H, Mei G, Chen S, Ma B, Zhu R. Application of Bioactive Materials for Osteogenic Function in Bone Tissue Engineering. SMALL METHODS 2024; 8:e2301283. [PMID: 38509851 DOI: 10.1002/smtd.202301283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/04/2023] [Indexed: 03/22/2024]
Abstract
Bone tissue defects present a major challenge in orthopedic surgery. Bone tissue engineering using multiple versatile bioactive materials is a potential strategy for bone-defect repair and regeneration. Due to their unique physicochemical and mechanical properties, biofunctional materials can enhance cellular adhesion, proliferation, and osteogenic differentiation, thereby supporting and stimulating the formation of new bone tissue. 3D bioprinting and physical stimuli-responsive strategies have been employed in various studies on bone regeneration for the fabrication of desired multifunctional biomaterials with integrated bone tissue repair and regeneration properties. In this review, biomaterials applied to bone tissue engineering, emerging 3D bioprinting techniques, and physical stimuli-responsive strategies for the rational manufacturing of novel biomaterials with bone therapeutic and regenerative functions are summarized. Furthermore, the impact of biomaterials on the osteogenic differentiation of stem cells and the potential pathways associated with biomaterial-induced osteogenesis are discussed.
Collapse
Affiliation(s)
- Yuxin Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiaolie He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xu Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Huiyi Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Guangyu Mei
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Shengguang Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Bei Ma
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, China
| |
Collapse
|
5
|
Haider MK, Davood K, Kim IS. "Micro-to-nano": Reengineering of jute for constructing cellulose nanofibers as a next-generation biomaterial. Int J Biol Macromol 2024; 261:129872. [PMID: 38302019 DOI: 10.1016/j.ijbiomac.2024.129872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Micro-to-nano transformation can make a material unique. This research uses jute microfiber to extract Holo and Alpha forms of cellulose, which are later attempted to electrospun into superfine nanofibers (NFs). Initial investigation of morphological, physicochemical, crystallographic, and thermal properties confirmed successful synthesis of Holo and Alpha-cellulose (H/A-cellulose). Afterwards, the electrospinnable concentration of H/A-cellulose was optimized and their bead-free ultrafine NFs in the range of 109-145 nm were fabricated. FTIR analysis confirmed the source composition in Holo and Alpha CNF with the partial formation of trifluoroacetyl esters. Alpha CNF exhibited better structural integrity despite the crystallinity and thermal stability deteriorated in both Holo and Alpha CNF. Both Holo and Alpha CNF exhibited adequate mechanical performance and liquid uptake properties. Alpha CNF showed better morphological stability in organic solvents and slower biodegradation than Holo CNF. Subsequent investigation revealed that both Holo and Alpha CNF didn't exhibit cytotoxic effects on COS-7 cells and above 90 % of cells were viable in contact with both CNF. Significant proliferation and attachment of COS-7 cells were noticed within 7 days of incubation with the prepared CNF. Our findings revealed that jute-extracted cellulose can be a viable and potential source for constructing cellulose-based advanced nano-biomaterials.
Collapse
Affiliation(s)
- Md Kaiser Haider
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Kharaghani Davood
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI) and School of Public Health, Rutgers-New Brunswick, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan.
| |
Collapse
|
6
|
Sharma A, Kokil GR, He Y, Lowe B, Salam A, Altalhi TA, Ye Q, Kumeria T. Inorganic/organic combination: Inorganic particles/polymer composites for tissue engineering applications. Bioact Mater 2023; 24:535-550. [PMID: 36714332 PMCID: PMC9860401 DOI: 10.1016/j.bioactmat.2023.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Biomaterials have ushered the field of tissue engineering and regeneration into a new era with the development of advanced composites. Among these, the composites of inorganic materials with organic polymers present unique structural and biochemical properties equivalent to naturally occurring hybrid systems such as bones, and thus are highly desired. The last decade has witnessed a steady increase in research on such systems with the focus being on mimicking the peculiar properties of inorganic/organic combination composites in nature. In this review, we discuss the recent progress on the use of inorganic particle/polymer composites for tissue engineering and regenerative medicine. We have elaborated the advantages of inorganic particle/polymer composites over their organic particle-based composite counterparts. As the inorganic particles play a crucial role in defining the features and regenerative capacity of such composites, the review puts a special emphasis on the various types of inorganic particles used in inorganic particle/polymer composites. The inorganic particles that are covered in this review are categorised into two broad types (1) solid (e.g., calcium phosphate, hydroxyapatite, etc.) and (2) porous particles (e.g., mesoporous silica, porous silicon etc.), which are elaborated in detail with recent examples. The review also covers other new types of inorganic material (e.g., 2D inorganic materials, clays, etc.) based polymer composites for tissue engineering applications. Lastly, we provide our expert analysis and opinion of the field focusing on the limitations of the currently used inorganic/organic combination composites and the immense potential of new generation of composites that are in development.
Collapse
Affiliation(s)
- Astha Sharma
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Ganesh R. Kokil
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Yan He
- Institute of Regenerative and Translational Medicine, Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China
| | - Baboucarr Lowe
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Arwa Salam
- Chemistry Department, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Tariq A. Altalhi
- Chemistry Department, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
7
|
Zhang Y, Jiang S, Xu D, Li Z, Guo J, Li Z, Cheng G. Application of Nanocellulose-Based Aerogels in Bone Tissue Engineering: Current Trends and Outlooks. Polymers (Basel) 2023; 15:polym15102323. [PMID: 37242898 DOI: 10.3390/polym15102323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The complex or compromised bone defects caused by osteomyelitis, malignant tumors, metastatic tumors, skeletal abnormalities, and systemic diseases are difficult to be self-repaired, leading to a non-union fracture. With the increasing demands of bone transplantation, more and more attention has been paid to artificial bone substitutes. As biopolymer-based aerogel materials, nanocellulose aerogels have been widely utilized in bone tissue engineering. More importantly, nanocellulose aerogels not only mimic the structure of the extracellular matrix but could also deliver drugs and bioactive molecules to promote tissue healing and growth. Here, we reviewed the most recent literature about nanocellulose-based aerogels, summarized the preparation, modification, composite fabrication, and applications of nanocellulose-based aerogels in bone tissue engineering, as well as giving special focus to the current limitations and future opportunities of nanocellulose aerogels for bone tissue engineering.
Collapse
Affiliation(s)
- Yaoguang Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Shengjun Jiang
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430079, China
| | - Dongdong Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325015, China
| | - Zubing Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jie Guo
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Zhi Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gu Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
8
|
Chen W, Gan L, Huang J. Design, Manufacturing and Functions of Pore-Structured Materials: From Biomimetics to Artificial. Biomimetics (Basel) 2023; 8:biomimetics8020140. [PMID: 37092392 PMCID: PMC10123697 DOI: 10.3390/biomimetics8020140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/25/2023] Open
Abstract
Porous structures with light weight and high mechanical performance exist widely in the tissues of animals and plants. Biomimetic materials with those porous structures have been well-developed, and their highly specific surfaces can be further used in functional integration. However, most porous structures in those tissues can hardly be entirely duplicated, and their complex structure-performance relationship may still be not fully understood. The key challenges in promoting the applications of biomimetic porous materials are to figure out the essential factors in hierarchical porous structures and to develop matched preparation methods to control those factors precisely. Hence, this article reviews the existing methods to prepare biomimetic porous structures. Then, the well-proved effects of micropores, mesopores, and macropores on their various properties are introduced, including mechanical, electric, magnetic, thermotics, acoustic, and chemical properties. The advantages and disadvantages of hierarchical porous structures and their preparation methods are deeply evaluated. Focusing on those disadvantages and aiming to improve the performance and functions, we summarize several modification strategies and discuss the possibility of replacing biomimetic porous structures with meta-structures.
Collapse
Affiliation(s)
- Weiwei Chen
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, State Key Laboratory of Silkworm Genome Biology, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Lin Gan
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, State Key Laboratory of Silkworm Genome Biology, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jin Huang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, State Key Laboratory of Silkworm Genome Biology, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Janmohammadi M, Nazemi Z, Salehi AOM, Seyfoori A, John JV, Nourbakhsh MS, Akbari M. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater 2023; 20:137-163. [PMID: 35663339 PMCID: PMC9142858 DOI: 10.1016/j.bioactmat.2022.05.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Natural bone constitutes a complex and organized structure of organic and inorganic components with limited ability to regenerate and restore injured tissues, especially in large bone defects. To improve the reconstruction of the damaged bones, tissue engineering has been introduced as a promising alternative approach to the conventional therapeutic methods including surgical interventions using allograft and autograft implants. Bioengineered composite scaffolds consisting of multifunctional biomaterials in combination with the cells and bioactive therapeutic agents have great promise for bone repair and regeneration. Cellulose and its derivatives are renewable and biodegradable natural polymers that have shown promising potential in bone tissue engineering applications. Cellulose-based scaffolds possess numerous advantages attributed to their excellent properties of non-toxicity, biocompatibility, biodegradability, availability through renewable resources, and the low cost of preparation and processing. Furthermore, cellulose and its derivatives have been extensively used for delivering growth factors and antibiotics directly to the site of the impaired bone tissue to promote tissue repair. This review focuses on the various classifications of cellulose-based composite scaffolds utilized in localized bone drug delivery systems and bone regeneration, including cellulose-organic composites, cellulose-inorganic composites, cellulose-organic/inorganic composites. We will also highlight the physicochemical, mechanical, and biological properties of the different cellulose-based scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Mahsa Janmohammadi
- Faculty of New Sciences and Technologies, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | - Zahra Nazemi
- Faculty of New Sciences and Technologies, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | | | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Johnson V. John
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA, 90050, USA
| | - Mohammad Sadegh Nourbakhsh
- Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA, 90050, USA
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| |
Collapse
|
10
|
Mahdi Eshaghi M, Pourmadadi M, Rahdar A, Díez-Pascual AM. Novel Carboxymethyl Cellulose-Based Hydrogel with Core-Shell Fe 3O 4@SiO 2 Nanoparticles for Quercetin Delivery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248711. [PMID: 36556516 PMCID: PMC9784486 DOI: 10.3390/ma15248711] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 05/23/2023]
Abstract
A nanocomposite composed of carboxymethyl cellulose (CMC) and core-shell nanoparticles of Fe3O4@SiO2 was prepared as a pH-responsive nanocarrier for quercetin (QC) delivery. The nanoparticles were further entrapped in a water-in-oil-in-water emulsion system for a sustained release profile. The CMC/Fe3O4@SiO2/QC nanoparticles were characterized using dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), a field emission scanning electron microscope (FE-SEM), and a vibrating sample magnetometer (VSM) to obtain insights into their size, stability, functional groups/chemical bonds, crystalline structure, morphology, and magnetic properties, respectively. The entrapment and loading efficiency were slightly improved after the incorporation of Fe3O4@SiO2 NPs within the hydrogel network. The dialysis method was applied for drug release studies. It was found that the amount of QC released increased with the decrease in pH from 7.4 to 5.4, while the sustained-release pattern was preserved. The A549 cell line was chosen to assess the anticancer activity of the CMC/Fe3O4@SiO2/QC nanoemulsion and its components for lung cancer treatment via an MTT assay. The L929 cell line was used in the MTT assay to determine the possible side effects of the nanoemulsion. Moreover, a flow cytometry test was performed to measure the level of apoptosis and necrosis. Based on the obtained results, CMC/Fe3O4@SiO2 can be regarded as a novel promising system for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Mahdi Eshaghi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
11
|
Tang L, Wu T, Zhou Y, Zhong Y, Sun L, Guo J, Fan X, Ta D. Study on synergistic effects of carboxymethyl cellulose and LIPUS for bone tissue engineering. Carbohydr Polym 2022; 286:119278. [DOI: 10.1016/j.carbpol.2022.119278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/28/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023]
|
12
|
Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, Nourbakhsh MS. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng 2021; 7:5397-5431. [PMID: 34797061 DOI: 10.1021/acsbiomaterials.1c00920] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Large injuries to bones are still one of the most challenging musculoskeletal problems. Tissue engineering can combine stem cells, scaffold biomaterials, and biofactors to aid in resolving this complication. Therefore, this review aims to provide information on the recent advances made to utilize the potential of biomaterials for making bone scaffolds and the assisted stem cell therapy and use of biofactors for bone tissue engineering. The requirements and different types of biomaterials used for making scaffolds are reviewed. Furthermore, the importance of stem cells and biofactors (growth factors and extracellular vesicles) in bone regeneration and their use in bone scaffolds and the key findings are discussed. Lastly, some of the main obstacles in bone tissue engineering and future trends are highlighted.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Mahsa Janmohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan 3513119111, Iran
| | - Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Parisa Koohsarian
- Department of Biochemistry and Hematology, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | | |
Collapse
|
13
|
Gopinath V, Kamath SM, Priyadarshini S, Chik Z, Alarfaj AA, Hirad AH. Multifunctional applications of natural polysaccharide starch and cellulose: An update on recent advances. Biomed Pharmacother 2021; 146:112492. [PMID: 34906768 DOI: 10.1016/j.biopha.2021.112492] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
The emergence of clinical complications and therapeutic challenges for treating various diseases necessitate the discovery of novel restorative functional materials. Polymer-based drug delivery systems have been extensively reported in the last two decades. Recently, there has been an increasing interest in the progression of natural biopolymers based controlled therapeutic strategies, especially in drug delivery and tissue engineering applications. However, the solubility and functionalisation due to their complex network structure and intramolecular bonding seem challenging. This review explores the current advancement and prospects of the most promising natural polymers such as cellulose, starch and their derivatives-based drug delivery vehicles like hydrogels, films and composites, in combating major ailments such as bone infections, microbial infections, and cancers. In addition, selective drug targeting using metal-drug (MD) and MD-based polymeric missiles have been exciting but challenging for its application in cancer therapeutics. Owing to high biocompatibility of starch and cellulose, these materials have been extensively evaluated in biomedical and pharmaceutical applications. This review presents a detailed impression of the current trends for the construction of biopolymer-based tissue engineering, drug/gene/protein delivery vehicles.
Collapse
Affiliation(s)
- V Gopinath
- University of Malaya Centre for Proteomics Research, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - S Manjunath Kamath
- Department of Translational Medicine and Research, SRM Medical College Hospital and Research, SRMIST, Kattankulathur 603203, India.
| | - S Priyadarshini
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Zamri Chik
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Abdurahman H Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Mallakpour S, Tukhani M, Hussain CM. Recent advancements in 3D bioprinting technology of carboxymethyl cellulose-based hydrogels: Utilization in tissue engineering. Adv Colloid Interface Sci 2021; 292:102415. [PMID: 33892215 DOI: 10.1016/j.cis.2021.102415] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022]
Abstract
3D printing technology has grown exponentially since its introduction due to its ability to print complex structures quickly and simply. The ink used in 3D printers is one of the most discussed areas and a variety of hydrogel-based inks were developed. Carboxymethyl cellulose (CMC) is derived from cellulose, which is a natural, biocompatible, biodegradable, and wildly abounded biopolymer. CMC is a very qualified candidate in the preparation of hydrogels because it has good solubility in water with multiple carboxyl groups. Various physical and chemical cross-linking methods and mechanisms have been used by researchers to prepare CMC-based hydrogels. Bioprinting is a powerful technology for tissue engineering applications that have been able to design and simulate different tissue and organs with digital control. Among many advantages, which were reported for bioprinting, its high throughput, as well as precise control of scaffolding and cells, is very valuable. Considering all these tips and capabilities, in this study, the methods of preparation and improvement of CMC-based hydrogels, applied 3D printer, and the latest inks designed using this biopolymer in terms of combination, features, and performance in tissue engineering are reported.
Collapse
|
15
|
Radwan NH, Nasr M, Ishak RAH, Awad GAS. Moxifloxacin-loaded in situ synthesized Bioceramic/Poly(L-lactide-co-ε-caprolactone) composite scaffolds for treatment of osteomyelitis and orthopedic regeneration. Int J Pharm 2021; 602:120662. [PMID: 33933641 DOI: 10.1016/j.ijpharm.2021.120662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
High local intraosseous levels of antimicrobial agents are required for adequate long-term treatment of chronic osteomyelitis (OM). In this study, biodegradable composite scaffolds of poly-lactide-co-ε-caprolactone/calcium phosphate (CaP) were in-situ synthesized using two different polymer grades and synthesis pathways and compared to composites prepared by pre-formed (commercially available) CaP for delivery of the antibiotic moxifloxacin hydrochloride (MOX). Phase identification and characterization by Fourier transform infra-red (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and scanning electron microscope (SEM) confirmed the successful formation of different CaP phases within the biodegradable polymer matrix. The selected in-situ formed CaP scaffold showed a sustained release for MOX for six weeks and adequate porosity. Cell viability study on MG-63 osteoblast-like cells revealed that the selected composite scaffold maintained the cellular proliferation and differentiation. Moreover, it was able to diminish the bacterial load, inflammation and sequestrum formation in the bones of OM-induced animals. The results of the present work deduce that the selected in-situ formed CaP composite scaffold is a propitious candidate for OM treatment, and further clinical experiments are recommended.
Collapse
Affiliation(s)
- Noha H Radwan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Gehanne A S Awad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
16
|
The Marine Polysaccharide Ulvan Confers Potent Osteoinductive Capacity to PCL-Based Scaffolds for Bone Tissue Engineering Applications. Int J Mol Sci 2021; 22:ijms22063086. [PMID: 33802984 PMCID: PMC8002638 DOI: 10.3390/ijms22063086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Hybrid composites of synthetic and natural polymers represent materials of choice for bone tissue engineering. Ulvan, a biologically active marine sulfated polysaccharide, is attracting great interest in the development of novel biomedical scaffolds due to recent reports on its osteoinductive properties. Herein, a series of hybrid polycaprolactone scaffolds containing ulvan either alone or in blends with κ-carrageenan and chondroitin sulfate was prepared and characterized. The impact of the preparation methodology and the polysaccharide composition on their morphology, as well as on their mechanical, thermal, water uptake and porosity properties was determined, while their osteoinductive potential was investigated through the evaluation of cell adhesion, viability, and osteogenic differentiation of seeded human adipose-derived mesenchymal stem cells. The results verified the osteoinductive ability of ulvan, showing that its incorporation into the polycaprolactone matrix efficiently promoted cell attachment and viability, thus confirming its potential in the development of biomedical scaffolds for bone tissue regeneration applications.
Collapse
|
17
|
Chinta ML, Velidandi A, Pabbathi NPP, Dahariya S, Parcha SR. Assessment of properties, applications and limitations of scaffolds based on cellulose and its derivatives for cartilage tissue engineering: A review. Int J Biol Macromol 2021; 175:495-515. [PMID: 33539959 DOI: 10.1016/j.ijbiomac.2021.01.196] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 01/16/2023]
Abstract
Cartilage is a connective tissue, which is made up of ~80% of water. It is alymphatic, aneural and avascular with only one type of cells present, chondrocytes. They constitute about 1-5% of the entire cartilage tissue. It has a very limited capacity for spontaneous repair. Articular cartilage defects are quite common due to trauma, injury or aging and these defects eventually lead to osteoarthritis, affecting the daily activities. Tissue engineering (TE) is a promising strategy for the regeneration of articular cartilage when compared to the existing invasive treatment strategies. Cellulose is the most abundant natural polymer and has desirable properties for the development of a scaffold, which can be used for the regeneration of cartilage. This review discusses about (i) the basic science behind cartilage TE and the study of cellulose properties that can be exploited for the construction of the engineered scaffold with desired properties for cartilage tissue regeneration, (ii) about the requirement of scaffolds properties, fabrication mechanisms and assessment of cellulose based scaffolds, (iii) details about the modification of cellulose surface by employing various chemical approaches for the production of cellulose derivatives with enhanced characteristics and (iv) limitations and future research prospects of cartilage TE.
Collapse
Affiliation(s)
- Madhavi Latha Chinta
- Stem Cell Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | - Aditya Velidandi
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | | | - Swati Dahariya
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sreenivasa Rao Parcha
- Stem Cell Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India.
| |
Collapse
|
18
|
Ji J, Chen G, Liu Z, Li L, Yuan J, Wang P, Xu B, Fan X. Preparation of PEG-modified wool keratin/sodium alginate porous scaffolds with elasticity recovery and good biocompatibility. J Biomed Mater Res B Appl Biomater 2021; 109:1303-1312. [PMID: 33421269 DOI: 10.1002/jbm.b.34791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 01/21/2023]
Abstract
To improve mechanical properties of keratin (KR) porous scaffolds, we prepared a PEGylated keratin through thiol-ene click reaction. Several porous scaffolds were prepared by blending PEGylated keratin with sodium alginate (SA). The surface morphology, mechanical properties, and porosity of scaffolds were detailed studied at different KR/SA proportions. The results showed the content of SA had an effect on pore formation and mechanical properties. When the mass ratio of KR to SA was 2:1, the stress of yield point of the keratin porous scaffold reached 1.24 MPa, and also showed good deformation recovery ability. The PEGylated keratin porous scaffold had a high porosity and great cytocompatibility. Its' porosity is up to 81.7% and the cell viability is about 117.78%. This allows it to absorb the simulated plasma quickly (9.20 ± 0.37 g/g). In addition, the structural stability and acid-base stability of the keratin porous scaffold were also improved after PEGylation. Overall, the PEGylated keratin porous scaffold will be promising in tissue materials due to its great physical, chemical, and biological properties.
Collapse
Affiliation(s)
- Ji Ji
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Guang Chen
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Zitong Liu
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Lili Li
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jiugang Yuan
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Ping Wang
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Bo Xu
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xuerong Fan
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Ruhaimi A, Aziz M, Jalil A. Magnesium oxide-based adsorbents for carbon dioxide capture: Current progress and future opportunities. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101357] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Alorku K, Manoj M, Yuan A. A plant-mediated synthesis of nanostructured hydroxyapatite for biomedical applications: a review. RSC Adv 2020; 10:40923-40939. [PMID: 35519223 PMCID: PMC9057773 DOI: 10.1039/d0ra08529d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
The engineering of calcium-based phosphate materials at the nanoscale gains several unique properties compared to the bulky state. The effort to scale down, e.g., from bulky state to nanoscale in order to control the morphology and improve structural properties requires the use of varying reagents that can be detrimental to the environment. A typical example of these materials is hydroxyapatite (HAp), one of the well-known calcium phosphate materials, which has a close resemblance to human bone tissue. HAp has valuable applications in catalysis, drug delivery, bone and dental implant formation, and adsorption. Hydroxyapatite-based nanomaterials synthesized through conventional routes make use of reagents that are not environmental friendly and are very costly. Since the current research trends are geared towards producing/synthesizing nanomaterials through an eco-friendly approach, there is the need to consider the techniques and reagents involved in the synthesis of HAp. This review touches on the possible replacement of such synthetic chemical reagents, synthesis routes, and toxic capping agents with plant extracts for synthesizing HAp-based nanomaterials for multi-functional applications. The influence of biomolecules from plants on synthesized HAps and the attainable mechanism during these green approaches are discussed. Viable future modifications of the methods used to obtain extracts from plants are also studied.
Collapse
Affiliation(s)
- Kingdom Alorku
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212003 Jiangsu Province PR China +86-511-85639001
| | - M Manoj
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212003 Jiangsu Province PR China +86-511-85639001
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212003 Jiangsu Province PR China +86-511-85639001
| |
Collapse
|
21
|
Sobczak-Kupiec A, Drabczyk A, Kudłacik-Kramarczyk S, Tyliszczak B. Hydroxyapatite powders prepared using two different methods as modifying agents of PVP/collagen composites designed for biomedical applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1785458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Agnieszka Sobczak-Kupiec
- Cracow university of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, Krakow, Poland
| | - Anna Drabczyk
- Cracow university of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, Krakow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Cracow university of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, Krakow, Poland
| | - Bozena Tyliszczak
- Cracow university of Technology, Faculty of Materials Engineering and Physics, Institute of Materials Science, Krakow, Poland
| |
Collapse
|
22
|
Oprea M, Voicu SI. Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydr Polym 2020; 247:116683. [PMID: 32829811 DOI: 10.1016/j.carbpol.2020.116683] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 01/17/2023]
Abstract
Cellulose derivatives represent a viable alternative to pure cellulose due to their solubility in water and common organic solvents. This, coupled with their low cost, biocompatibility, and biodegradability, makes them an attractive choice for applications related to the biomedicine and bioanalysis area. Cellulose derivatives-based composites with improved properties were researched as films and membranes for osseointegration, hemodialysis and biosensors, smart textile fibers, tissue engineering scaffolds, hydrogels and nanoparticles for drug delivery. The different preparation strategies of these polymeric composites as well as the most recent available experimental results were described in this review. General aspects such as structure and properties of cellulose extracted from plants or bacterial sources, types of cellulose derivatives and their synthesis methods were also discussed. Finally, the future perspectives related to composites based on cellulose derivatives were highlighted and some conclusions regarding the reviewed applications were drawn.
Collapse
Affiliation(s)
- Madalina Oprea
- National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania; Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania; Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania.
| |
Collapse
|
23
|
Chitosan-calcium phosphate composite scaffolds for control of post-operative osteomyelitis: Fabrication, characterization, and in vitro-in vivo evaluation. Carbohydr Polym 2020; 244:116482. [PMID: 32536391 DOI: 10.1016/j.carbpol.2020.116482] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Osteomyelitis is a progressive inflammatory disease requiring prolonged systemic treatment with high antibiotic doses, and is very challenging to be treated. The use of locally applied antibiotics loaded on a biodegradable carrier at surgery sites is hypothesized to prevent post-operative osteomyelitis, while providing site-specific drug release. In this work, chitosan-based calcium phosphate composites were prepared and loaded with moxifloxacin hydrochloride. The in-situ formation of calcium phosphates within the composite was experimentally confirmed by Fourier transform infra-red spectroscopy, X-ray powder diffraction, and scanning electron microscopy. Results showed that the composites provided complete drug release over three days, and the selected composite formulation induced differentiation and proliferation of osteoblasts, while reducing bacterial count, inflammation and intra-medullary fibrosis in bone tissue specimens of osteomyelitis-induced animal model. Hence, we can conclude that the in situ prepared antibiotic-loaded calcium phosphate chitosan composite is promising in preventing post-operative osteomyelitis, and is worthy of clinical experimentation.
Collapse
|
24
|
Tziveleka LA, Sapalidis A, Kikionis S, Aggelidou E, Demiri E, Kritis A, Ioannou E, Roussis V. Hybrid Sponge-Like Scaffolds Based on Ulvan and Gelatin: Design, Characterization and Evaluation of Their Potential Use in Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1763. [PMID: 32283814 PMCID: PMC7178717 DOI: 10.3390/ma13071763] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023]
Abstract
Ulvan, a bioactive natural sulfated polysaccharide, and gelatin, a collagen-derived biopolymer, have attracted interest for the preparation of biomaterials for different biomedical applications, due to their demonstrated compatibility for cell attachment and proliferation. Both ulvan and gelatin have exhibited osteoinductive potential, either alone or in combination with other materials. In the current work, a series of novel hybrid scaffolds based on crosslinked ulvan and gelatin was designed, prepared and characterized. Their mechanical performance, thermal stability, porosity, water-uptake and in vitro degradation ability were assessed, while their morphology was analyzed through scanning electron microscopy. The prepared hybrid ulvan/gelatin scaffolds were characterized by a highly porous and interconnected structure. Human adipose-derived mesenchymal stem cells (hADMSCs) were seeded in selected ulvan/gelatin hybrid scaffolds and their adhesion, survival, proliferation, and osteogenic differentiation efficiency was evaluated. Overall, it was found that the prepared hybrid sponge-like scaffolds could efficiently support mesenchymal stem cells' adhesion and proliferation, suggesting that such scaffolds could have potential uses in bone tissue engineering.
Collapse
Affiliation(s)
- Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Andreas Sapalidis
- Institute of Nanosciences and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15310 Attiki, Greece;
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Eleni Aggelidou
- cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Efterpi Demiri
- Department of Plastic Surgery, School of Medicine, Faculty of Health Sciences, Papageorgiou Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Aristeidis Kritis
- cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| |
Collapse
|